Properties

Label 588.2.o.f.31.7
Level $588$
Weight $2$
Character 588.31
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(19,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,12,4,0,-8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.7
Character \(\chi\) \(=\) 588.31
Dual form 588.2.o.f.19.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.306932 - 1.38050i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-1.81159 + 0.847441i) q^{4} +(-0.110790 + 0.0639645i) q^{5} +(-1.34902 - 0.424442i) q^{6} +(1.72593 + 2.24080i) q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.122308 + 0.133313i) q^{10} +(-3.45938 - 1.99727i) q^{11} +(-0.171888 + 1.99260i) q^{12} -0.891655i q^{13} +0.127929i q^{15} +(2.56369 - 3.07042i) q^{16} +(-5.04756 - 2.91421i) q^{17} +(-1.04209 + 0.956063i) q^{18} +(-3.15745 - 5.46886i) q^{19} +(0.146499 - 0.209765i) q^{20} +(-1.69545 + 5.38872i) q^{22} +(-5.72040 + 3.30268i) q^{23} +(2.80355 - 0.374300i) q^{24} +(-2.49182 + 4.31595i) q^{25} +(-1.23093 + 0.273677i) q^{26} -1.00000 q^{27} +2.82968 q^{29} +(0.176607 - 0.0392655i) q^{30} +(4.22668 - 7.32083i) q^{31} +(-5.02561 - 2.59677i) q^{32} +(-3.45938 + 1.99727i) q^{33} +(-2.47383 + 7.86264i) q^{34} +(1.63970 + 1.14516i) q^{36} +(4.33956 + 7.51634i) q^{37} +(-6.58067 + 6.03744i) q^{38} +(-0.772196 - 0.445827i) q^{39} +(-0.334547 - 0.137859i) q^{40} +3.24650i q^{41} -0.881836i q^{43} +(7.95954 + 0.686614i) q^{44} +(0.110790 + 0.0639645i) q^{45} +(6.31513 + 6.88335i) q^{46} +(-5.00678 - 8.67200i) q^{47} +(-1.37722 - 3.75543i) q^{48} +(6.72301 + 2.11526i) q^{50} +(-5.04756 + 2.91421i) q^{51} +(0.755625 + 1.61531i) q^{52} +(3.76727 - 6.52510i) q^{53} +(0.306932 + 1.38050i) q^{54} +0.511019 q^{55} -6.31490 q^{57} +(-0.868519 - 3.90639i) q^{58} +(-0.294409 + 0.509932i) q^{59} +(-0.108412 - 0.231754i) q^{60} +(-1.46181 + 0.843974i) q^{61} +(-11.4037 - 3.58796i) q^{62} +(-2.04234 + 7.73491i) q^{64} +(0.0570343 + 0.0987862i) q^{65} +(3.81904 + 4.16266i) q^{66} +(5.50132 + 3.17619i) q^{67} +(11.6137 + 1.00183i) q^{68} +6.60535i q^{69} -11.3856i q^{71} +(1.07762 - 2.61510i) q^{72} +(13.4354 + 7.75696i) q^{73} +(9.04439 - 8.29778i) q^{74} +(2.49182 + 4.31595i) q^{75} +(10.3545 + 7.23156i) q^{76} +(-0.378456 + 1.20286i) q^{78} +(-8.50718 + 4.91162i) q^{79} +(-0.0876323 + 0.504157i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(4.48180 - 0.996452i) q^{82} +1.48021 q^{83} +0.745624 q^{85} +(-1.21738 + 0.270663i) q^{86} +(1.41484 - 2.45058i) q^{87} +(-1.49516 - 11.1989i) q^{88} +(0.389696 - 0.224991i) q^{89} +(0.0542984 - 0.172579i) q^{90} +(7.56418 - 10.8308i) q^{92} +(-4.22668 - 7.32083i) q^{93} +(-10.4350 + 9.57360i) q^{94} +(0.699626 + 0.403929i) q^{95} +(-4.76168 + 3.05392i) q^{96} -16.2042i q^{97} +3.99455i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} + 12 q^{3} + 4 q^{4} - 8 q^{6} + 8 q^{8} - 12 q^{9} - 4 q^{12} + 4 q^{16} - 4 q^{18} + 48 q^{20} + 4 q^{24} + 12 q^{25} + 24 q^{26} - 24 q^{27} + 64 q^{29} + 16 q^{31} - 4 q^{32} - 64 q^{34}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.306932 1.38050i −0.217033 0.976164i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −1.81159 + 0.847441i −0.905793 + 0.423720i
\(5\) −0.110790 + 0.0639645i −0.0495467 + 0.0286058i −0.524569 0.851368i \(-0.675773\pi\)
0.475022 + 0.879974i \(0.342440\pi\)
\(6\) −1.34902 0.424442i −0.550734 0.173278i
\(7\) 0 0
\(8\) 1.72593 + 2.24080i 0.610208 + 0.792241i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.122308 + 0.133313i 0.0386772 + 0.0421573i
\(11\) −3.45938 1.99727i −1.04304 0.602201i −0.122349 0.992487i \(-0.539043\pi\)
−0.920693 + 0.390286i \(0.872376\pi\)
\(12\) −0.171888 + 1.99260i −0.0496197 + 0.575214i
\(13\) 0.891655i 0.247301i −0.992326 0.123650i \(-0.960540\pi\)
0.992326 0.123650i \(-0.0394601\pi\)
\(14\) 0 0
\(15\) 0.127929i 0.0330311i
\(16\) 2.56369 3.07042i 0.640922 0.767606i
\(17\) −5.04756 2.91421i −1.22421 0.706800i −0.258400 0.966038i \(-0.583195\pi\)
−0.965813 + 0.259238i \(0.916529\pi\)
\(18\) −1.04209 + 0.956063i −0.245622 + 0.225346i
\(19\) −3.15745 5.46886i −0.724368 1.25464i −0.959234 0.282615i \(-0.908798\pi\)
0.234865 0.972028i \(-0.424535\pi\)
\(20\) 0.146499 0.209765i 0.0327582 0.0469049i
\(21\) 0 0
\(22\) −1.69545 + 5.38872i −0.361472 + 1.14888i
\(23\) −5.72040 + 3.30268i −1.19279 + 0.688656i −0.958938 0.283617i \(-0.908465\pi\)
−0.233849 + 0.972273i \(0.575132\pi\)
\(24\) 2.80355 0.374300i 0.572273 0.0764036i
\(25\) −2.49182 + 4.31595i −0.498363 + 0.863191i
\(26\) −1.23093 + 0.273677i −0.241406 + 0.0536725i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.82968 0.525459 0.262729 0.964870i \(-0.415377\pi\)
0.262729 + 0.964870i \(0.415377\pi\)
\(30\) 0.176607 0.0392655i 0.0322438 0.00716886i
\(31\) 4.22668 7.32083i 0.759135 1.31486i −0.184158 0.982897i \(-0.558956\pi\)
0.943292 0.331963i \(-0.107711\pi\)
\(32\) −5.02561 2.59677i −0.888411 0.459049i
\(33\) −3.45938 + 1.99727i −0.602201 + 0.347681i
\(34\) −2.47383 + 7.86264i −0.424258 + 1.34843i
\(35\) 0 0
\(36\) 1.63970 + 1.14516i 0.273283 + 0.190860i
