Properties

Label 588.2.b.d.391.10
Level $588$
Weight $2$
Character 588.391
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(391,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.391"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.15911316233388032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 10 x^{10} - 20 x^{9} + 35 x^{8} - 56 x^{7} + 84 x^{6} - 112 x^{5} + 140 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 391.10
Root \(1.22594 + 0.705031i\) of defining polynomial
Character \(\chi\) \(=\) 588.391
Dual form 588.2.b.d.391.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22594 + 0.705031i) q^{2} +1.00000 q^{3} +(1.00586 + 1.72865i) q^{4} +3.64758i q^{5} +(1.22594 + 0.705031i) q^{6} +(0.0143727 + 2.82839i) q^{8} +1.00000 q^{9} +(-2.57166 + 4.47172i) q^{10} -6.07019i q^{11} +(1.00586 + 1.72865i) q^{12} -0.483253i q^{13} +3.64758i q^{15} +(-1.97648 + 3.47757i) q^{16} +2.55250i q^{17} +(1.22594 + 0.705031i) q^{18} -1.21909 q^{19} +(-6.30540 + 3.66896i) q^{20} +(4.27968 - 7.44170i) q^{22} -3.46720i q^{23} +(0.0143727 + 2.82839i) q^{24} -8.30483 q^{25} +(0.340708 - 0.592439i) q^{26} +1.00000 q^{27} +8.21857 q^{29} +(-2.57166 + 4.47172i) q^{30} -6.31249 q^{31} +(-4.87485 + 2.86982i) q^{32} -6.07019i q^{33} +(-1.79959 + 3.12921i) q^{34} +(1.00586 + 1.72865i) q^{36} +1.19016 q^{37} +(-1.49454 - 0.859498i) q^{38} -0.483253i q^{39} +(-10.3168 + 0.0524254i) q^{40} -6.59422i q^{41} +3.51184i q^{43} +(10.4933 - 6.10578i) q^{44} +3.64758i q^{45} +(2.44449 - 4.25059i) q^{46} +11.6622 q^{47} +(-1.97648 + 3.47757i) q^{48} +(-10.1812 - 5.85517i) q^{50} +2.55250i q^{51} +(0.835376 - 0.486085i) q^{52} +2.62782 q^{53} +(1.22594 + 0.705031i) q^{54} +22.1415 q^{55} -1.21909 q^{57} +(10.0755 + 5.79435i) q^{58} +1.16160 q^{59} +(-6.30540 + 3.66896i) q^{60} -0.208458i q^{61} +(-7.73874 - 4.45050i) q^{62} +(-7.99959 + 0.0813030i) q^{64} +1.76270 q^{65} +(4.27968 - 7.44170i) q^{66} -1.77617i q^{67} +(-4.41238 + 2.56746i) q^{68} -3.46720i q^{69} +9.13166i q^{71} +(0.0143727 + 2.82839i) q^{72} -6.04928i q^{73} +(1.45907 + 0.839100i) q^{74} -8.30483 q^{75} +(-1.22624 - 2.10739i) q^{76} +(0.340708 - 0.592439i) q^{78} -3.17938i q^{79} +(-12.6847 - 7.20938i) q^{80} +1.00000 q^{81} +(4.64913 - 8.08412i) q^{82} -7.49842 q^{83} -9.31044 q^{85} +(-2.47595 + 4.30530i) q^{86} +8.21857 q^{87} +(17.1689 - 0.0872448i) q^{88} -12.2872i q^{89} +(-2.57166 + 4.47172i) q^{90} +(5.99359 - 3.48753i) q^{92} -6.31249 q^{93} +(14.2972 + 8.22221i) q^{94} -4.44674i q^{95} +(-4.87485 + 2.86982i) q^{96} +11.8376i q^{97} -6.07019i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 12 q^{3} - 4 q^{4} + 4 q^{6} + 4 q^{8} + 12 q^{9} - 4 q^{12} - 4 q^{16} + 4 q^{18} - 24 q^{20} + 4 q^{24} - 12 q^{25} + 24 q^{26} + 12 q^{27} + 32 q^{29} + 16 q^{31} + 4 q^{32} + 32 q^{34}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22594 + 0.705031i 0.866871 + 0.498532i
\(3\) 1.00000 0.577350
\(4\) 1.00586 + 1.72865i 0.502931 + 0.864327i
\(5\) 3.64758i 1.63125i 0.578583 + 0.815624i \(0.303606\pi\)
−0.578583 + 0.815624i \(0.696394\pi\)
\(6\) 1.22594 + 0.705031i 0.500488 + 0.287828i
\(7\) 0 0
\(8\) 0.0143727 + 2.82839i 0.00508150 + 0.999987i
\(9\) 1.00000 0.333333
\(10\) −2.57166 + 4.47172i −0.813229 + 1.41408i
\(11\) 6.07019i 1.83023i −0.403190 0.915116i \(-0.632099\pi\)
0.403190 0.915116i \(-0.367901\pi\)
\(12\) 1.00586 + 1.72865i 0.290367 + 0.499019i
\(13\) 0.483253i 0.134030i −0.997752 0.0670151i \(-0.978652\pi\)
0.997752 0.0670151i \(-0.0213476\pi\)
\(14\) 0 0
\(15\) 3.64758i 0.941801i
\(16\) −1.97648 + 3.47757i −0.494121 + 0.869393i
\(17\) 2.55250i 0.619072i 0.950888 + 0.309536i \(0.100174\pi\)
−0.950888 + 0.309536i \(0.899826\pi\)
\(18\) 1.22594 + 0.705031i 0.288957 + 0.166177i
\(19\) −1.21909 −0.279679 −0.139840 0.990174i \(-0.544659\pi\)
−0.139840 + 0.990174i \(0.544659\pi\)
\(20\) −6.30540 + 3.66896i −1.40993 + 0.820405i
\(21\) 0 0
\(22\) 4.27968 7.44170i 0.912430 1.58658i
\(23\) 3.46720i 0.722962i −0.932379 0.361481i \(-0.882271\pi\)
0.932379 0.361481i \(-0.117729\pi\)
\(24\) 0.0143727 + 2.82839i 0.00293381 + 0.577343i
\(25\) −8.30483 −1.66097
\(26\) 0.340708 0.592439i 0.0668184 0.116187i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.21857 1.52615 0.763075 0.646310i \(-0.223689\pi\)
0.763075 + 0.646310i \(0.223689\pi\)
\(30\) −2.57166 + 4.47172i −0.469518 + 0.816420i
\(31\) −6.31249 −1.13376 −0.566878 0.823801i \(-0.691849\pi\)
−0.566878 + 0.823801i \(0.691849\pi\)
\(32\) −4.87485 + 2.86982i −0.861760 + 0.507317i
\(33\) 6.07019i 1.05669i
\(34\) −1.79959 + 3.12921i −0.308627 + 0.536655i
\(35\) 0 0
\(36\) 1.00586 + 1.72865i 0.167644 + 0.288109i
\(37\) 1.19016 0.195661 0.0978305 0.995203i \(-0.468810\pi\)
0.0978305 + 0.995203i \(0.468810\pi\)
\(38\) −1.49454 0.859498i −0.242446 0.139429i
\(39\) 0.483253i 0.0773824i
\(40\) −10.3168 + 0.0524254i −1.63123 + 0.00828918i
\(41\) 6.59422i 1.02984i −0.857237 0.514922i \(-0.827821\pi\)
0.857237 0.514922i \(-0.172179\pi\)
\(42\) 0 0
\(43\) 3.51184i 0.535550i 0.963481 + 0.267775i \(0.0862884\pi\)
−0.963481 + 0.267775i \(0.913712\pi\)
\(44\) 10.4933 6.10578i 1.58192 0.920480i
\(45\) 3.64758i 0.543749i
\(46\) 2.44449 4.25059i 0.360420 0.626715i
\(47\) 11.6622 1.70111 0.850553 0.525889i \(-0.176267\pi\)
0.850553 + 0.525889i \(0.176267\pi\)
\(48\) −1.97648 + 3.47757i −0.285281 + 0.501944i
\(49\) 0 0
\(50\) −10.1812 5.85517i −1.43984 0.828046i
\(51\) 2.55250i 0.357421i
\(52\) 0.835376 0.486085i 0.115846 0.0674079i
\(53\) 2.62782 0.360959 0.180479 0.983579i \(-0.442235\pi\)
0.180479 + 0.983579i \(0.442235\pi\)
\(54\) 1.22594 + 0.705031i 0.166829 + 0.0959426i
\(55\) 22.1415 2.98556
\(56\) 0 0
\(57\) −1.21909 −0.161473
\(58\) 10.0755 + 5.79435i 1.32298 + 0.760835i
\(59\) 1.16160 0.151228 0.0756138 0.997137i \(-0.475908\pi\)
0.0756138 + 0.997137i \(0.475908\pi\)
\(60\) −6.30540 + 3.66896i −0.814024 + 0.473661i
\(61\) 0.208458i 0.0266903i −0.999911 0.0133451i \(-0.995752\pi\)
0.999911 0.0133451i \(-0.00424802\pi\)
\(62\) −7.73874 4.45050i −0.982821 0.565215i
\(63\) 0 0
\(64\) −7.99959 + 0.0813030i −0.999948 + 0.0101629i
\(65\) 1.76270 0.218636
\(66\) 4.27968 7.44170i 0.526792 0.916010i
\(67\) 1.77617i 0.216993i −0.994097 0.108497i \(-0.965396\pi\)
0.994097 0.108497i \(-0.0346037\pi\)
