L(s) = 1 | + (−0.00239 − 1.41i)2-s + (0.5 − 0.866i)3-s + (−1.99 + 0.00677i)4-s + (−3.15 + 1.82i)5-s + (−1.22 − 0.705i)6-s + (0.0143 + 2.82i)8-s + (−0.499 − 0.866i)9-s + (2.58 + 4.46i)10-s + (5.25 + 3.03i)11-s + (−0.994 + 1.73i)12-s + 0.483i·13-s + 3.64i·15-s + (3.99 − 0.0271i)16-s + (2.21 + 1.27i)17-s + (−1.22 + 0.709i)18-s + (−0.609 − 1.05i)19-s + ⋯ |
L(s) = 1 | + (−0.00169 − 0.999i)2-s + (0.288 − 0.499i)3-s + (−0.999 + 0.00338i)4-s + (−1.41 + 0.815i)5-s + (−0.500 − 0.287i)6-s + (0.00508 + 0.999i)8-s + (−0.166 − 0.288i)9-s + (0.818 + 1.41i)10-s + (1.58 + 0.915i)11-s + (−0.286 + 0.500i)12-s + 0.134i·13-s + 0.941i·15-s + (0.999 − 0.00677i)16-s + (0.536 + 0.309i)17-s + (−0.288 + 0.167i)18-s + (−0.139 − 0.242i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.982 + 0.185i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.982 + 0.185i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06168 - 0.0991629i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06168 - 0.0991629i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.00239 + 1.41i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (3.15 - 1.82i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-5.25 - 3.03i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 0.483iT - 13T^{2} \) |
| 17 | \( 1 + (-2.21 - 1.27i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.609 + 1.05i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.00 - 1.73i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8.21T + 29T^{2} \) |
| 31 | \( 1 + (3.15 - 5.46i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.595 + 1.03i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 6.59iT - 41T^{2} \) |
| 43 | \( 1 - 3.51iT - 43T^{2} \) |
| 47 | \( 1 + (-5.83 - 10.0i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (1.31 - 2.27i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.580 + 1.00i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.180 + 0.104i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1.53 - 0.888i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9.13iT - 71T^{2} \) |
| 73 | \( 1 + (5.23 + 3.02i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.75 - 1.58i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 7.49T + 83T^{2} \) |
| 89 | \( 1 + (-10.6 + 6.14i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 11.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85961603654927731562960103455, −9.906964722959894223882334059048, −8.970391118424217522243946163452, −8.070670625342281046861221925170, −7.25812592409515328807343803405, −6.33600130263551228313770871261, −4.53176005065122217710064940480, −3.80731769117010897063891344459, −2.87474375972642832217893786642, −1.36495739543709721648134778709,
0.69052466796020821739227428921, 3.62468009067445107814141879145, 4.04923429057204974232312651172, 5.09262525533125536800062098174, 6.20127834872538368828546344884, 7.30009855135413628232834123840, 8.242849421616193977457234266493, 8.686413572800721792146744278747, 9.445417535896060420221229906865, 10.60058531830109179271625589042