\(37\) 4.33956 + 7.51634i 0.713419 + 1.23568i 0.963566 + 0.267471i \(0.0861878\pi\)
−0.250147 + 0.968208i \(0.580479\pi\)
\(38\) −6.58067 + 6.03744i −1.06753 + 0.979402i
\(39\) −0.772196 0.445827i −0.123650 0.0713895i
\(40\) −0.334547 0.137859i −0.0528965 0.0217975i
\(41\) 3.24650i 0.507018i 0.967333 + 0.253509i \(0.0815847\pi\)
−0.967333 + 0.253509i \(0.918415\pi\)
\(42\) 0 0
\(43\) 0.881836i 0.134479i −0.997737 0.0672394i \(-0.978581\pi\)
0.997737 0.0672394i \(-0.0214191\pi\)
\(44\) 7.95954 + 0.686614i 1.19995 + 0.103511i
\(45\) 0.110790 + 0.0639645i 0.0165156 + 0.00953527i
\(46\) 6.31513 + 6.88335i 0.931115 + 1.01489i
\(47\) −5.00678 8.67200i −0.730314 1.26494i −0.956749 0.290915i \(-0.906040\pi\)
0.226435 0.974026i \(-0.427293\pi\)
\(48\) −1.37722 3.75543i −0.198785 0.542050i
\(49\) 0 0
\(50\) 6.72301 + 2.11526i 0.950777 + 0.299143i
\(51\) −5.04756 + 2.91421i −0.706800 + 0.408071i
\(52\) 0.755625 + 1.61531i 0.104786 + 0.224003i
\(53\) 3.76727 6.52510i 0.517474 0.896292i −0.482320 0.875995i \(-0.660206\pi\)
0.999794 0.0202966i \(-0.00646106\pi\)
\(54\) 0.306932 + 1.38050i 0.0417681 + 0.187863i
\(55\) 0.511019 0.0689057
\(56\) 0 0
\(57\) −6.31490 −0.836428
\(58\) −0.868519 3.90639i −0.114042 0.512934i
\(59\) −0.294409 + 0.509932i −0.0383288 + 0.0663875i −0.884553 0.466439i \(-0.845537\pi\)
0.846225 + 0.532826i \(0.178870\pi\)
\(60\) −0.108412 0.231754i −0.0139960 0.0299194i
\(61\) −1.46181 + 0.843974i −0.187165 + 0.108060i −0.590655 0.806924i \(-0.701130\pi\)
0.403490 + 0.914984i \(0.367797\pi\)
\(62\) −11.4037 3.58796i −1.44828 0.455672i
\(63\) 0 0
\(64\) −2.04234 + 7.73491i −0.255292 + 0.966864i
\(65\) 0.0570343 + 0.0987862i 0.00707423 + 0.0122529i
\(66\) 3.81904 + 4.16266i 0.470091 + 0.512388i
\(67\) 5.50132 + 3.17619i 0.672094 + 0.388033i 0.796869 0.604151i \(-0.206488\pi\)
−0.124776 + 0.992185i \(0.539821\pi\)
\(68\) 11.6137 + 1.00183i 1.40837 + 0.121490i
\(69\) 6.60535i 0.795191i
\(70\) 0 0
\(71\) 11.3856i 1.35122i −0.737259 0.675610i \(-0.763880\pi\)
0.737259 0.675610i \(-0.236120\pi\)
\(72\) 1.07762 2.61510i 0.126999 0.308192i
\(73\) 13.4354 + 7.75696i 1.57250 + 0.907883i 0.995861 + 0.0908839i \(0.0289692\pi\)
0.576639 + 0.816999i \(0.304364\pi\)
\(74\) 9.04439 8.29778i 1.05139 0.964598i
\(75\) 2.49182 + 4.31595i 0.287730 + 0.498363i
\(76\) 10.3545 + 7.23156i 1.18775 + 0.829517i
\(77\) 0 0
\(78\) −0.378456 + 1.20286i −0.0428517 + 0.136197i
\(79\) −8.50718 + 4.91162i −0.957132 + 0.552601i −0.895289 0.445485i \(-0.853031\pi\)
−0.0618431 + 0.998086i \(0.519698\pi\)
\(80\) −0.0876323 + 0.504157i −0.00979759 + 0.0563664i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 4.48180 0.996452i 0.494932 0.110040i
\(83\) 1.48021 0.162474 0.0812371 0.996695i \(-0.474113\pi\)
0.0812371 + 0.996695i \(0.474113\pi\)
\(84\) 0 0
\(85\) 0.745624 0.0808743
\(86\) −1.21738 + 0.270663i −0.131273 + 0.0291864i
\(87\) 1.41484 2.45058i 0.151687 0.262729i
\(88\) −1.49516 11.1989i −0.159384 1.19381i
\(89\) 0.389696 0.224991i 0.0413077 0.0238490i −0.479204 0.877704i \(-0.659075\pi\)
0.520512 + 0.853855i \(0.325741\pi\)
\(90\) 0.0542984 0.172579i 0.00572356 0.0181914i
\(91\) 0 0
\(92\) 7.56418 10.8308i 0.788620 1.12919i
\(93\) −4.22668 7.32083i −0.438287 0.759135i
\(94\) −10.4350 + 9.57360i −1.07629 + 0.987441i
\(95\) 0.699626 + 0.403929i 0.0717801 + 0.0414423i
\(96\) −4.76168 + 3.05392i −0.485987 + 0.311689i
\(97\) 16.2042i 1.64529i −0.568555 0.822645i \(-0.692497\pi\)
0.568555 0.822645i \(-0.307503\pi\)
\(98\) 0 0
\(99\) 3.99455i 0.401467i
\(100\) 0.856626 9.93039i 0.0856626 0.993039i
\(101\) −10.4495 6.03304i −1.03977 0.600310i −0.120000 0.992774i \(-0.538289\pi\)
−0.919767 + 0.392464i \(0.871623\pi\)
\(102\) 5.57234 + 6.07372i 0.551744 + 0.601388i
\(103\) 1.64215 + 2.84429i 0.161806 + 0.280256i 0.935516 0.353283i \(-0.114935\pi\)
−0.773710 + 0.633539i \(0.781601\pi\)
\(104\) 1.99802 1.53893i 0.195922 0.150905i
\(105\) 0 0
\(106\) −10.1642 3.19797i −0.987237 0.310615i
\(107\) 2.88857 1.66772i 0.279249 0.161224i −0.353835 0.935308i \(-0.615122\pi\)
0.633083 + 0.774084i \(0.281789\pi\)
\(108\) 1.81159 0.847441i 0.174320 0.0815450i
\(109\) −2.23048 + 3.86331i −0.213641 + 0.370038i −0.952851 0.303437i \(-0.901866\pi\)
0.739210 + 0.673475i \(0.235199\pi\)
\(110\) −0.156848 0.705464i −0.0149548 0.0672633i
\(111\) 8.67912 0.823786
\(112\) 0 0
\(113\) −9.16272 −0.861956 −0.430978 0.902362i \(-0.641831\pi\)
−0.430978 + 0.902362i \(0.641831\pi\)
\(114\) 1.93824 + 8.71774i 0.181533 + 0.816492i
\(115\) 0.422508 0.731806i 0.0393991 0.0682412i
\(116\) −5.12621 + 2.39799i −0.475957 + 0.222648i
\(117\) −0.772196 + 0.445827i −0.0713895 + 0.0412168i
\(118\) 0.794327 + 0.249919i 0.0731237 + 0.0230069i
\(119\) 0 0
\(120\) −0.286663 + 0.220796i −0.0261686 + 0.0201559i
\(121\) 2.47821 + 4.29238i 0.225291 + 0.390216i
\(122\) 1.61379 + 1.75899i 0.146105 + 0.159251i
\(123\) 2.81155 + 1.62325i 0.253509 + 0.146363i
\(124\) −1.45303 + 16.8442i −0.130486 + 1.51265i
\(125\) 1.27720i 0.114236i
\(126\) 0 0
\(127\) 14.0775i 1.24917i −0.780955 0.624587i \(-0.785267\pi\)