\(68\) −4.41238 + 2.56746i −0.535080 + 0.311350i
\(69\) 3.46720i 0.417402i
\(70\) 0 0
\(71\) 9.13166i 1.08373i 0.840466 + 0.541864i \(0.182281\pi\)
−0.840466 + 0.541864i \(0.817719\pi\)
\(72\) 0.0143727 + 2.82839i 0.00169383 + 0.333329i
\(73\) 6.04928i 0.708015i −0.935243 0.354007i \(-0.884819\pi\)
0.935243 0.354007i \(-0.115181\pi\)
\(74\) 1.45907 + 0.839100i 0.169613 + 0.0975433i
\(75\) −8.30483 −0.958960
\(76\) −1.22624 2.10739i −0.140659 0.241734i
\(77\) 0 0
\(78\) 0.340708 0.592439i 0.0385776 0.0670805i
\(79\) 3.17938i 0.357708i −0.983876 0.178854i \(-0.942761\pi\)
0.983876 0.178854i \(-0.0572390\pi\)
\(80\) −12.6847 7.20938i −1.41820 0.806033i
\(81\) 1.00000 0.111111
\(82\) 4.64913 8.08412i 0.513410 0.892742i
\(83\) −7.49842 −0.823059 −0.411529 0.911396i \(-0.635005\pi\)
−0.411529 + 0.911396i \(0.635005\pi\)
\(84\) 0 0
\(85\) −9.31044 −1.00986
\(86\) −2.47595 + 4.30530i −0.266989 + 0.464253i
\(87\) 8.21857 0.881123
\(88\) 17.1689 0.0872448i 1.83021 0.00930033i
\(89\) 12.2872i 1.30244i −0.758887 0.651222i \(-0.774257\pi\)
0.758887 0.651222i \(-0.225743\pi\)
\(90\) −2.57166 + 4.47172i −0.271076 + 0.471360i
\(91\) 0 0
\(92\) 5.99359 3.48753i 0.624875 0.363600i
\(93\) −6.31249 −0.654575
\(94\) 14.2972 + 8.22221i 1.47464 + 0.848057i
\(95\) 4.44674i 0.456226i
\(96\) −4.87485 + 2.86982i −0.497537 + 0.292899i
\(97\) 11.8376i 1.20192i 0.799277 + 0.600962i \(0.205216\pi\)
−0.799277 + 0.600962i \(0.794784\pi\)
\(98\) 0 0
\(99\) 6.07019i 0.610077i
\(100\) −8.35352 14.3562i −0.835352 1.43562i
\(101\) 5.72662i 0.569820i −0.958554 0.284910i \(-0.908036\pi\)
0.958554 0.284910i \(-0.0919637\pi\)
\(102\) −1.79959 + 3.12921i −0.178186 + 0.309838i
\(103\) 4.95307 0.488041 0.244020 0.969770i \(-0.421534\pi\)
0.244020 + 0.969770i \(0.421534\pi\)
\(104\) 1.36683 0.00694562i 0.134028 0.000681074i
\(105\) 0 0
\(106\) 3.22155 + 1.85270i 0.312905 + 0.179950i
\(107\) 13.7280i 1.32713i −0.748118 0.663566i \(-0.769042\pi\)
0.748118 0.663566i \(-0.230958\pi\)
\(108\) 1.00586 + 1.72865i 0.0967891 + 0.166340i
\(109\) −13.6507 −1.30750 −0.653752 0.756709i \(-0.726806\pi\)
−0.653752 + 0.756709i \(0.726806\pi\)
\(110\) 27.1442 + 15.6105i 2.58810 + 1.48840i
\(111\) 1.19016 0.112965
\(112\) 0 0
\(113\) −7.11968 −0.669764 −0.334882 0.942260i \(-0.608696\pi\)
−0.334882 + 0.942260i \(0.608696\pi\)
\(114\) −1.49454 0.859498i −0.139976 0.0804994i
\(115\) 12.6469 1.17933
\(116\) 8.26674 + 14.2071i 0.767548 + 1.31909i
\(117\) 0.483253i 0.0446767i
\(118\) 1.42406 + 0.818966i 0.131095 + 0.0753919i
\(119\) 0 0
\(120\) −10.3168 + 0.0524254i −0.941789 + 0.00478576i
\(121\) −25.8472 −2.34975
\(122\) 0.146969 0.255557i 0.0133060 0.0231370i
\(123\) 6.59422i 0.594581i
\(124\) −6.34949 10.9121i −0.570201 0.979936i
\(125\) 12.0546i 1.07820i
\(126\) 0 0
\(127\) 3.03609i 0.269409i 0.990886 + 0.134705i \(0.0430086\pi\)
−0.990886 + 0.134705i \(0.956991\pi\)
\(128\) −9.86434 5.54029i −0.871893 0.489697i
\(129\) 3.51184i 0.309200i
\(130\) 2.16097 + 1.24276i 0.189530 + 0.108997i
\(131\) −14.4666 −1.26395 −0.631974 0.774989i \(-0.717755\pi\)
−0.631974 + 0.774989i \(0.717755\pi\)
\(132\) 10.4933 6.10578i 0.913321 0.531440i
\(133\) 0 0
\(134\) 1.25225 2.17747i 0.108178 0.188105i
\(135\) 3.64758i 0.313934i
\(136\) −7.21946 + 0.0366862i −0.619064 + 0.00314581i
\(137\) 11.5627 0.987866 0.493933 0.869500i \(-0.335559\pi\)
0.493933 + 0.869500i \(0.335559\pi\)
\(138\) 2.44449 4.25059i 0.208089 0.361834i
\(139\) −17.6203 −1.49453 −0.747266 0.664525i \(-0.768634\pi\)
−0.747266 + 0.664525i \(0.768634\pi\)
\(140\) 0 0
\(141\) 11.6622 0.982134
\(142\) −6.43811 + 11.1949i −0.540274 + 0.939453i
\(143\) −2.93344 −0.245306
\(144\) −1.97648 + 3.47757i −0.164707 + 0.289798i
\(145\) 29.9779i 2.48953i
\(146\) 4.26493 7.41606i 0.352968 0.613757i
\(147\) 0 0
\(148\) 1.19714 + 2.05737i 0.0984040 + 0.169115i
\(149\) 6.11467 0.500934 0.250467 0.968125i \(-0.419416\pi\)
0.250467 + 0.968125i \(0.419416\pi\)
\(150\) −10.1812 5.85517i −0.831294 0.478072i
\(151\) 14.2427i 1.15906i 0.814952 + 0.579529i \(0.196763\pi\)
−0.814952 + 0.579529i \(0.803237\pi\)
\(152\) −0.0175216 3.44807i −0.00142119 0.279675i
\(153\) 2.55250i 0.206357i
\(154\) 0 0
\(155\) 23.0253i 1.84944i
\(156\) 0.835376 0.486085i 0.0668836 0.0389180i
\(157\) 21.0971i 1.68373i −0.539689 0.841865i \(-0.681458\pi\)
0.539689 0.841865i \(-0.318542\pi\)
\(158\) 2.24156 3.89773i 0.178329 0.310087i
\(159\) 2.62782 0.208400
\(160\) −10.4679 17.7814i −0.827559 1.40574i
\(161\) 0 0
\(162\) 1.22594 + 0.705031i 0.0963190 + 0.0553925i
\(163\) 19.1370i 1.49893i 0.662046 + 0.749464i \(0.269689\pi\)
−0.662046 + 0.749464i \(0.730311\pi\)
\(164\) 11.3991 6.63287i 0.890121 0.517940i
\(165\) 22.1415 1.72371
\(166\) −9.19262 5.28662i −0.713486 0.410322i
\(167\) 7.69624 0.595553 0.297776 0.954636i \(-0.403755\pi\)
0.297776 + 0.954636i \(0.403755\pi\)
\(168\) 0 0
\(169\) 12.7665 0.982036
\(170\) −11.4140 6.56415i −0.875417 0.503447i
\(171\) −1.21909 −0.0932263
\(172\) −6.07075 + 3.53242i −0.462890 + 0.269345i
\(173\) 0.823365i 0.0625993i 0.999510 + 0.0312996i \(0.00996461\pi\)
−0.999510 + 0.0312996i \(0.990035\pi\)
\(174\) 10.0755 + 5.79435i 0.763820 + 0.439268i
\(175\) 0 0
\(176\) 21.1095 + 11.9976i 1.59119 + 0.904356i
\(177\) 1.16160 0.0873113
\(178\) 8.66288 15.0634i 0.649311 1.12905i
\(179\) 9.47297i 0.708043i 0.935237 + 0.354022i \(0.115186\pi\)
−0.935237 + 0.354022i \(0.884814\pi\)
\(180\) −6.30540 + 3.66896i −0.469977 + 0.273468i
\(181\) 2.06119i 0.153207i 0.997062 + 0.0766034i \(0.0244075\pi\)
−0.997062 + 0.0766034i \(0.975592\pi\)
\(182\) 0 0
\(183\) 0.208458i 0.0154096i
\(184\) 9.80661 0.0498329i 0.722953 0.00367373i
\(185\) 4.34120i 0.319171i
\(186\) −7.73874 4.45050i −0.567432 0.326327i
\(187\) 15.4942 1.13304
\(188\) 11.7306 + 20.1599i 0.855539 + 1.47031i
\(189\) 0 0
\(190\) 3.13509 5.45144i 0.227443 0.395489i
\(191\) 10.8564i 0.785541i −0.919637 0.392770i \(-0.871517\pi\)
0.919637 0.392770i \(-0.128483\pi\)
\(192\) −7.99959 + 0.0813030i −0.577320 + 0.00586754i
\(193\) 9.71346 0.699190 0.349595 0.936901i \(-0.386319\pi\)
0.349595 + 0.936901i \(0.386319\pi\)
\(194\) −8.34587 + 14.5122i −0.599198 + 1.04191i
\(195\) 1.76270 0.126230
\(196\) 0 0
\(197\) −15.9300 −1.13496 −0.567481 0.823386i \(-0.692082\pi\)
−0.567481 + 0.823386i \(0.692082\pi\)
\(198\) 4.27968 7.44170i 0.304143 0.528858i
\(199\) −10.0572 −0.712935 −0.356467 0.934308i \(-0.616019\pi\)
−0.356467 + 0.934308i \(0.616019\pi\)
\(200\) −0.119363 23.4893i −0.00844020 1.66095i
\(201\) 1.77617i 0.125281i
\(202\) 4.03745 7.02050i 0.284074 0.493961i
\(203\) 0 0
\(204\) −4.41238 + 2.56746i −0.308929 + 0.179758i
\(205\) 24.0529 1.67993
\(206\) 6.07217 + 3.49207i 0.423068 + 0.243304i
\(207\) 3.46720i 0.240987i
\(208\) 1.68055 + 0.955141i 0.116525 + 0.0662271i
\(209\) 7.40013i 0.511878i
\(210\) 0 0
\(211\) 1.03227i 0.0710647i −0.999369 0.0355324i \(-0.988687\pi\)
0.999369 0.0355324i \(-0.0113127\pi\)
\(212\) 2.64322 + 4.54259i 0.181537 + 0.311986i
\(213\) 9.13166i 0.625691i
\(214\) 9.67863 16.8297i 0.661618 1.15045i
\(215\) −12.8097 −0.873614
\(216\) 0.0143727 + 2.82839i 0.000977935 + 0.192448i
\(217\) 0 0
\(218\) −16.7350 9.62420i −1.13344 0.651833i
\(219\) 6.04928i 0.408772i
\(220\) 22.2713 + 38.2750i 1.50153 + 2.58050i
\(221\) 1.23350 0.0829743
\(222\) 1.45907 + 0.839100i 0.0979260 + 0.0563167i
\(223\) −9.57250 −0.641022 −0.320511 0.947245i \(-0.603855\pi\)
−0.320511 + 0.947245i \(0.603855\pi\)
\(224\) 0 0
\(225\) −8.30483 −0.553656
\(226\) −8.72831 5.01960i −0.580599 0.333899i
\(227\) −11.1538 −0.740307 −0.370153 0.928971i \(-0.620695\pi\)
−0.370153 + 0.928971i \(0.620695\pi\)
\(228\) −1.22624 2.10739i −0.0812096 0.139565i
\(229\) 10.1285i 0.669308i −0.942341 0.334654i \(-0.891381\pi\)
0.942341 0.334654i \(-0.108619\pi\)
\(230\) 15.5043 + 8.91646i 1.02233 + 0.587934i
\(231\) 0 0
\(232\) 0.118123 + 23.2453i 0.00775513 + 1.52613i
\(233\) 12.6414 0.828168 0.414084 0.910239i \(-0.364102\pi\)
0.414084 + 0.910239i \(0.364102\pi\)
\(234\) 0.340708 0.592439i 0.0222728 0.0387290i
\(235\) 42.5388i 2.77492i
\(236\) 1.16841 + 2.00801i 0.0760571 + 0.130710i
\(237\) 3.17938i 0.206523i
\(238\) 0 0
\(239\) 5.46050i 0.353211i 0.984282 + 0.176605i \(0.0565116\pi\)
−0.984282 + 0.176605i \(0.943488\pi\)
\(240\) −12.6847 7.20938i −0.818795 0.465364i
\(241\) 13.6377i 0.878484i 0.898369 + 0.439242i \(0.144753\pi\)
−0.898369 + 0.439242i \(0.855247\pi\)
\(242\) −31.6872 18.2231i −2.03693 1.17143i
\(243\) 1.00000 0.0641500
\(244\) 0.360351 0.209680i 0.0230691 0.0134234i
\(245\) 0 0
\(246\) 4.64913 8.08412i 0.296418 0.515425i
\(247\) 0.589130i 0.0374854i
\(248\) −0.0907272 17.8542i −0.00576119 1.13374i
\(249\) −7.49842 −0.475193
\(250\) 8.49890 14.7783i 0.537518 0.934661i
\(251\) −28.2425 −1.78265 −0.891324 0.453367i \(-0.850223\pi\)
−0.891324 + 0.453367i \(0.850223\pi\)
\(252\) 0 0
\(253\) −21.0466 −1.32319
\(254\) −2.14054 + 3.72206i −0.134309 + 0.233543i
\(255\) −9.31044 −0.583042
\(256\) −8.18702 13.7467i −0.511689 0.859171i
\(257\) 20.1625i 1.25770i −0.777525 0.628852i \(-0.783525\pi\)
0.777525 0.628852i \(-0.216475\pi\)
\(258\) −2.47595 + 4.30530i −0.154146 + 0.268036i
\(259\) 0 0
\(260\) 1.77304 + 3.04710i 0.109959 + 0.188973i
\(261\) 8.21857 0.508717
\(262\) −17.7351 10.1994i −1.09568 0.630119i
\(263\) 12.5084i 0.771300i −0.922645 0.385650i \(-0.873977\pi\)
0.922645 0.385650i \(-0.126023\pi\)
\(264\) 17.1689 0.0872448i 1.05667 0.00536955i
\(265\) 9.58518i 0.588813i
\(266\) 0 0
\(267\) 12.2872i 0.751967i
\(268\) 3.07037 1.78658i 0.187553 0.109133i
\(269\) 13.0548i 0.795962i 0.917394 + 0.397981i \(0.130289\pi\)
−0.917394 + 0.397981i \(0.869711\pi\)
\(270\) −2.57166 + 4.47172i −0.156506 + 0.272140i
\(271\) 10.2934 0.625282 0.312641 0.949871i \(-0.398786\pi\)
0.312641 + 0.949871i \(0.398786\pi\)
\(272\) −8.87650 5.04497i −0.538217 0.305896i
\(273\) 0 0
\(274\) 14.1752 + 8.15205i 0.856352 + 0.492483i
\(275\) 50.4119i 3.03995i
\(276\) 5.99359 3.48753i 0.360772 0.209925i
\(277\) −18.9622 −1.13933 −0.569665 0.821877i \(-0.692927\pi\)
−0.569665 + 0.821877i \(0.692927\pi\)
\(278\) −21.6014 12.4228i −1.29557 0.745073i
\(279\) −6.31249 −0.377919
\(280\) 0 0
\(281\) 17.5144 1.04482 0.522412 0.852693i \(-0.325032\pi\)
0.522412 + 0.852693i \(0.325032\pi\)
\(282\) 14.2972 + 8.22221i 0.851384 + 0.489626i
\(283\) −18.9419 −1.12598 −0.562990 0.826464i \(-0.690349\pi\)
−0.562990 + 0.826464i \(0.690349\pi\)
\(284\) −15.7855 + 9.18519i −0.936696 + 0.545041i
\(285\) 4.44674i 0.263402i
\(286\) −3.59622 2.06816i −0.212649 0.122293i
\(287\) 0 0
\(288\) −4.87485 + 2.86982i −0.287253 + 0.169106i
\(289\) 10.4848 0.616750
\(290\) −21.1353 + 36.7511i −1.24111 + 2.15810i
\(291\) 11.8376i 0.693932i
\(292\) 10.4571 6.08474i 0.611956 0.356082i
\(293\) 25.2760i 1.47664i 0.674451 + 0.738320i \(0.264380\pi\)
−0.674451 + 0.738320i \(0.735620\pi\)
\(294\) 0 0
\(295\) 4.23703i 0.246690i
\(296\) 0.0171057 + 3.36624i 0.000994251 + 0.195658i
\(297\) 6.07019i 0.352228i
\(298\) 7.49623 + 4.31104i 0.434245 + 0.249732i
\(299\) −1.67554 −0.0968987
\(300\) −8.35352 14.3562i −0.482290 0.828854i
\(301\) 0 0
\(302\) −10.0416 + 17.4608i −0.577828 + 1.00475i
\(303\) 5.72662i 0.328986i
\(304\) 2.40952 4.23948i 0.138195 0.243151i
\(305\) 0.760366 0.0435385
\(306\) −1.79959 + 3.12921i −0.102876 + 0.178885i
\(307\) −10.2457 −0.584750 −0.292375 0.956304i \(-0.594446\pi\)
−0.292375 + 0.956304i \(0.594446\pi\)
\(308\) 0 0
\(309\) 4.95307 0.281770
\(310\) 16.2336 28.2277i 0.922005 1.60322i
\(311\) 30.3837 1.72290 0.861451 0.507840i \(-0.169556\pi\)
0.861451 + 0.507840i \(0.169556\pi\)
\(312\) 1.36683 0.00694562i 0.0773814 0.000393219i
\(313\) 17.1215i 0.967764i 0.875133 + 0.483882i \(0.160774\pi\)
−0.875133 + 0.483882i \(0.839226\pi\)
\(314\) 14.8741 25.8638i 0.839394 1.45958i
\(315\) 0 0
\(316\) 5.49605 3.19802i 0.309177 0.179903i
\(317\) −12.3657 −0.694527 −0.347264 0.937768i \(-0.612889\pi\)
−0.347264 + 0.937768i \(0.612889\pi\)
\(318\) 3.22155 + 1.85270i 0.180656 + 0.103894i
\(319\) 49.8883i 2.79321i
\(320\) −0.296559 29.1791i −0.0165782 1.63116i
\(321\) 13.7280i 0.766220i
\(322\) 0 0
\(323\) 3.11173i 0.173141i
\(324\) 1.00586 + 1.72865i 0.0558812 + 0.0960363i
\(325\) 4.01333i 0.222620i
\(326\) −13.4922 + 23.4609i −0.747264 + 1.29938i
\(327\) −13.6507 −0.754888
\(328\) 18.6510 0.0947764i 1.02983 0.00523315i
\(329\) 0 0
\(330\) 27.1442 + 15.6105i 1.49424 + 0.859327i
\(331\) 7.68197i 0.422239i −0.977460 0.211120i \(-0.932289\pi\)
0.977460 0.211120i \(-0.0677109\pi\)