0.780955 0.624587i \(-0.214733\pi\)
\(128\) 11.3049 + 0.445371i 0.999225 + 0.0393656i
\(129\) −0.763693 0.440918i −0.0672394 0.0388207i
\(130\) 0.118869 0.109057i 0.0104255 0.00956490i
\(131\) 4.88483 + 8.46078i 0.426790 + 0.739222i 0.996586 0.0825645i \(-0.0263111\pi\)
−0.569796 + 0.821786i \(0.692978\pi\)
\(132\) 4.57439 6.54985i 0.398150 0.570092i
\(133\) 0 0
\(134\) 2.69622 8.56948i 0.232918 0.740290i
\(135\) 0.110790 0.0639645i 0.00953527 0.00550519i
\(136\) −2.18158 16.3403i −0.187069 1.40117i
\(137\) 1.98426 3.43684i 0.169527 0.293629i −0.768727 0.639577i \(-0.779109\pi\)
0.938254 + 0.345948i \(0.112443\pi\)
\(138\) 9.11872 2.02739i 0.776237 0.172583i
\(139\) −0.262023 −0.0222245 −0.0111122 0.999938i \(-0.503537\pi\)
−0.0111122 + 0.999938i \(0.503537\pi\)
\(140\) 0 0
\(141\) −10.0136 −0.843294
\(142\) −15.7179 + 3.49459i −1.31901 + 0.293260i
\(143\) −1.78088 + 3.08457i −0.148925 + 0.257945i
\(144\) −3.94091 0.685007i −0.328409 0.0570839i
\(145\) −0.313500 + 0.180999i −0.0260348 + 0.0150312i
\(146\) 6.58476 20.9286i 0.544958 1.73206i
\(147\) 0 0
\(148\) −14.2311 9.93897i −1.16979 0.816979i
\(149\) −1.34774 2.33436i −0.110411 0.191238i 0.805525 0.592562i \(-0.201884\pi\)
−0.915936 + 0.401324i \(0.868550\pi\)
\(150\) 5.19338 4.76467i 0.424037 0.389033i
\(151\) −3.73832 2.15832i −0.304220 0.175642i 0.340117 0.940383i \(-0.389533\pi\)
−0.644337 + 0.764741i \(0.722867\pi\)
\(152\) 6.80507 16.5141i 0.551964 1.33947i
\(153\) 5.82842i 0.471200i
\(154\) 0 0
\(155\) 1.08143i 0.0868626i
\(156\) 1.77671 + 0.153265i 0.142251 + 0.0122710i
\(157\) 2.77661 + 1.60308i 0.221598 + 0.127940i 0.606690 0.794939i \(-0.292497\pi\)
−0.385092 + 0.922878i \(0.625830\pi\)
\(158\) 9.39164 + 10.2367i 0.747159 + 0.814386i
\(159\) −3.76727 6.52510i −0.298764 0.517474i
\(160\) 0.722888 0.0337648i 0.0571493 0.00266934i
\(161\) 0 0
\(162\) 1.34902 + 0.424442i 0.105989 + 0.0333473i
\(163\) 20.1454 11.6309i 1.57791 0.911006i 0.582757 0.812646i \(-0.301974\pi\)
0.995151 0.0983597i \(-0.0313596\pi\)
\(164\) −2.75121 5.88131i −0.214834 0.459253i
\(165\) 0.255509 0.442555i 0.0198914 0.0344529i
\(166\) −0.454323 2.04344i −0.0352623 0.158602i
\(167\) 9.66864 0.748182 0.374091 0.927392i \(-0.377955\pi\)
0.374091 + 0.927392i \(0.377955\pi\)
\(168\) 0 0
\(169\) 12.2050 0.938842
\(170\) −0.228856 1.02934i −0.0175524 0.0789466i
\(171\) −3.15745 + 5.46886i −0.241456 + 0.418214i
\(172\) 0.747304 + 1.59752i 0.0569814 + 0.121810i
\(173\) 17.9324 10.3533i 1.36337 0.787145i 0.373303 0.927709i \(-0.378225\pi\)
0.990071 + 0.140565i \(0.0448919\pi\)
\(174\) −3.81729 1.20104i −0.289388 0.0910503i
\(175\) 0 0
\(176\) −15.0012 + 5.50137i −1.13076 + 0.414682i
\(177\) 0.294409 + 0.509932i 0.0221292 + 0.0383288i
\(178\) −0.430212 0.468921i −0.0322457 0.0351471i
\(179\) −1.27126 0.733963i −0.0950185 0.0548589i 0.451738 0.892151i \(-0.350804\pi\)
−0.546756 + 0.837292i \(0.684138\pi\)
\(180\) −0.254911 0.0219894i −0.0190000 0.00163900i
\(181\) 23.5472i 1.75025i −0.483898 0.875124i \(-0.660779\pi\)
0.483898 0.875124i \(-0.339221\pi\)
\(182\) 0 0
\(183\) 1.68795i 0.124777i
\(184\) −17.2736 7.11808i −1.27343 0.524752i
\(185\) −0.961558 0.555156i −0.0706951 0.0408159i
\(186\) −8.80914 + 8.08195i −0.645917 + 0.592597i
\(187\) 11.6410 + 20.1627i 0.851271 + 1.47444i
\(188\) 16.4192 + 11.4671i 1.19749 + 0.836326i
\(189\) 0 0
\(190\) 0.342889 1.08982i 0.0248758 0.0790635i
\(191\) 3.19674 1.84564i 0.231308 0.133546i −0.379867 0.925041i \(-0.624030\pi\)
0.611175 + 0.791495i \(0.290697\pi\)
\(192\) 5.67746 + 5.63617i 0.409735 + 0.406756i
\(193\) 1.35837 2.35277i 0.0977777 0.169356i −0.812987 0.582282i \(-0.802160\pi\)
0.910764 + 0.412926i \(0.135493\pi\)
\(194\) −22.3700 + 4.97359i −1.60607 + 0.357083i
\(195\) 0.114069 0.00816862
\(196\) 0 0
\(197\) 4.09843 0.292001 0.146001 0.989284i \(-0.453360\pi\)
0.146001 + 0.989284i \(0.453360\pi\)
\(198\) 5.51449 1.22605i 0.391898 0.0871318i
\(199\) 0.104115 0.180332i 0.00738048 0.0127834i −0.862312 0.506378i \(-0.830984\pi\)
0.869692 + 0.493595i \(0.164317\pi\)
\(200\) −13.9719 + 1.86537i −0.987961 + 0.131902i
\(201\) 5.50132 3.17619i 0.388033 0.224031i
\(202\) −5.12135 + 16.2774i −0.360337 + 1.14527i
\(203\) 0 0
\(204\) 6.67447 9.55685i 0.467306 0.669114i
\(205\) −0.207661 0.359679i −0.0145036 0.0251210i
\(206\) 3.42253 3.14000i 0.238459 0.218774i
\(207\) 5.72040 + 3.30268i 0.397596 + 0.229552i
\(208\) −2.73776 2.28592i −0.189829 0.158500i
\(209\) 25.2252i 1.74486i
\(210\) 0 0
\(211\) 16.5850i 1.14176i 0.821034 + 0.570880i \(0.193398\pi\)
−0.821034 + 0.570880i \(0.806602\pi\)
\(212\) −1.29510 + 15.0133i −0.0889475 + 1.03112i
\(213\) −9.86020 5.69279i −0.675610 0.390064i
\(214\) −3.18889 3.47581i −0.217988 0.237602i
\(215\) 0.0564062 + 0.0976985i 0.00384687 + 0.00666298i
\(216\) −1.72593 2.24080i −0.117435 0.152467i
\(217\) 0 0
\(218\) 6.01792 + 1.89342i 0.407585 + 0.128238i
\(219\) 13.4354 7.75696i 0.907883 0.524167i
\(220\) −0.925754 + 0.433058i −0.0624143 + 0.0291968i
\(221\) −2.59847 + 4.50068i −0.174792 + 0.302749i