\(332\) −7.54238 12.9622i −0.413942 0.711392i
\(333\) 1.19016 0.0652203
\(334\) 9.43514 + 5.42609i 0.516268 + 0.296902i
\(335\) 6.47871 0.353969
\(336\) 0 0
\(337\) −13.3863 −0.729201 −0.364600 0.931164i \(-0.618794\pi\)
−0.364600 + 0.931164i \(0.618794\pi\)
\(338\) 15.6509 + 9.00076i 0.851299 + 0.489577i
\(339\) −7.11968 −0.386688
\(340\) −9.36501 16.0945i −0.507889 0.872848i
\(341\) 38.3180i 2.07504i
\(342\) −1.49454 0.859498i −0.0808152 0.0464763i
\(343\) 0 0
\(344\) −9.93284 + 0.0504744i −0.535543 + 0.00272140i
\(345\) 12.6469 0.680886
\(346\) −0.580498 + 1.00940i −0.0312078 + 0.0542655i
\(347\) 31.8786i 1.71133i 0.517529 + 0.855666i \(0.326852\pi\)
−0.517529 + 0.855666i \(0.673148\pi\)
\(348\) 8.26674 + 14.2071i 0.443144 + 0.761578i
\(349\) 9.51634i 0.509398i 0.967020 + 0.254699i \(0.0819764\pi\)
−0.967020 + 0.254699i \(0.918024\pi\)
\(350\) 0 0
\(351\) 0.483253i 0.0257941i
\(352\) 17.4203 + 29.5913i 0.928507 + 1.57722i
\(353\) 14.1326i 0.752201i 0.926579 + 0.376100i \(0.122735\pi\)
−0.926579 + 0.376100i \(0.877265\pi\)
\(354\) 1.42406 + 0.818966i 0.0756877 + 0.0435275i
\(355\) −33.3085 −1.76783
\(356\) 21.2404 12.3593i 1.12574 0.655040i
\(357\) 0 0
\(358\) −6.67874 + 11.6133i −0.352982 + 0.613782i
\(359\) 22.4656i 1.18569i 0.805318 + 0.592843i \(0.201995\pi\)
−0.805318 + 0.592843i \(0.798005\pi\)
\(360\) −10.3168 + 0.0524254i −0.543742 + 0.00276306i
\(361\) −17.5138 −0.921780
\(362\) −1.45320 + 2.52689i −0.0763785 + 0.132811i
\(363\) −25.8472 −1.35663
\(364\) 0 0
\(365\) 22.0652 1.15495
\(366\) 0.146969 0.255557i 0.00768221 0.0133582i
\(367\) 11.9991 0.626349 0.313174 0.949696i \(-0.398608\pi\)
0.313174 + 0.949696i \(0.398608\pi\)
\(368\) 12.0575 + 6.85287i 0.628538 + 0.357231i
\(369\) 6.59422i 0.343281i
\(370\) −3.06068 + 5.32206i −0.159117 + 0.276680i
\(371\) 0 0
\(372\) −6.34949 10.9121i −0.329206 0.565766i
\(373\) 5.62760 0.291386 0.145693 0.989330i \(-0.453459\pi\)
0.145693 + 0.989330i \(0.453459\pi\)
\(374\) 18.9949 + 10.9239i 0.982204 + 0.564859i
\(375\) 12.0546i 0.622499i
\(376\) 0.167617 + 32.9852i 0.00864417 + 1.70108i
\(377\) 3.97165i 0.204550i
\(378\) 0 0
\(379\) 21.3356i 1.09594i −0.836500 0.547968i \(-0.815402\pi\)
0.836500 0.547968i \(-0.184598\pi\)
\(380\) 7.68687 4.47280i 0.394328 0.229450i
\(381\) 3.03609i 0.155544i
\(382\) 7.65410 13.3093i 0.391618 0.680963i
\(383\) −7.55189 −0.385884 −0.192942 0.981210i \(-0.561803\pi\)
−0.192942 + 0.981210i \(0.561803\pi\)
\(384\) −9.86434 5.54029i −0.503388 0.282727i
\(385\) 0 0
\(386\) 11.9081 + 6.84829i 0.606108 + 0.348569i
\(387\) 3.51184i 0.178517i
\(388\) −20.4631 + 11.9070i −1.03886 + 0.604485i
\(389\) −2.65061 −0.134391 −0.0671957 0.997740i \(-0.521405\pi\)
−0.0671957 + 0.997740i \(0.521405\pi\)
\(390\) 2.16097 + 1.24276i 0.109425 + 0.0629296i
\(391\) 8.85003 0.447565
\(392\) 0 0
\(393\) −14.4666 −0.729741
\(394\) −19.5292 11.2311i −0.983866 0.565816i
\(395\) 11.5970 0.583511
\(396\) 10.4933 6.10578i 0.527306 0.306827i
\(397\) 18.6502i 0.936025i −0.883722 0.468012i \(-0.844970\pi\)
0.883722 0.468012i \(-0.155030\pi\)
\(398\) −12.3295 7.09063i −0.618023 0.355421i
\(399\) 0 0
\(400\) 16.4144 28.8807i 0.820718 1.44403i
\(401\) −23.8483 −1.19093 −0.595464 0.803382i \(-0.703032\pi\)
−0.595464 + 0.803382i \(0.703032\pi\)
\(402\) 1.25225 2.17747i 0.0624567 0.108603i
\(403\) 3.05053i 0.151958i
\(404\) 9.89934 5.76019i 0.492511 0.286580i
\(405\) 3.64758i 0.181250i
\(406\) 0 0
\(407\) 7.22450i 0.358105i
\(408\) −7.21946 + 0.0366862i −0.357417 + 0.00181624i
\(409\) 17.4269i 0.861706i −0.902422 0.430853i \(-0.858213\pi\)
0.902422 0.430853i \(-0.141787\pi\)
\(410\) 29.4875 + 16.9581i 1.45628 + 0.837499i
\(411\) 11.5627 0.570345
\(412\) 4.98211 + 8.56215i 0.245451 + 0.421827i
\(413\) 0 0
\(414\) 2.44449 4.25059i 0.120140 0.208905i
\(415\) 27.3511i 1.34261i
\(416\) 1.38685 + 2.35578i 0.0679957 + 0.115502i
\(417\) −17.6203 −0.862869
\(418\) −5.21732 + 9.07212i −0.255188 + 0.443732i
\(419\) 26.6148 1.30022 0.650109 0.759841i \(-0.274723\pi\)
0.650109 + 0.759841i \(0.274723\pi\)
\(420\) 0 0
\(421\) 17.2196 0.839234 0.419617 0.907701i \(-0.362164\pi\)
0.419617 + 0.907701i \(0.362164\pi\)
\(422\) 0.727786 1.26551i 0.0354281 0.0616040i
\(423\) 11.6622 0.567035
\(424\) 0.0377688 + 7.43250i 0.00183421 + 0.360954i
\(425\) 21.1981i 1.02826i
\(426\) −6.43811 + 11.1949i −0.311927 + 0.542394i
\(427\) 0 0
\(428\) 23.7309 13.8084i 1.14707 0.667455i
\(429\) −2.93344 −0.141628
\(430\) −15.7039 9.03124i −0.757311 0.435525i
\(431\) 19.6830i 0.948095i −0.880499 0.474047i \(-0.842793\pi\)
0.880499 0.474047i \(-0.157207\pi\)
\(432\) −1.97648 + 3.47757i −0.0950936 + 0.167315i
\(433\) 6.43311i 0.309156i 0.987981 + 0.154578i \(0.0494017\pi\)
−0.987981 + 0.154578i \(0.950598\pi\)
\(434\) 0 0
\(435\) 29.9779i 1.43733i
\(436\) −13.7308 23.5974i −0.657584 1.13011i
\(437\) 4.22684i 0.202197i
\(438\) 4.26493 7.41606i 0.203786 0.354353i
\(439\) −6.95350 −0.331872 −0.165936 0.986137i \(-0.553065\pi\)
−0.165936 + 0.986137i \(0.553065\pi\)
\(440\) 0.318232 + 62.6248i 0.0151711 + 2.98552i
\(441\) 0 0
\(442\) 1.51220 + 0.869657i 0.0719280 + 0.0413654i
\(443\) 7.78413i 0.369835i −0.982754 0.184918i \(-0.940798\pi\)
0.982754 0.184918i \(-0.0592018\pi\)
\(444\) 1.19714 + 2.05737i 0.0568136 + 0.0976386i
\(445\) 44.8187 2.12461
\(446\) −11.7353 6.74891i −0.555684 0.319570i
\(447\) 6.11467 0.289214
\(448\) 0 0
\(449\) −13.4404 −0.634290 −0.317145 0.948377i \(-0.602724\pi\)
−0.317145 + 0.948377i \(0.602724\pi\)
\(450\) −10.1812 5.85517i −0.479948 0.276015i
\(451\) −40.0282 −1.88485
\(452\) −7.16142 12.3075i −0.336845 0.578894i
\(453\) 14.2427i 0.669183i
\(454\) −13.6740 7.86381i −0.641750 0.369067i
\(455\) 0 0
\(456\) −0.0175216 3.44807i −0.000820524 0.161471i
\(457\) −1.16365 −0.0544333 −0.0272166 0.999630i \(-0.508664\pi\)
−0.0272166 + 0.999630i \(0.508664\pi\)
\(458\) 7.14088 12.4169i 0.333672 0.580203i
\(459\) 2.55250i 0.119140i
\(460\) 12.7210 + 21.8621i 0.593121 + 1.01933i
\(461\) 21.4211i 0.997678i 0.866695 + 0.498839i \(0.166240\pi\)
−0.866695 + 0.498839i \(0.833760\pi\)
\(462\) 0 0
\(463\) 14.4408i 0.671119i 0.942019 + 0.335560i \(0.108925\pi\)
−0.942019 + 0.335560i \(0.891075\pi\)
\(464\) −16.2439 + 28.5807i −0.754103 + 1.32682i
\(465\) 23.0253i 1.06777i