\(222\) −2.66390 11.9816i −0.178789 0.804150i
\(223\) −21.3432 −1.42925 −0.714624 0.699509i \(-0.753402\pi\)
−0.714624 + 0.699509i \(0.753402\pi\)
\(224\) 0 0
\(225\) 4.98363 0.332242
\(226\) 2.81233 + 12.6492i 0.187073 + 0.841411i
\(227\) −13.4986 + 23.3803i −0.895935 + 1.55180i −0.0632918 + 0.997995i \(0.520160\pi\)
−0.832643 + 0.553810i \(0.813173\pi\)
\(228\) 11.4400 5.35150i 0.757631 0.354412i
\(229\) 2.52614 1.45847i 0.166932 0.0963783i −0.414206 0.910183i \(-0.635941\pi\)
0.581138 + 0.813805i \(0.302607\pi\)
\(230\) −1.13994 0.358660i −0.0751656 0.0236494i
\(231\) 0 0
\(232\) 4.88383 + 6.34074i 0.320639 + 0.416290i
\(233\) −10.1995 17.6660i −0.668189 1.15734i −0.978410 0.206673i \(-0.933736\pi\)
0.310221 0.950665i \(-0.399597\pi\)
\(234\) 0.852478 + 0.929181i 0.0557282 + 0.0607425i
\(235\) 1.10940 + 0.640513i 0.0723693 + 0.0417824i
\(236\) 0.101211 1.17328i 0.00658826 0.0763741i
\(237\) 9.82324i 0.638088i
\(238\) 0 0
\(239\) 25.2554i 1.63364i 0.576895 + 0.816818i \(0.304264\pi\)
−0.576895 + 0.816818i \(0.695736\pi\)
\(240\) 0.392796 + 0.327970i 0.0253549 + 0.0211704i
\(241\) 7.10954 + 4.10469i 0.457965 + 0.264406i 0.711188 0.703001i \(-0.248157\pi\)
−0.253223 + 0.967408i \(0.581491\pi\)
\(242\) 5.16501 4.73864i 0.332019 0.304611i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 1.93297 2.76773i 0.123746 0.177186i
\(245\) 0 0
\(246\) 1.37795 4.37958i 0.0878548 0.279232i
\(247\) −4.87634 + 2.81535i −0.310274 + 0.179137i
\(248\) 23.6994 3.16409i 1.50492 0.200920i
\(249\) 0.740105 1.28190i 0.0469023 0.0812371i
\(250\) −1.76318 + 0.392012i −0.111513 + 0.0247930i
\(251\) −6.55180 −0.413546 −0.206773 0.978389i \(-0.566296\pi\)
−0.206773 + 0.978389i \(0.566296\pi\)
\(252\) 0 0
\(253\) 26.3854 1.65884
\(254\) −19.4340 + 4.32082i −1.21940 + 0.271113i
\(255\) 0.372812 0.645730i 0.0233464 0.0404372i
\(256\) −2.85501 15.7432i −0.178438 0.983951i
\(257\) −16.2399 + 9.37612i −1.01302 + 0.584866i −0.912074 0.410026i \(-0.865520\pi\)
−0.100944 + 0.994892i \(0.532186\pi\)
\(258\) −0.374288 + 1.18961i −0.0233022 + 0.0740621i
\(259\) 0 0
\(260\) −0.187038 0.130627i −0.0115996 0.00810112i
\(261\) −1.41484 2.45058i −0.0875765 0.151687i
\(262\) 10.1808 9.34042i 0.628974 0.577053i
\(263\) 1.82321 + 1.05263i 0.112424 + 0.0649079i 0.555158 0.831745i \(-0.312658\pi\)
−0.442734 + 0.896653i \(0.645991\pi\)
\(264\) −10.4461 4.30461i −0.642915 0.264931i
\(265\) 0.963886i 0.0592111i
\(266\) 0 0
\(267\) 0.449983i 0.0275385i
\(268\) −12.6578 1.09190i −0.773195 0.0666982i
\(269\) 10.2209 + 5.90104i 0.623180 + 0.359793i 0.778106 0.628133i \(-0.216181\pi\)
−0.154926 + 0.987926i \(0.549514\pi\)
\(270\) −0.122308 0.133313i −0.00744344 0.00811318i
\(271\) −5.66213 9.80709i −0.343950 0.595738i 0.641213 0.767363i \(-0.278432\pi\)
−0.985162 + 0.171625i \(0.945098\pi\)
\(272\) −21.8882 + 8.02702i −1.32717 + 0.486710i
\(273\) 0 0
\(274\) −5.35361 1.68441i −0.323423 0.101759i
\(275\) 17.2403 9.95368i 1.03963 0.600230i
\(276\) −5.59765 11.9662i −0.336939 0.720278i
\(277\) 5.88192 10.1878i 0.353410 0.612125i −0.633434 0.773797i \(-0.718355\pi\)
0.986845 + 0.161672i \(0.0516886\pi\)
\(278\) 0.0804231 + 0.361724i 0.00482345 + 0.0216947i
\(279\) −8.45337 −0.506090
\(280\) 0 0
\(281\) −9.80481 −0.584906 −0.292453 0.956280i \(-0.594471\pi\)
−0.292453 + 0.956280i \(0.594471\pi\)
\(282\) 3.07348 + 13.8238i 0.183023 + 0.823194i
\(283\) −12.3233 + 21.3445i −0.732542 + 1.26880i 0.223252 + 0.974761i \(0.428333\pi\)
−0.955794 + 0.294039i \(0.905001\pi\)
\(284\) 9.64861 + 20.6260i 0.572540 + 1.22393i
\(285\) 0.699626 0.403929i 0.0414423 0.0239267i
\(286\) 4.80487 + 1.51176i 0.284118 + 0.0893922i
\(287\) 0 0
\(288\) 0.263934 + 5.65069i 0.0155524 + 0.332970i
\(289\) 8.48525 + 14.6969i 0.499132 + 0.864522i
\(290\) 0.346093 + 0.377234i 0.0203233 + 0.0221519i
\(291\) −14.0333 8.10212i −0.822645 0.474954i
\(292\) −30.9130 2.66665i −1.80905 0.156054i
\(293\) 2.41042i 0.140818i −0.997518 0.0704091i \(-0.977570\pi\)
0.997518 0.0704091i \(-0.0224305\pi\)
\(294\) 0 0
\(295\) 0.0753270i 0.00438571i
\(296\) −9.35281 + 22.6967i −0.543621 + 1.31922i
\(297\) 3.45938 + 1.99727i 0.200734 + 0.115894i
\(298\) −2.80893 + 2.57705i −0.162717 + 0.149285i
\(299\) 2.94485 + 5.10062i 0.170305 + 0.294977i
\(300\) −8.17166 5.70705i −0.471791 0.329497i
\(301\) 0 0
\(302\) −1.83216 + 5.82323i −0.105429 + 0.335089i
\(303\) −10.4495 + 6.03304i −0.600310 + 0.346589i
\(304\) −24.8864 4.32575i −1.42733 0.248099i
\(305\) 0.107969 0.187007i 0.00618228 0.0107080i
\(306\) 8.04616 1.78893i 0.459968 0.102266i
\(307\) −24.4054 −1.39289 −0.696446 0.717609i \(-0.745236\pi\)
−0.696446 + 0.717609i \(0.745236\pi\)
\(308\) 0 0
\(309\) 3.28431 0.186838
\(310\) 1.49292 0.331925i 0.0847922 0.0188521i
\(311\) 15.5933 27.0084i 0.884215 1.53151i 0.0376050 0.999293i \(-0.488027\pi\)
0.846610 0.532213i \(-0.178640\pi\)
\(312\) −0.333746 2.49980i −0.0188947 0.141523i
\(313\) −2.19804 + 1.26904i −0.124240 + 0.0717302i −0.560832 0.827929i \(-0.689519\pi\)
0.436592 + 0.899660i \(0.356185\pi\)
\(314\) 1.36083 4.32516i 0.0767959 0.244083i
\(315\) 0 0
\(316\) 11.2492 16.1072i 0.632816 0.906098i
\(317\) 9.12602 + 15.8067i 0.512568 + 0.887795i 0.999894 + 0.0145742i \(0.00463927\pi\)
−0.487325 + 0.873221i \(0.662027\pi\)
\(318\) −7.85164 + 7.20349i −0.440298 + 0.403952i
\(319\) −9.78895 5.65165i −0.548076 0.316432i
\(320\) −0.268489 0.987586i −0.0150090 0.0552078i
\(321\) 3.33543i 0.186166i
\(322\) 0 0
\(323\) 36.8059i 2.04793i
\(324\) 0.171888 1.99260i 0.00954932 0.110700i
\(325\) 3.84834 + 2.22184i 0.213468 + 0.123246i
\(326\) −22.2398 24.2409i −1.23175 1.34258i
\(327\) 2.23048 + 3.86331i 0.123346 + 0.213641i
\(328\) −7.27474 + 5.60322i −0.401680 + 0.309386i
\(329\) 0 0
\(330\) −0.689373 0.216898i −0.0379487 0.0119398i
\(331\) 17.9504 10.3637i 0.986644 0.569639i 0.0823747 0.996601i \(-0.473750\pi\)
0.904270 + 0.426962i \(0.140416\pi\)
\(332\) −2.68153 + 1.25439i −0.147168 + 0.0688436i
\(333\) 4.33956 7.51634i 0.237806 0.411893i
\(334\) −2.96761 13.3476i −0.162380 0.730348i
\(335\) −0.812654 −0.0444000
\(336\) 0 0
\(337\) −0.330532 −0.0180052 −0.00900261 0.999959i \(-0.502866\pi\)
−0.00900261 + 0.999959i \(0.502866\pi\)
\(338\) −3.74608 16.8490i −0.203760 0.916464i
\(339\) −4.58136 + 7.93515i −0.248825 + 0.430978i
\(340\) −1.35076 + 0.631872i −0.0732554 + 0.0342681i
\(341\) −29.2434 + 16.8837i −1.58362 + 0.914303i
\(342\) 8.51891 + 2.68031i 0.460650 + 0.144934i
\(343\) 0 0
\(344\) 1.97602 1.52199i 0.106540 0.0820600i
\(345\) −0.422508 0.731806i −0.0227471 0.0393991i
\(346\) −19.7968 21.5780i −1.06428 1.16004i
\(347\) 19.0483 + 10.9975i 1.02257 + 0.590378i 0.914846 0.403803i \(-0.132312\pi\)
0.107719 + 0.994181i \(0.465645\pi\)
\(348\) −0.486388 + 5.63843i −0.0260731 + 0.302251i
\(349\) 26.6709i 1.42766i 0.700318 + 0.713831i \(0.253041\pi\)
−0.700318 + 0.713831i \(0.746959\pi\)
\(350\) 0 0
\(351\) 0.891655i 0.0475930i
\(352\) 12.1990 + 19.0207i 0.650210 + 1.01381i
\(353\) 6.73045 + 3.88583i 0.358226 + 0.206822i 0.668302 0.743890i \(-0.267021\pi\)
−0.310076 + 0.950712i \(0.600355\pi\)
\(354\) 0.613600 0.562948i 0.0326125 0.0299203i
\(355\) 0.728273 + 1.26141i 0.0386527 + 0.0669485i
\(356\) −0.515302 + 0.737836i −0.0273109 + 0.0391052i
\(357\) 0 0
\(358\) −0.623049 + 1.98026i −0.0329292 + 0.104660i
\(359\) −14.5380 + 8.39350i −0.767285 + 0.442992i −0.831905 0.554918i \(-0.812750\pi\)
0.0646204 + 0.997910i \(0.479416\pi\)
\(360\) 0.0478838 + 0.358656i 0.00252370 + 0.0189028i
\(361\) −10.4390 + 18.0808i −0.549419 + 0.951621i
\(362\) −32.5070 + 7.22737i −1.70853 + 0.379862i
\(363\) 4.95641 0.260144
\(364\) 0 0
\(365\) −1.98468 −0.103883
\(366\) 2.33022 0.518085i 0.121803 0.0270807i
\(367\) 2.01820 3.49562i 0.105349 0.182470i −0.808532 0.588453i \(-0.799737\pi\)
0.913881 + 0.405983i \(0.133071\pi\)
\(368\) −4.52471 + 26.0311i −0.235867 + 1.35696i
\(369\) 2.81155 1.62325i 0.146363 0.0845029i
\(370\) −0.471263 + 1.49783i −0.0244998 + 0.0778685i
\(371\) 0 0
\(372\) 13.8610 + 9.68045i 0.718658 + 0.501908i
\(373\) −10.3895 17.9951i −0.537948 0.931753i −0.999014 0.0443876i \(-0.985866\pi\)
0.461066 0.887366i \(-0.347467\pi\)
\(374\) 24.2618 22.2590i 1.25455 1.15098i
\(375\) −1.10608 0.638598i −0.0571180 0.0329771i
\(376\) 10.7908 26.1864i 0.556495 1.35046i
\(377\) 2.52310i 0.129946i
\(378\) 0 0
\(379\) 10.7800i 0.553732i 0.960909 + 0.276866i \(0.0892958\pi\)
−0.960909 + 0.276866i \(0.910704\pi\)
\(380\) −1.60974 0.138861i −0.0825779 0.00712342i
\(381\) −12.1915 7.03874i −0.624587 0.360606i
\(382\) −3.52910 3.84663i −0.180564 0.196811i
\(383\) 3.26491 + 5.65498i 0.166829 + 0.288956i 0.937303 0.348515i \(-0.113314\pi\)
−0.770474 + 0.637471i \(0.779981\pi\)
\(384\) 6.03817 9.56768i 0.308134 0.488249i
\(385\) 0 0
\(386\) −3.66493 1.15310i −0.186540 0.0586912i
\(387\) −0.763693 + 0.440918i −0.0388207 + 0.0224131i
\(388\) 13.7321 + 29.3554i 0.697143 + 1.49029i
\(389\) −15.9348 + 27.5999i −0.807928 + 1.39937i 0.106368 + 0.994327i \(0.466078\pi\)
−0.914296 + 0.405046i \(0.867255\pi\)
\(390\) −0.0350112 0.157472i −0.00177286 0.00797391i
\(391\) 38.4988 1.94697
\(392\) 0 0
\(393\) 9.76967 0.492814
\(394\) −1.25794 5.65791i −0.0633740 0.285041i
\(395\) 0.628339 1.08832i 0.0316152 0.0547591i
\(396\) −3.38514 7.23647i −0.170110 0.363646i
\(397\) 13.3557 7.71089i 0.670301 0.386999i −0.125889 0.992044i \(-0.540178\pi\)
0.796191 + 0.605046i \(0.206845\pi\)
\(398\) −0.280905 0.0883811i −0.0140805 0.00443015i
\(399\) 0 0
\(400\) 6.86357 + 18.7157i 0.343178 + 0.935785i
\(401\) −13.8479 23.9853i −0.691533 1.19777i −0.971336 0.237712i \(-0.923602\pi\)
0.279803 0.960057i \(-0.409731\pi\)
\(402\) −6.07328 6.61973i −0.302907 0.330162i
\(403\) −6.52765 3.76874i −0.325166 0.187734i
\(404\) 24.0429 + 2.07401i 1.19618 + 0.103186i
\(405\) 0.127929i 0.00635684i
\(406\) 0 0
\(407\) 34.6692i 1.71849i
\(408\) −15.2419 6.28084i −0.754586 0.310948i
\(409\) −21.5187 12.4238i −1.06403 0.614319i −0.137486 0.990504i \(-0.543902\pi\)
−0.926545 + 0.376185i \(0.877236\pi\)
\(410\) −0.432801 + 0.397073i −0.0213745 + 0.0196100i
\(411\) −1.98426 3.43684i −0.0978764 0.169527i