\(466\) 15.4977 + 8.91261i 0.717915 + 0.412869i
\(467\) 29.7659 1.37740 0.688701 0.725045i \(-0.258181\pi\)
0.688701 + 0.725045i \(0.258181\pi\)
\(468\) 0.835376 0.486085i 0.0386153 0.0224693i
\(469\) 0 0
\(470\) −29.9912 + 52.1500i −1.38339 + 2.40550i
\(471\) 21.0971i 0.972102i
\(472\) 0.0166953 + 3.28546i 0.000768464 + 0.151226i
\(473\) 21.3175 0.980181
\(474\) 2.24156 3.89773i 0.102958 0.179029i
\(475\) 10.1244 0.464538
\(476\) 0 0
\(477\) 2.62782 0.120320
\(478\) −3.84983 + 6.69426i −0.176087 + 0.306188i
\(479\) −28.3552 −1.29558 −0.647790 0.761819i \(-0.724307\pi\)
−0.647790 + 0.761819i \(0.724307\pi\)
\(480\) −10.4679 17.7814i −0.477791 0.811606i
\(481\) 0.575148i 0.0262245i
\(482\) −9.61504 + 16.7191i −0.437953 + 0.761533i
\(483\) 0 0
\(484\) −25.9988 44.6809i −1.18176 2.03095i
\(485\) −43.1785 −1.96064
\(486\) 1.22594 + 0.705031i 0.0556098 + 0.0319809i
\(487\) 9.56787i 0.433561i 0.976220 + 0.216781i \(0.0695557\pi\)
−0.976220 + 0.216781i \(0.930444\pi\)
\(488\) 0.589600 0.00299609i 0.0266899 0.000135627i
\(489\) 19.1370i 0.865406i
\(490\) 0 0
\(491\) 17.7521i 0.801141i 0.916266 + 0.400571i \(0.131188\pi\)
−0.916266 + 0.400571i \(0.868812\pi\)
\(492\) 11.3991 6.63287i 0.513912 0.299033i
\(493\) 20.9779i 0.944796i
\(494\) −0.415355 + 0.722238i −0.0186877 + 0.0324950i
\(495\) 22.1415 0.995187
\(496\) 12.4765 21.9521i 0.560213 0.985681i
\(497\) 0 0
\(498\) −9.19262 5.28662i −0.411931 0.236899i
\(499\) 9.40111i 0.420852i 0.977610 + 0.210426i \(0.0674850\pi\)
−0.977610 + 0.210426i \(0.932515\pi\)
\(500\) 20.8383 12.1253i 0.931917 0.542260i
\(501\) 7.69624 0.343843
\(502\) −34.6236 19.9118i −1.54533 0.888708i
\(503\) 40.9278 1.82488 0.912440 0.409211i \(-0.134196\pi\)
0.912440 + 0.409211i \(0.134196\pi\)
\(504\) 0 0
\(505\) 20.8883 0.929517
\(506\) −25.8019 14.8385i −1.14703 0.659652i
\(507\) 12.7665 0.566979
\(508\) −5.24834 + 3.05389i −0.232858 + 0.135494i
\(509\) 14.4104i 0.638729i 0.947632 + 0.319365i \(0.103470\pi\)
−0.947632 + 0.319365i \(0.896530\pi\)
\(510\) −11.4140 6.56415i −0.505422 0.290665i
\(511\) 0 0
\(512\) −0.344932 22.6248i −0.0152440 0.999884i
\(513\) −1.21909 −0.0538242
\(514\) 14.2152 24.7181i 0.627007 1.09027i
\(515\) 18.0667i 0.796115i
\(516\) −6.07075 + 3.53242i −0.267250 + 0.155506i
\(517\) 70.7918i 3.11342i
\(518\) 0 0
\(519\) 0.823365i 0.0361417i
\(520\) 0.0253347 + 4.98561i 0.00111100 + 0.218634i
\(521\) 10.6100i 0.464834i 0.972616 + 0.232417i \(0.0746634\pi\)
−0.972616 + 0.232417i \(0.925337\pi\)
\(522\) 10.0755 + 5.79435i 0.440992 + 0.253612i
\(523\) 36.2715 1.58604 0.793022 0.609193i \(-0.208507\pi\)
0.793022 + 0.609193i \(0.208507\pi\)
\(524\) −14.5514 25.0077i −0.635679 1.09246i
\(525\) 0 0
\(526\) 8.81880 15.3345i 0.384518 0.668618i
\(527\) 16.1126i 0.701877i
\(528\) 21.1095 + 11.9976i 0.918675 + 0.522130i
\(529\) 10.9785 0.477326
\(530\) −6.75785 + 11.7509i −0.293542 + 0.510425i
\(531\) 1.16160 0.0504092
\(532\) 0 0
\(533\) −3.18667 −0.138030
\(534\) 8.66288 15.0634i 0.374880 0.651858i
\(535\) 50.0738 2.16488
\(536\) 5.02369 0.0255282i 0.216990 0.00110265i
\(537\) 9.47297i 0.408789i
\(538\) −9.20401 + 16.0044i −0.396813 + 0.689997i
\(539\) 0 0
\(540\) −6.30540 + 3.66896i −0.271341 + 0.157887i
\(541\) −23.6346 −1.01613 −0.508065 0.861319i \(-0.669639\pi\)
−0.508065 + 0.861319i \(0.669639\pi\)
\(542\) 12.6191 + 7.25719i 0.542038 + 0.311723i
\(543\) 2.06119i 0.0884540i
\(544\) −7.32520 12.4430i −0.314065 0.533491i
\(545\) 49.7922i 2.13286i
\(546\) 0 0
\(547\) 40.9096i 1.74917i −0.484875 0.874583i \(-0.661135\pi\)
0.484875 0.874583i \(-0.338865\pi\)
\(548\) 11.6305 + 19.9879i 0.496828 + 0.853839i
\(549\) 0.208458i 0.00889676i
\(550\) −35.5420 + 61.8021i −1.51552 + 2.63525i
\(551\) −10.0192 −0.426832
\(552\) 9.80661 0.0498329i 0.417397 0.00212103i
\(553\) 0 0
\(554\) −23.2466 13.3690i −0.987652 0.567993i
\(555\) 4.34120i 0.184274i
\(556\) −17.7236 30.4594i −0.751647 1.29176i
\(557\) −38.2781 −1.62190 −0.810948 0.585119i \(-0.801048\pi\)
−0.810948 + 0.585119i \(0.801048\pi\)
\(558\) −7.73874 4.45050i −0.327607 0.188405i
\(559\) 1.69710 0.0717799
\(560\) 0 0
\(561\) 15.4942 0.654164
\(562\) 21.4717 + 12.3482i 0.905727 + 0.520878i
\(563\) 4.56016 0.192188 0.0960939 0.995372i \(-0.469365\pi\)
0.0960939 + 0.995372i \(0.469365\pi\)
\(564\) 11.7306 + 20.1599i 0.493946 + 0.848885i
\(565\) 25.9696i 1.09255i
\(566\) −23.2216 13.3546i −0.976079 0.561337i
\(567\) 0 0
\(568\) −25.8279 + 0.131246i −1.08371 + 0.00550697i
\(569\) 43.8157 1.83685 0.918425 0.395596i \(-0.129462\pi\)
0.918425 + 0.395596i \(0.129462\pi\)
\(570\) 3.13509 5.45144i 0.131314 0.228336i
\(571\) 8.45294i 0.353745i −0.984234 0.176872i \(-0.943402\pi\)
0.984234 0.176872i \(-0.0565980\pi\)
\(572\) −2.95063 5.07090i −0.123372 0.212025i
\(573\) 10.8564i 0.453532i
\(574\) 0 0
\(575\) 28.7945i 1.20082i
\(576\) −7.99959 + 0.0813030i −0.333316 + 0.00338762i
\(577\) 25.2153i 1.04973i −0.851187 0.524863i \(-0.824117\pi\)
0.851187 0.524863i \(-0.175883\pi\)
\(578\) 12.8537 + 7.39208i 0.534643 + 0.307470i
\(579\) 9.71346 0.403678
\(580\) −51.8214 + 30.1536i −2.15176 + 1.25206i
\(581\) 0 0
\(582\) −8.34587 + 14.5122i −0.345947 + 0.601549i
\(583\) 15.9514i 0.660639i
\(584\) 17.1097 0.0869442i 0.708005 0.00359778i
\(585\) 1.76270 0.0728788
\(586\) −17.8204 + 30.9869i −0.736152 + 1.28006i
\(587\) −3.61615 −0.149254 −0.0746272 0.997212i \(-0.523777\pi\)
−0.0746272 + 0.997212i \(0.523777\pi\)
\(588\) 0 0
\(589\) 7.69551 0.317088
\(590\) −2.98724 + 5.19435i −0.122983 + 0.213848i
\(591\) −15.9300 −0.655271
\(592\) −2.35233 + 4.13887i −0.0966802 + 0.170106i
\(593\) 8.49515i 0.348854i −0.984670 0.174427i \(-0.944193\pi\)
0.984670 0.174427i \(-0.0558073\pi\)
\(594\) 4.27968 7.44170i 0.175597 0.305337i
\(595\) 0 0
\(596\) 6.15052 + 10.5702i 0.251935 + 0.432970i
\(597\) −10.0572 −0.411613
\(598\) −2.05411 1.18130i −0.0839987 0.0483071i
\(599\) 18.4899i 0.755479i −0.925912 0.377739i \(-0.876702\pi\)
0.925912 0.377739i \(-0.123298\pi\)
\(600\) −0.119363 23.4893i −0.00487295 0.958947i
\(601\) 31.5493i 1.28692i −0.765479 0.643461i \(-0.777498\pi\)
0.765479 0.643461i \(-0.222502\pi\)
\(602\) 0 0
\(603\) 1.77617i 0.0723311i
\(604\) −24.6208 + 14.3262i −1.00180 + 0.582926i
\(605\) 94.2799i 3.83302i
\(606\) 4.03745 7.02050i 0.164010 0.285188i