\(412\) −5.38527 3.76105i −0.265313 0.185294i
\(413\) 0 0
\(414\) 2.80359 8.91074i 0.137789 0.437939i
\(415\) −0.163992 + 0.0946810i −0.00805006 + 0.00464771i
\(416\) −2.31543 + 4.48111i −0.113523 + 0.219704i
\(417\) −0.131011 + 0.226918i −0.00641566 + 0.0111122i
\(418\) 34.8234 7.74240i 1.70327 0.378693i
\(419\) −21.9087 −1.07031 −0.535155 0.844754i \(-0.679747\pi\)
−0.535155 + 0.844754i \(0.679747\pi\)
\(420\) 0 0
\(421\) −18.8226 −0.917357 −0.458679 0.888602i \(-0.651677\pi\)
−0.458679 + 0.888602i \(0.651677\pi\)
\(422\) 22.8957 5.09047i 1.11455 0.247800i
\(423\) −5.00678 + 8.67200i −0.243438 + 0.421647i
\(424\) 21.1235 2.82018i 1.02585 0.136960i
\(425\) 25.1552 14.5234i 1.22021 0.704486i
\(426\) −4.83252 + 15.3594i −0.234136 + 0.744163i
\(427\) 0 0
\(428\) −3.81960 + 5.46911i −0.184628 + 0.264359i
\(429\) 1.78088 + 3.08457i 0.0859816 + 0.148925i
\(430\) 0.117560 0.107856i 0.00566926 0.00520127i
\(431\) −18.9190 10.9229i −0.911295 0.526137i −0.0304476 0.999536i \(-0.509693\pi\)
−0.880848 + 0.473400i \(0.843027\pi\)
\(432\) −2.56369 + 3.07042i −0.123346 + 0.147726i
\(433\) 23.7440i 1.14107i −0.821275 0.570533i \(-0.806737\pi\)
0.821275 0.570533i \(-0.193263\pi\)
\(434\) 0 0
\(435\) 0.361999i 0.0173565i
\(436\) 0.766785 8.88891i 0.0367223 0.425702i
\(437\) 36.1238 + 20.8561i 1.72803 + 0.997681i
\(438\) −14.8323 16.1668i −0.708714 0.772482i
\(439\) −15.9429 27.6140i −0.760914 1.31794i −0.942380 0.334545i \(-0.891417\pi\)
0.181466 0.983397i \(-0.441916\pi\)
\(440\) 0.881982 + 1.14509i 0.0420468 + 0.0545900i
\(441\) 0 0
\(442\) 7.01076 + 2.20580i 0.333468 + 0.104919i
\(443\) 13.5814 7.84122i 0.645272 0.372548i −0.141371 0.989957i \(-0.545151\pi\)
0.786642 + 0.617409i \(0.211818\pi\)
\(444\) −15.7230 + 7.35504i −0.746179 + 0.349055i
\(445\) −0.0287829 + 0.0498535i −0.00136444 + 0.00236328i
\(446\) 6.55090 + 29.4644i 0.310194 + 1.39518i
\(447\) −2.69549 −0.127492
\(448\) 0 0
\(449\) −9.72484 −0.458943 −0.229472 0.973315i \(-0.573700\pi\)
−0.229472 + 0.973315i \(0.573700\pi\)
\(450\) −1.52963 6.87993i −0.0721077 0.324323i
\(451\) 6.48414 11.2309i 0.305326 0.528841i
\(452\) 16.5991 7.76486i 0.780754 0.365228i
\(453\) −3.73832 + 2.15832i −0.175642 + 0.101407i
\(454\) 36.4198 + 11.4588i 1.70926 + 0.537786i
\(455\) 0 0
\(456\) −10.8991 14.1504i −0.510395 0.662653i
\(457\) 5.70383 + 9.87933i 0.266814 + 0.462135i 0.968037 0.250806i \(-0.0806957\pi\)
−0.701223 + 0.712942i \(0.747362\pi\)
\(458\) −2.78877 3.03970i −0.130311 0.142036i
\(459\) 5.04756 + 2.91421i 0.235600 + 0.136024i
\(460\) −0.145248 + 1.68378i −0.00677222 + 0.0785066i
\(461\) 19.6446i 0.914940i −0.889225 0.457470i \(-0.848756\pi\)
0.889225 0.457470i \(-0.151244\pi\)
\(462\) 0 0
\(463\) 6.73057i 0.312796i −0.987694 0.156398i \(-0.950012\pi\)
0.987694 0.156398i \(-0.0499883\pi\)
\(464\) 7.25443 8.68833i 0.336778 0.403345i
\(465\) 0.936547 + 0.540715i 0.0434313 + 0.0250751i
\(466\) −21.2575 + 19.5027i −0.984733 + 0.903444i
\(467\) 11.0608 + 19.1579i 0.511833 + 0.886522i 0.999906 + 0.0137185i \(0.00436686\pi\)
−0.488072 + 0.872803i \(0.662300\pi\)
\(468\) 1.02109 1.46204i 0.0471997 0.0675830i
\(469\) 0 0
\(470\) 0.543721 1.72813i 0.0250800 0.0797125i
\(471\) 2.77661 1.60308i 0.127940 0.0738660i
\(472\) −1.65078 + 0.220395i −0.0759835 + 0.0101445i
\(473\) −1.76127 + 3.05061i −0.0809832 + 0.140267i
\(474\) 13.5610 3.01506i 0.622879 0.138486i
\(475\) 31.4711 1.44399
\(476\) 0 0
\(477\) −7.53454 −0.344983
\(478\) 34.8652 7.75168i 1.59470 0.354554i
\(479\) 10.6325 18.4159i 0.485809 0.841446i −0.514058 0.857755i \(-0.671858\pi\)
0.999867 + 0.0163095i \(0.00519170\pi\)
\(480\) 0.332203 0.642922i 0.0151629 0.0293452i
\(481\) 6.70198 3.86939i 0.305584 0.176429i
\(482\) 3.48441 11.0746i 0.158710 0.504434i
\(483\) 0 0
\(484\) −8.12702 5.67588i −0.369410 0.257995i
\(485\) 1.03650 + 1.79526i 0.0470648 + 0.0815187i
\(486\) 1.04209 0.956063i 0.0472700 0.0433679i
\(487\) 30.6868 + 17.7171i 1.39055 + 0.802836i 0.993376 0.114906i \(-0.0366566\pi\)
0.397177 + 0.917742i \(0.369990\pi\)
\(488\) −4.41415 1.81897i −0.199819 0.0823410i
\(489\) 23.2619i 1.05194i
\(490\) 0 0
\(491\) 15.1925i 0.685628i −0.939403 0.342814i \(-0.888620\pi\)
0.939403 0.342814i \(-0.111380\pi\)
\(492\) −6.46897 0.558033i −0.291644 0.0251581i
\(493\) −14.2830 8.24629i −0.643274 0.371394i
\(494\) 5.38331 + 5.86768i 0.242207 + 0.264000i
\(495\) −0.255509 0.442555i −0.0114843 0.0198914i
\(496\) −11.6422 31.7460i −0.522748 1.42544i
\(497\) 0 0
\(498\) −1.99683 0.628263i −0.0894801 0.0281532i
\(499\) −9.60373 + 5.54472i −0.429922 + 0.248216i −0.699313 0.714815i \(-0.746511\pi\)
0.269391 + 0.963031i \(0.413178\pi\)
\(500\) 1.08235 + 2.31375i 0.0484041 + 0.103474i
\(501\) 4.83432 8.37329i 0.215982 0.374091i
\(502\) 2.01095 + 9.04479i 0.0897533 + 0.403689i
\(503\) 5.67396 0.252989 0.126495 0.991967i \(-0.459627\pi\)
0.126495 + 0.991967i \(0.459627\pi\)
\(504\) 0 0
\(505\) 1.54360 0.0686894
\(506\) −8.09851 36.4252i −0.360023 1.61930i
\(507\) 6.10248 10.5698i 0.271020 0.469421i