\(607\) −15.5209 −0.629974 −0.314987 0.949096i \(-0.602000\pi\)
−0.314987 + 0.949096i \(0.602000\pi\)
\(608\) 5.94289 3.49857i 0.241016 0.141886i
\(609\) 0 0
\(610\) 0.932164 + 0.536082i 0.0377422 + 0.0217053i
\(611\) 5.63579i 0.228000i
\(612\) −4.41238 + 2.56746i −0.178360 + 0.103783i
\(613\) −5.54811 −0.224086 −0.112043 0.993703i \(-0.535739\pi\)
−0.112043 + 0.993703i \(0.535739\pi\)
\(614\) −12.5606 7.22351i −0.506903 0.291517i
\(615\) 24.0529 0.969908
\(616\) 0 0
\(617\) −32.3633 −1.30290 −0.651448 0.758693i \(-0.725838\pi\)
−0.651448 + 0.758693i \(0.725838\pi\)
\(618\) 6.07217 + 3.49207i 0.244259 + 0.140472i
\(619\) 2.08906 0.0839665 0.0419832 0.999118i \(-0.486632\pi\)
0.0419832 + 0.999118i \(0.486632\pi\)
\(620\) 39.8028 23.1603i 1.59852 0.930139i
\(621\) 3.46720i 0.139134i
\(622\) 37.2486 + 21.4215i 1.49353 + 0.858923i
\(623\) 0 0
\(624\) 1.68055 + 0.955141i 0.0672757 + 0.0382362i
\(625\) 2.44610 0.0978440
\(626\) −12.0712 + 20.9899i −0.482462 + 0.838927i
\(627\) 7.40013i 0.295533i
\(628\) 36.4695 21.2207i 1.45529 0.846800i
\(629\) 3.03788i 0.121128i
\(630\) 0 0
\(631\) 37.2258i 1.48194i 0.671541 + 0.740968i \(0.265633\pi\)
−0.671541 + 0.740968i \(0.734367\pi\)
\(632\) 8.99253 0.0456961i 0.357704 0.00181769i
\(633\) 1.03227i 0.0410292i
\(634\) −15.1596 8.71821i −0.602066 0.346244i
\(635\) −11.0744 −0.439473
\(636\) 2.64322 + 4.54259i 0.104811 + 0.180125i
\(637\) 0 0
\(638\) 35.1728 61.1601i 1.39250 2.42135i
\(639\) 9.13166i 0.361243i
\(640\) 20.2086 35.9810i 0.798816 1.42227i
\(641\) −11.5614 −0.456649 −0.228324 0.973585i \(-0.573325\pi\)
−0.228324 + 0.973585i \(0.573325\pi\)
\(642\) 9.67863 16.8297i 0.381985 0.664214i
\(643\) −5.82948 −0.229892 −0.114946 0.993372i \(-0.536670\pi\)
−0.114946 + 0.993372i \(0.536670\pi\)
\(644\) 0 0
\(645\) −12.8097 −0.504381
\(646\) 2.19387 3.81480i 0.0863165 0.150091i
\(647\) 46.2772 1.81934 0.909671 0.415329i \(-0.136333\pi\)
0.909671 + 0.415329i \(0.136333\pi\)
\(648\) 0.0143727 + 2.82839i 0.000564611 + 0.111110i
\(649\) 7.05115i 0.276782i
\(650\) −2.82953 + 4.92011i −0.110983 + 0.192983i
\(651\) 0 0
\(652\) −33.0813 + 19.2492i −1.29556 + 0.753857i
\(653\) 23.5761 0.922605 0.461303 0.887243i \(-0.347382\pi\)
0.461303 + 0.887243i \(0.347382\pi\)
\(654\) −16.7350 9.62420i −0.654390 0.376336i
\(655\) 52.7679i 2.06181i
\(656\) 22.9319 + 13.0334i 0.895339 + 0.508867i
\(657\) 6.04928i 0.236005i
\(658\) 0 0
\(659\) 20.7935i 0.810001i 0.914316 + 0.405001i \(0.132729\pi\)
−0.914316 + 0.405001i \(0.867271\pi\)
\(660\) 22.2713 + 38.2750i 0.866909 + 1.48985i
\(661\) 33.2815i 1.29450i 0.762278 + 0.647249i \(0.224081\pi\)
−0.762278 + 0.647249i \(0.775919\pi\)
\(662\) 5.41603 9.41764i 0.210500 0.366027i
\(663\) 1.23350 0.0479052
\(664\) −0.107772 21.2085i −0.00418237 0.823048i
\(665\) 0 0
\(666\) 1.45907 + 0.839100i 0.0565376 + 0.0325144i
\(667\) 28.4954i 1.10335i
\(668\) 7.74136 + 13.3041i 0.299522 + 0.514752i
\(669\) −9.57250 −0.370094
\(670\) 7.94251 + 4.56769i 0.306846 + 0.176465i
\(671\) −1.26538 −0.0488494
\(672\) 0 0
\(673\) −13.1796 −0.508037 −0.254019 0.967199i \(-0.581752\pi\)
−0.254019 + 0.967199i \(0.581752\pi\)
\(674\) −16.4109 9.43779i −0.632123 0.363530i
\(675\) −8.30483 −0.319653
\(676\) 12.8413 + 22.0688i 0.493896 + 0.848800i
\(677\) 43.9651i 1.68972i −0.534991 0.844858i \(-0.679685\pi\)
0.534991 0.844858i \(-0.320315\pi\)
\(678\) −8.72831 5.01960i −0.335209 0.192777i
\(679\) 0 0
\(680\) −0.133816 26.3336i −0.00513160 1.00985i
\(681\) −11.1538 −0.427416
\(682\) −27.0154 + 46.9757i −1.03447 + 1.79879i
\(683\) 11.9327i 0.456594i −0.973592 0.228297i \(-0.926684\pi\)
0.973592 0.228297i \(-0.0733156\pi\)
\(684\) −1.22624 2.10739i −0.0468864 0.0805780i
\(685\) 42.1758i 1.61145i
\(686\) 0 0
\(687\) 10.1285i 0.386425i
\(688\) −12.2127 6.94109i −0.465603 0.264626i
\(689\) 1.26990i 0.0483794i
\(690\) 15.5043 + 8.91646i 0.590241 + 0.339444i
\(691\) −37.2750 −1.41801 −0.709003 0.705205i \(-0.750855\pi\)
−0.709003 + 0.705205i \(0.750855\pi\)
\(692\) −1.42331 + 0.828191i −0.0541062 + 0.0314831i
\(693\) 0 0
\(694\) −22.4754 + 39.0812i −0.853154 + 1.48350i
\(695\) 64.2714i 2.43795i
\(696\) 0.118123 + 23.2453i 0.00447743 + 0.881112i
\(697\) 16.8317 0.637547
\(698\) −6.70932 + 11.6665i −0.253951 + 0.441582i
\(699\) 12.6414 0.478143
\(700\) 0 0
\(701\) −30.9151 −1.16765 −0.583823 0.811881i \(-0.698444\pi\)
−0.583823 + 0.811881i \(0.698444\pi\)
\(702\) 0.340708 0.592439i 0.0128592 0.0223602i
\(703\) −1.45091 −0.0547223
\(704\) 0.493525 + 48.5590i 0.0186004 + 1.83014i
\(705\) 42.5388i 1.60210i
\(706\) −9.96390 + 17.3257i −0.374996 + 0.652061i
\(707\) 0 0
\(708\) 1.16841 + 2.00801i 0.0439116 + 0.0754655i
\(709\) −8.65551 −0.325065 −0.162532 0.986703i \(-0.551966\pi\)
−0.162532 + 0.986703i \(0.551966\pi\)
\(710\) −40.8342 23.4835i −1.53248 0.881320i
\(711\) 3.17938i 0.119236i
\(712\) 34.7531 0.176600i 1.30243 0.00661837i
\(713\) 21.8867i 0.819663i
\(714\) 0 0
\(715\) 10.6999i 0.400155i
\(716\) −16.3755 + 9.52850i −0.611980 + 0.356097i
\(717\) 5.46050i 0.203926i
\(718\) −15.8389 + 27.5414i −0.591103 + 1.02784i
\(719\) 27.6536 1.03131 0.515653 0.856798i \(-0.327549\pi\)
0.515653 + 0.856798i \(0.327549\pi\)
\(720\) −12.6847 7.20938i −0.472732 0.268678i
\(721\) 0 0
\(722\) −21.4709 12.3478i −0.799064 0.459537i
\(723\) 13.6377i 0.507193i
\(724\) −3.56308 + 2.07327i −0.132421 + 0.0770524i
\(725\) −68.2539 −2.53488
\(726\) −31.6872 18.2231i −1.17602 0.676323i
\(727\) 31.3975 1.16447 0.582235 0.813021i \(-0.302178\pi\)
0.582235 + 0.813021i \(0.302178\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 27.0507 + 15.5567i 1.00119 + 0.575778i
\(731\) −8.96395 −0.331544
\(732\) 0.360351 0.209680i 0.0133190 0.00774999i
\(733\) 19.4953i 0.720074i −0.932938 0.360037i \(-0.882764\pi\)
0.932938 0.360037i \(-0.117236\pi\)
\(734\) 14.7102 + 8.45975i 0.542964 + 0.312255i
\(735\) 0 0
\(736\) 9.95023 + 16.9021i 0.366771 + 0.623019i
\(737\) −10.7817 −0.397148
\(738\) 4.64913 8.08412i 0.171137 0.297581i
\(739\) 39.5099i 1.45340i −0.686957 0.726698i \(-0.741054\pi\)
0.686957 0.726698i \(-0.258946\pi\)
\(740\) −7.50443 + 4.36665i −0.275868 + 0.160521i
\(741\) 0.589130i 0.0216422i
\(742\) 0 0
\(743\) 10.9193i 0.400590i −0.979736 0.200295i \(-0.935810\pi\)