\(508\) 11.9298 + 25.5026i 0.529301 + 1.13149i
\(509\) −11.0839 + 6.39931i −0.491286 + 0.283644i −0.725108 0.688635i \(-0.758210\pi\)
0.233822 + 0.972279i \(0.424877\pi\)
\(510\) −1.00586 0.316474i −0.0445402 0.0140137i
\(511\) 0 0
\(512\) −20.8573 + 8.77344i −0.921771 + 0.387735i
\(513\) 3.15745 + 5.46886i 0.139405 + 0.241456i
\(514\) 17.9283 + 19.5415i 0.790784 + 0.861937i
\(515\) −0.363867 0.210079i −0.0160339 0.00925719i
\(516\) 1.75715 + 0.151577i 0.0773541 + 0.00667280i
\(517\) 39.9997i 1.75918i
\(518\) 0 0
\(519\) 20.7065i 0.908916i
\(520\) −0.122923 + 0.298300i −0.00539052 + 0.0130813i
\(521\) −24.4767 14.1316i −1.07234 0.619117i −0.143521 0.989647i \(-0.545843\pi\)
−0.928820 + 0.370531i \(0.879176\pi\)
\(522\) −2.94877 + 2.70535i −0.129064 + 0.118410i
\(523\) 5.38111 + 9.32036i 0.235300 + 0.407551i 0.959360 0.282186i \(-0.0910595\pi\)
−0.724060 + 0.689737i \(0.757726\pi\)
\(524\) −16.0193 11.1878i −0.699807 0.488742i
\(525\) 0 0
\(526\) 0.893560 2.84003i 0.0389611 0.123831i
\(527\) −42.6689 + 24.6349i −1.85869 + 1.07311i
\(528\) −2.73629 + 15.7421i −0.119082 + 0.685089i
\(529\) 10.3153 17.8667i 0.448493 0.776813i
\(530\) 1.33065 0.295847i 0.0577997 0.0128508i
\(531\) 0.588819 0.0255526
\(532\) 0 0
\(533\) 2.89475 0.125386
\(534\) −0.621203 + 0.138114i −0.0268821 + 0.00597677i
\(535\) −0.213349 + 0.369532i −0.00922390 + 0.0159763i
\(536\) 2.37770 + 17.8092i 0.102701 + 0.769241i
\(537\) −1.27126 + 0.733963i −0.0548589 + 0.0316728i
\(538\) 5.00930 15.9212i 0.215966 0.686413i
\(539\) 0 0
\(540\) −0.146499 + 0.209765i −0.00630432 + 0.00902685i
\(541\) 2.66295 + 4.61237i 0.114489 + 0.198301i 0.917575 0.397562i \(-0.130144\pi\)
−0.803086 + 0.595863i \(0.796810\pi\)
\(542\) −11.8009 + 10.8267i −0.506890 + 0.465047i
\(543\) −20.3925 11.7736i −0.875124 0.505253i
\(544\) 17.7995 + 27.7531i 0.763149 + 1.18990i
\(545\) 0.570686i 0.0244455i
\(546\) 0 0
\(547\) 18.5001i 0.791007i −0.918465 0.395503i \(-0.870570\pi\)
0.918465 0.395503i \(-0.129430\pi\)
\(548\) −0.682141 + 7.90768i −0.0291396 + 0.337799i
\(549\) 1.46181 + 0.843974i 0.0623884 + 0.0360199i
\(550\) −19.0327 20.7452i −0.811557 0.884578i
\(551\) −8.93458 15.4751i −0.380626 0.659263i
\(552\) −14.8013 + 11.4004i −0.629983 + 0.485232i
\(553\) 0 0
\(554\) −15.8696 4.99307i −0.674236 0.212135i
\(555\) −0.961558 + 0.555156i −0.0408159 + 0.0235650i
\(556\) 0.474677 0.222049i 0.0201308 0.00941697i
\(557\) 14.9681 25.9255i 0.634219 1.09850i −0.352461 0.935827i \(-0.614655\pi\)
0.986680 0.162673i \(-0.0520116\pi\)
\(558\) 2.59460 + 11.6699i 0.109838 + 0.494027i
\(559\) −0.786294 −0.0332567
\(560\) 0 0
\(561\) 23.2819 0.982963
\(562\) 3.00940 + 13.5356i 0.126944 + 0.570964i
\(563\) 6.18858 10.7189i 0.260818 0.451749i −0.705642 0.708569i \(-0.749341\pi\)
0.966459 + 0.256819i \(0.0826746\pi\)
\(564\) 18.1404 8.48590i 0.763850 0.357321i
\(565\) 1.01514 0.586089i 0.0427071 0.0246570i
\(566\) 33.2486 + 10.4610i 1.39754 + 0.439709i
\(567\) 0 0
\(568\) 25.5128 19.6507i 1.07049 0.824525i
\(569\) 18.3617 + 31.8033i 0.769761 + 1.33327i 0.937692 + 0.347467i \(0.112958\pi\)
−0.167931 + 0.985799i \(0.553709\pi\)
\(570\) −0.772364 0.841858i −0.0323507 0.0352616i
\(571\) −5.47430 3.16059i −0.229092 0.132267i 0.381061 0.924550i \(-0.375559\pi\)
−0.610153 + 0.792283i \(0.708892\pi\)
\(572\) 0.612223 7.09716i 0.0255983 0.296747i
\(573\) 3.69128i 0.154206i
\(574\) 0 0
\(575\) 32.9187i 1.37280i
\(576\) 7.71980 2.09874i 0.321658 0.0874474i
\(577\) −4.40430 2.54283i −0.183354 0.105859i 0.405514 0.914089i \(-0.367093\pi\)
−0.588867 + 0.808230i \(0.700426\pi\)
\(578\) 17.6847 16.2249i 0.735587 0.674865i
\(579\) −1.35837 2.35277i −0.0564520 0.0977777i
\(580\) 0.414546 0.593569i 0.0172131 0.0246466i
\(581\) 0 0
\(582\) −6.87775 + 21.8598i −0.285092 + 0.906118i
\(583\) −26.0648 + 15.0485i −1.07950 + 0.623247i
\(584\) 5.80686 + 43.4941i 0.240289 + 1.79980i
\(585\) 0.0570343 0.0987862i 0.00235808 0.00408431i
\(586\) −3.32759 + 0.739833i −0.137462 + 0.0305622i
\(587\) 30.0719 1.24120 0.620601 0.784127i \(-0.286889\pi\)
0.620601 + 0.784127i \(0.286889\pi\)
\(588\) 0 0
\(589\) −53.3821 −2.19957
\(590\) −0.103989 + 0.0231202i −0.00428117 + 0.000951845i
\(591\) 2.04922 3.54935i 0.0842935 0.146001i
\(592\) 34.2036 + 5.94526i 1.40576 + 0.244349i
\(593\) −18.6666 + 10.7772i −0.766545 + 0.442565i −0.831641 0.555314i \(-0.812598\pi\)
0.0650955 + 0.997879i \(0.479265\pi\)
\(594\) 1.69545 5.38872i 0.0695653 0.221102i
\(595\) 0 0
\(596\) 4.41978 + 3.08676i 0.181041 + 0.126439i
\(597\) −0.104115 0.180332i −0.00426112 0.00738048i
\(598\) 6.13757 5.63092i 0.250984 0.230265i
\(599\) 15.8953 + 9.17715i 0.649464 + 0.374968i 0.788251 0.615354i \(-0.210987\pi\)
−0.138787 + 0.990322i \(0.544320\pi\)
\(600\) −5.37048 + 13.0327i −0.219249 + 0.532057i
\(601\) 12.2204i 0.498482i 0.968441 + 0.249241i \(0.0801812\pi\)
−0.968441 + 0.249241i \(0.919819\pi\)
\(602\) 0 0
\(603\) 6.35238i 0.258689i
\(604\) 8.60135 + 0.741979i 0.349984 + 0.0301907i
\(605\) −0.549120 0.317034i −0.0223249 0.0128893i
\(606\) 11.5359 + 12.5739i 0.468615 + 0.510780i