0.979736 0.200295i \(-0.0641901\pi\)
\(744\) −0.0907272 17.8542i −0.00332622 0.654566i
\(745\) 22.3038i 0.817147i
\(746\) 6.89911 + 3.96764i 0.252594 + 0.145265i
\(747\) −7.49842 −0.274353
\(748\) 15.5850 + 26.7840i 0.569843 + 0.979321i
\(749\) 0 0
\(750\) 8.49890 14.7783i 0.310336 0.539627i
\(751\) 30.3164i 1.10626i 0.833095 + 0.553130i \(0.186567\pi\)
−0.833095 + 0.553130i \(0.813433\pi\)
\(752\) −23.0501 + 40.5561i −0.840552 + 1.47893i
\(753\) −28.2425 −1.02921
\(754\) 2.80013 4.86900i 0.101975 0.177319i
\(755\) −51.9515 −1.89071
\(756\) 0 0
\(757\) 18.4211 0.669526 0.334763 0.942302i \(-0.391344\pi\)
0.334763 + 0.942302i \(0.391344\pi\)
\(758\) 15.0423 26.1562i 0.546359 0.950035i
\(759\) −21.0466 −0.763943
\(760\) 12.5771 0.0639114i 0.456220 0.00231831i
\(761\) 33.6013i 1.21805i 0.793152 + 0.609023i \(0.208438\pi\)
−0.793152 + 0.609023i \(0.791562\pi\)
\(762\) −2.14054 + 3.72206i −0.0775435 + 0.134836i
\(763\) 0 0
\(764\) 18.7669 10.9200i 0.678964 0.395073i
\(765\) −9.31044 −0.336620
\(766\) −9.25817 5.32432i −0.334511 0.192375i
\(767\) 0.561347i 0.0202691i
\(768\) −8.18702 13.7467i −0.295424 0.496042i
\(769\) 0.776682i 0.0280079i 0.999902 + 0.0140039i \(0.00445774\pi\)
−0.999902 + 0.0140039i \(0.995542\pi\)
\(770\) 0 0
\(771\) 20.1625i 0.726136i
\(772\) 9.77040 + 16.7912i 0.351644 + 0.604329i
\(773\) 20.3612i 0.732340i 0.930548 + 0.366170i \(0.119331\pi\)
−0.930548 + 0.366170i \(0.880669\pi\)
\(774\) −2.47595 + 4.30530i −0.0889963 + 0.154751i
\(775\) 52.4242 1.88313
\(776\) −33.4813 + 0.170138i −1.20191 + 0.00610758i
\(777\) 0 0
\(778\) −3.24949 1.86876i −0.116500 0.0669984i
\(779\) 8.03896i 0.288026i
\(780\) 1.77304 + 3.04710i 0.0634848 + 0.109104i
\(781\) 55.4309 1.98348
\(782\) 10.8496 + 6.23955i 0.387981 + 0.223126i
\(783\) 8.21857 0.293708
\(784\) 0 0
\(785\) 76.9532 2.74658
\(786\) −17.7351 10.1994i −0.632591 0.363800i
\(787\) 48.7815 1.73887 0.869437 0.494043i \(-0.164482\pi\)
0.869437 + 0.494043i \(0.164482\pi\)
\(788\) −16.0233 27.5374i −0.570808 0.980978i
\(789\) 12.5084i 0.445310i
\(790\) 14.2173 + 8.17628i 0.505828 + 0.290899i
\(791\) 0 0
\(792\) 17.1689 0.0872448i 0.610070 0.00310011i
\(793\) −0.100738 −0.00357730
\(794\) 13.1489 22.8640i 0.466639 0.811413i
\(795\) 9.58518i 0.339951i
\(796\) −10.1161 17.3854i −0.358557 0.616209i
\(797\) 5.84706i 0.207113i 0.994624 + 0.103557i \(0.0330223\pi\)
−0.994624 + 0.103557i \(0.966978\pi\)
\(798\) 0 0
\(799\) 29.7677i 1.05311i
\(800\) 40.4848 23.8333i 1.43135 0.842636i
\(801\) 12.2872i 0.434148i
\(802\) −29.2366 16.8138i −1.03238 0.593716i
\(803\) −36.7203 −1.29583
\(804\) 3.07037 1.78658i 0.108284 0.0630077i
\(805\) 0 0
\(806\) −2.15072 + 3.73977i −0.0757558 + 0.131728i
\(807\) 13.0548i 0.459549i
\(808\) 16.1971 0.0823067i 0.569813 0.00289554i
\(809\) 25.1875 0.885544 0.442772 0.896634i \(-0.353995\pi\)
0.442772 + 0.896634i \(0.353995\pi\)
\(810\) −2.57166 + 4.47172i −0.0903588 + 0.157120i
\(811\) 12.4012 0.435465 0.217733 0.976008i \(-0.430134\pi\)
0.217733 + 0.976008i \(0.430134\pi\)
\(812\) 0 0
\(813\) 10.2934 0.361006
\(814\) 5.09350 8.85681i 0.178527 0.310431i
\(815\) −69.8038 −2.44512
\(816\) −8.87650 5.04497i −0.310739 0.176609i
\(817\) 4.28125i 0.149782i
\(818\) 12.2865 21.3644i 0.429588 0.746988i
\(819\) 0 0
\(820\) 24.1939 + 41.5792i 0.844889 + 1.45201i
\(821\) 14.2786 0.498328 0.249164 0.968461i \(-0.419844\pi\)
0.249164 + 0.968461i \(0.419844\pi\)
\(822\) 14.1752 + 8.15205i 0.494415 + 0.284335i
\(823\) 14.1742i 0.494081i 0.969005 + 0.247040i \(0.0794581\pi\)
−0.969005 + 0.247040i \(0.920542\pi\)
\(824\) 0.0711888 + 14.0092i 0.00247998 + 0.488034i
\(825\) 50.4119i 1.75512i
\(826\) 0 0
\(827\) 25.5816i 0.889559i −0.895640 0.444779i \(-0.853282\pi\)
0.895640 0.444779i \(-0.146718\pi\)
\(828\) 5.99359 3.48753i 0.208292 0.121200i
\(829\) 40.6638i 1.41231i 0.708056 + 0.706156i \(0.249572\pi\)
−0.708056 + 0.706156i \(0.750428\pi\)
\(830\) 19.2834 33.5308i 0.669336 1.16387i
\(831\) −18.9622 −0.657792
\(832\) 0.0392899 + 3.86582i 0.00136213 + 0.134023i
\(833\) 0 0
\(834\) −21.6014 12.4228i −0.747996 0.430168i
\(835\) 28.0726i 0.971494i
\(836\) −12.7923 + 7.44351i −0.442429 + 0.257439i
\(837\) −6.31249 −0.218192
\(838\) 32.6282 + 18.7643i 1.12712 + 0.648201i
\(839\) 24.4293 0.843394 0.421697 0.906737i \(-0.361435\pi\)
0.421697 + 0.906737i \(0.361435\pi\)
\(840\) 0 0
\(841\) 38.5449 1.32913
\(842\) 21.1103 + 12.1404i 0.727508 + 0.418385i
\(843\) 17.5144 0.603229
\(844\) 1.78445 1.03833i 0.0614231 0.0357406i
\(845\) 46.5667i 1.60194i
\(846\) 14.2972 + 8.22221i 0.491547 + 0.282686i
\(847\) 0 0
\(848\) −5.19384 + 9.13844i −0.178357 + 0.313815i
\(849\) −18.9419 −0.650084
\(850\) 14.9453 25.9876i 0.512620 0.891367i
\(851\) 4.12652i 0.141455i
\(852\) −15.7855 + 9.18519i −0.540801 + 0.314679i
\(853\) 21.6039i 0.739705i −0.929091 0.369852i \(-0.879408\pi\)
0.929091 0.369852i \(-0.120592\pi\)
\(854\) 0 0
\(855\) 4.44674i 0.152075i
\(856\) 38.8280 0.197307i 1.32711 0.00674382i
\(857\) 2.37802i 0.0812317i −0.999175 0.0406159i \(-0.987068\pi\)
0.999175 0.0406159i \(-0.0129320\pi\)
\(858\) −3.59622 2.06816i −0.122773 0.0706060i
\(859\) −41.8671 −1.42849 −0.714244 0.699897i \(-0.753229\pi\)
−0.714244 + 0.699897i \(0.753229\pi\)
\(860\) −12.8848 22.1435i −0.439368 0.755088i
\(861\) 0 0
\(862\) 13.8771 24.1301i 0.472656 0.821876i
\(863\) 39.7743i 1.35393i 0.736014 + 0.676967i \(0.236706\pi\)
−0.736014 + 0.676967i \(0.763294\pi\)
\(864\) −4.87485 + 2.86982i −0.165846 + 0.0976331i
\(865\) −3.00329 −0.102115
\(866\) −4.53554 + 7.88661i −0.154124 + 0.267998i
\(867\) 10.4848 0.356081
\(868\) 0 0
\(869\) −19.2995 −0.654689
\(870\) −21.1353 + 36.7511i −0.716555 + 1.24598i
\(871\) −0.858337 −0.0290836
\(872\) −0.196197 38.6096i −0.00664408 1.30749i
\(873\) 11.8376i 0.400642i
\(874\) −2.98006 + 5.18186i −0.100802 + 0.175279i
\(875\) 0 0
\(876\) 10.4571 6.08474i 0.353313 0.205584i
\(877\) 26.7180 0.902203 0.451102 0.892473i \(-0.351031\pi\)
0.451102 + 0.892473i \(0.351031\pi\)
\(878\) −8.52458 4.90243i −0.287690 0.165449i
\(879\) 25.2760i 0.852538i
\(880\) −43.7623 + 76.9987i −1.47523 + 2.59563i
\(881\) 39.2357i 1.32188i −0.750437 0.660942i \(-0.770157\pi\)
0.750437 0.660942i \(-0.229843\pi\)
\(882\) 0 0
\(883\) 57.7837i 1.94458i 0.233783 + 0.972289i \(0.424889\pi\)
−0.233783 + 0.972289i \(0.575111\pi\)
\(884\) 1.24073 + 2.13230i 0.0417303 + 0.0717169i
\(885\) 4.23703i 0.142426i
\(886\) 5.48806 9.54288i 0.184375 0.320599i
\(887\) 49.9754 1.67801 0.839005 0.544124i \(-0.183138\pi\)
0.839005 + 0.544124i \(0.183138\pi\)
\(888\) 0.0171057 + 3.36624i 0.000574031 + 0.112963i
\(889\) 0 0
\(890\) 54.9450 + 31.5986i 1.84176 + 1.05919i
\(891\) 6.07019i 0.203359i
\(892\) −9.62861 16.5475i −0.322390 0.554052i
\(893\) −14.2173 −0.475764
\(894\) 7.49623 + 4.31104i 0.250711 + 0.144183i
\(895\) −34.5534 −1.15499
\(896\) 0 0
\(897\) −1.67554 −0.0559445
\(898\) −16.4771 9.47587i −0.549847 0.316214i
\(899\) −51.8796 −1.73028
\(900\) −8.35352 14.3562i −0.278451 0.478539i
\(901\) 6.70750i 0.223459i
\(902\) −49.0722 28.2211i −1.63392 0.939660i
\(903\) 0 0
\(904\) −0.102329 20.1372i −0.00340340 0.669755i
\(905\) −7.51834 −0.249918
\(906\) −10.0416 + 17.4608i −0.333609 + 0.580095i
\(907\) 15.4793i 0.513982i 0.966414 + 0.256991i \(0.0827310\pi\)
−0.966414 + 0.256991i \(0.917269\pi\)
\(908\) −11.2192 19.2811i −0.372323 0.639867i
\(909\) 5.72662i 0.189940i
\(910\) 0 0
\(911\) 2.22992i 0.0738807i −0.999317 0.0369403i \(-0.988239\pi\)
0.999317 0.0369403i \(-0.0117612\pi\)
\(912\) 2.40952 4.23948i 0.0797871 0.140383i
\(913\) 45.5169i 1.50639i
\(914\) −1.42657 0.820410i −0.0471866 0.0271368i
\(915\) 0.760366 0.0251369
\(916\) 17.5086 10.1878i 0.578500 0.336616i
\(917\) 0 0
\(918\) −1.79959 + 3.12921i −0.0593953 + 0.103279i
\(919\) 30.2165i 0.996750i 0.866962 + 0.498375i \(0.166070\pi\)
−0.866962 + 0.498375i \(0.833930\pi\)
\(920\) 0.181769 + 35.7704i 0.00599276 + 1.17931i
\(921\) −10.2457 −0.337606
\(922\) −15.1025 + 26.2610i −0.497375 + 0.864859i
\(923\) 4.41290 0.145252
\(924\) 0 0
\(925\) −9.88408 −0.324986
\(926\) −10.1812 + 17.7035i −0.334575 + 0.581774i
\(927\) 4.95307 0.162680
\(928\) −40.0643 + 23.5858i −1.31517 + 0.774241i
\(929\) 2.79127i 0.0915787i −0.998951 0.0457894i \(-0.985420\pi\)
0.998951 0.0457894i \(-0.0145803\pi\)
\(930\) 16.2336 28.2277i 0.532320 0.925622i
\(931\) 0 0
\(932\) 12.7155 + 21.8527i 0.416511 + 0.715808i
\(933\) 30.3837 0.994718
\(934\) 36.4912 + 20.9859i 1.19403 + 0.686680i
\(935\) 56.5161i 1.84828i
\(936\) 1.36683 0.00694562i 0.0446762 0.000227025i
\(937\) 13.5645i 0.443133i −0.975145 0.221566i \(-0.928883\pi\)
0.975145 0.221566i \(-0.0711169\pi\)
\(938\) 0 0
\(939\) 17.1215i 0.558739i
\(940\) −73.5348 + 42.7881i −2.39844 + 1.39560i
\(941\) 26.2750i 0.856541i 0.903650 + 0.428271i \(0.140877\pi\)
−0.903650 + 0.428271i \(0.859123\pi\)
\(942\) 14.8741 25.8638i 0.484624 0.842687i
\(943\) −22.8635 −0.744538
\(944\) −2.29589 + 4.03956i −0.0747248 + 0.131476i
\(945\) 0 0
\(946\) 26.1340 + 15.0295i 0.849690 + 0.488652i
\(947\) 9.01711i 0.293017i −0.989209 0.146508i \(-0.953196\pi\)
0.989209 0.146508i \(-0.0468035\pi\)
\(948\) 5.49605 3.19802i 0.178503 0.103867i
\(949\) −2.92333 −0.0948953
\(950\) 12.4119 + 7.13799i 0.402694 + 0.231587i
\(951\) −12.3657 −0.400986
\(952\) 0 0
\(953\) 5.49448 0.177984 0.0889918 0.996032i \(-0.471636\pi\)
0.0889918 + 0.996032i \(0.471636\pi\)
\(954\) 3.22155 + 1.85270i 0.104302 + 0.0599832i
\(955\) 39.5995 1.28141
\(956\) −9.43932 + 5.49251i −0.305289 + 0.177641i
\(957\) 49.8883i 1.61266i
\(958\) −34.7618 19.9913i −1.12310 0.645889i
\(959\) 0 0
\(960\) −0.296559 29.1791i −0.00957140 0.941752i
\(961\) 8.84755 0.285405
\(962\) 0.405497 0.705097i 0.0130738 0.0227332i
\(963\) 13.7280i 0.442377i
\(964\) −23.5749 + 13.7177i −0.759297 + 0.441817i
\(965\) 35.4306i 1.14055i
\(966\) 0 0
\(967\) 45.1993i 1.45351i −0.686896 0.726756i \(-0.741027\pi\)
0.686896 0.726756i \(-0.258973\pi\)
\(968\) −0.371494 73.1061i −0.0119403 2.34972i
\(969\) 3.11173i 0.0999632i
\(970\) −52.9343 30.4422i −1.69962 0.977441i
\(971\) 41.0558 1.31754 0.658772 0.752342i \(-0.271076\pi\)
0.658772 + 0.752342i \(0.271076\pi\)
\(972\) 1.00586 + 1.72865i 0.0322630 + 0.0554466i
\(973\) 0 0
\(974\) −6.74564 + 11.7296i −0.216144 + 0.375842i
\(975\) 4.01333i 0.128530i
\(976\) 0.724927 + 0.412013i 0.0232044 + 0.0131882i
\(977\) 57.2191 1.83060 0.915301 0.402770i \(-0.131952\pi\)
0.915301 + 0.402770i \(0.131952\pi\)
\(978\) −13.4922 + 23.4609i −0.431433 + 0.750195i
\(979\) −74.5859 −2.38378
\(980\) 0 0
\(981\) −13.6507 −0.435835
\(982\) −12.5158 + 21.7630i −0.399395 + 0.694486i
\(983\) −52.3743 −1.67048 −0.835241 0.549884i \(-0.814672\pi\)
−0.835241 + 0.549884i \(0.814672\pi\)
\(984\) 18.6510 0.0947764i 0.594573 0.00302136i
\(985\) 58.1058i 1.85140i
\(986\) −14.7901 + 25.7176i −0.471011 + 0.819016i
\(987\) 0 0
\(988\) −1.01840 + 0.592583i −0.0323997 + 0.0188526i
\(989\) 12.1762 0.387182
\(990\) 27.1442 + 15.6105i 0.862699 + 0.496133i
\(991\) 59.5704i 1.89232i 0.323704 + 0.946158i \(0.395072\pi\)
−0.323704 + 0.946158i \(0.604928\pi\)
\(992\) 30.7724 18.1157i 0.977026 0.575174i
\(993\) 7.68197i 0.243780i
\(994\) 0 0
\(995\) 36.6844i 1.16297i
\(996\) −7.54238 12.9622i −0.238989 0.410722i
\(997\) 32.3500i 1.02454i −0.858826 0.512268i \(-0.828806\pi\)
0.858826 0.512268i \(-0.171194\pi\)
\(998\) −6.62808 + 11.5252i −0.209808 + 0.364824i
\(999\) 1.19016 0.0376550
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.b.d.391.10 yes 12
3.2 odd 2 1764.2.b.m.1567.3 12
4.3 odd 2 588.2.b.c.391.9 12
7.2 even 3 588.2.o.e.31.8 24
7.3 odd 6 588.2.o.f.19.3 24
7.4 even 3 588.2.o.e.19.3 24
7.5 odd 6 588.2.o.f.31.8 24
7.6 odd 2 588.2.b.c.391.10 yes 12
12.11 even 2 1764.2.b.l.1567.4 12
21.20 even 2 1764.2.b.l.1567.3 12
28.3 even 6 588.2.o.e.19.8 24
28.11 odd 6 588.2.o.f.19.8 24
28.19 even 6 588.2.o.e.31.3 24
28.23 odd 6 588.2.o.f.31.3 24
28.27 even 2 inner 588.2.b.d.391.9 yes 12
84.83 odd 2 1764.2.b.m.1567.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.9 12 4.3 odd 2
588.2.b.c.391.10 yes 12 7.6 odd 2
588.2.b.d.391.9 yes 12 28.27 even 2 inner
588.2.b.d.391.10 yes 12 1.1 even 1 trivial
588.2.o.e.19.3 24 7.4 even 3
588.2.o.e.19.8 24 28.3 even 6
588.2.o.e.31.3 24 28.19 even 6
588.2.o.e.31.8 24 7.2 even 3
588.2.o.f.19.3 24 7.3 odd 6
588.2.o.f.19.8 24 28.11 odd 6
588.2.o.f.31.3 24 28.23 odd 6
588.2.o.f.31.8 24 7.5 odd 6
1764.2.b.l.1567.3 12 21.20 even 2
1764.2.b.l.1567.4 12 12.11 even 2
1764.2.b.m.1567.3 12 3.2 odd 2
1764.2.b.m.1567.4 12 84.83 odd 2