\(607\) −13.2875 23.0146i −0.539322 0.934133i −0.998941 0.0460167i \(-0.985347\pi\)
0.459619 0.888116i \(-0.347986\pi\)
\(608\) 1.66671 + 35.6835i 0.0675942 + 1.44716i
\(609\) 0 0
\(610\) −0.291304 0.0916530i −0.0117945 0.00371092i
\(611\) −7.73243 + 4.46432i −0.312821 + 0.180607i
\(612\) −4.93924 10.5587i −0.199657 0.426810i
\(613\) 9.57949 16.5922i 0.386912 0.670151i −0.605120 0.796134i \(-0.706875\pi\)
0.992032 + 0.125983i \(0.0402084\pi\)
\(614\) 7.49080 + 33.6918i 0.302304 + 1.35969i
\(615\) −0.415321 −0.0167474
\(616\) 0 0
\(617\) −14.7860 −0.595263 −0.297632 0.954681i \(-0.596197\pi\)
−0.297632 + 0.954681i \(0.596197\pi\)
\(618\) −1.00806 4.53400i −0.0405500 0.182384i
\(619\) −12.6747 + 21.9532i −0.509439 + 0.882374i 0.490501 + 0.871440i \(0.336814\pi\)
−0.999940 + 0.0109337i \(0.996520\pi\)
\(620\) −0.916449 1.95911i −0.0368055 0.0786796i
\(621\) 5.72040 3.30268i 0.229552 0.132532i
\(622\) −42.0713 13.2369i −1.68691 0.530751i
\(623\) 0 0
\(624\) −3.34855 + 1.22801i −0.134049 + 0.0491596i
\(625\) −12.3774 21.4383i −0.495096 0.857531i
\(626\) 2.42656 + 2.64489i 0.0969847 + 0.105711i
\(627\) 21.8456 + 12.6126i 0.872430 + 0.503698i
\(628\) −6.38859 0.551099i −0.254932 0.0219913i
\(629\) 50.5856i 2.01698i
\(630\) 0 0
\(631\) 36.7075i 1.46130i −0.682752 0.730650i \(-0.739217\pi\)
0.682752 0.730650i \(-0.260783\pi\)
\(632\) −25.6887 10.5857i −1.02184 0.421078i
\(633\) 14.3630 + 8.29251i 0.570880 + 0.329598i
\(634\) 19.0202 17.4501i 0.755389 0.693032i
\(635\) 0.900459 + 1.55964i 0.0357336 + 0.0618925i
\(636\) 12.3544 + 8.62825i 0.489883 + 0.342132i
\(637\) 0 0
\(638\) −4.79760 + 15.2484i −0.189939 + 0.603688i
\(639\) −9.86020 + 5.69279i −0.390064 + 0.225203i
\(640\) −1.28096 + 0.673772i −0.0506344 + 0.0266332i
\(641\) 3.64685 6.31654i 0.144042 0.249488i −0.784973 0.619530i \(-0.787323\pi\)
0.929015 + 0.370042i \(0.120657\pi\)
\(642\) −4.60458 + 1.02375i −0.181728 + 0.0404042i
\(643\) −20.6956 −0.816155 −0.408077 0.912947i \(-0.633801\pi\)
−0.408077 + 0.912947i \(0.633801\pi\)
\(644\) 0 0
\(645\) 0.112812 0.00444199
\(646\) 50.8107 11.2969i 1.99912 0.444470i
\(647\) −7.92738 + 13.7306i −0.311658 + 0.539807i −0.978721 0.205194i \(-0.934218\pi\)
0.667064 + 0.745001i \(0.267551\pi\)
\(648\) −2.80355 + 0.374300i −0.110134 + 0.0147039i
\(649\) 2.03695 1.17603i 0.0799572 0.0461633i
\(650\) 1.88608 5.99461i 0.0739783 0.235128i
\(651\) 0 0
\(652\) −26.6386 + 38.1425i −1.04325 + 1.49377i
\(653\) 14.4081 + 24.9555i 0.563831 + 0.976584i 0.997157 + 0.0753469i \(0.0240064\pi\)
−0.433326 + 0.901237i \(0.642660\pi\)
\(654\) 4.64871 4.26496i 0.181779 0.166773i
\(655\) −1.08238 0.624912i −0.0422921 0.0244173i
\(656\) 9.96812 + 8.32301i 0.389190 + 0.324959i
\(657\) 15.5139i 0.605256i
\(658\) 0 0
\(659\) 20.6316i 0.803693i 0.915707 + 0.401846i \(0.131631\pi\)
−0.915707 + 0.401846i \(0.868369\pi\)
\(660\) −0.0878379 + 1.01826i −0.00341908 + 0.0396355i
\(661\) −20.7427 11.9758i −0.806799 0.465806i 0.0390440 0.999237i \(-0.487569\pi\)
−0.845843 + 0.533432i \(0.820902\pi\)
\(662\) −19.8167 21.5997i −0.770196 0.839496i
\(663\) 2.59847 + 4.50068i 0.100916 + 0.174792i
\(664\) 2.55474 + 3.31685i 0.0991431 + 0.128719i
\(665\) 0 0
\(666\) −11.7083 3.68378i −0.453687 0.142744i
\(667\) −16.1869 + 9.34553i −0.626760 + 0.361860i
\(668\) −17.5156 + 8.19360i −0.677698 + 0.317020i
\(669\) −10.6716 + 18.4838i −0.412588 + 0.714624i
\(670\) 0.249429 + 1.12187i 0.00963629 + 0.0433417i
\(671\) 6.74259 0.260295
\(672\) 0 0
\(673\) 3.43936 0.132577 0.0662887 0.997800i \(-0.478884\pi\)
0.0662887 + 0.997800i \(0.478884\pi\)
\(674\) 0.101451 + 0.456301i 0.00390773 + 0.0175761i
\(675\) 2.49182 4.31595i 0.0959101 0.166121i
\(676\) −22.1103 + 10.3430i −0.850397 + 0.397807i
\(677\) 28.7477 16.5975i 1.10486 0.637893i 0.167369 0.985894i \(-0.446473\pi\)
0.937494 + 0.348002i \(0.113140\pi\)
\(678\) 12.3607 + 3.88904i 0.474709 + 0.149358i
\(679\) 0 0
\(680\) 1.28689 + 1.67079i 0.0493501 + 0.0640720i
\(681\) 13.4986 + 23.3803i 0.517268 + 0.895935i
\(682\) 32.2837 + 35.1885i 1.23621 + 1.34744i
\(683\) 7.39676 + 4.27052i 0.283029 + 0.163407i 0.634794 0.772682i \(-0.281085\pi\)
−0.351765 + 0.936088i \(0.614418\pi\)
\(684\) 1.08545 12.5831i 0.0415034 0.481125i
\(685\) 0.507689i 0.0193978i
\(686\) 0 0
\(687\) 2.91694i 0.111288i
\(688\) −2.70761 2.26075i −0.103227 0.0861904i
\(689\) −5.81814 3.35910i −0.221653 0.127972i
\(690\) −0.880580 + 0.807889i −0.0335231 + 0.0307558i
\(691\) 1.22924 + 2.12910i 0.0467625 + 0.0809950i 0.888459 0.458956i \(-0.151776\pi\)
−0.841697 + 0.539950i \(0.818443\pi\)
\(692\) −23.7123 + 33.9525i −0.901406 + 1.29068i
\(693\) 0 0
\(694\) 9.33563 29.6717i 0.354375 1.12632i
\(695\) 0.0290295 0.0167602i 0.00110115 0.000635749i
\(696\) 7.93316 1.05915i 0.300706 0.0401470i
\(697\) 9.46098 16.3869i 0.358360 0.620698i
\(698\) 36.8193 8.18615i 1.39363 0.309850i
\(699\) −20.3989 −0.771559
\(700\) 0 0
\(701\) 43.1693 1.63048 0.815241 0.579123i \(-0.196605\pi\)
0.815241 + 0.579123i \(0.196605\pi\)
\(702\) 1.23093 0.273677i 0.0464586 0.0103293i
\(703\) 27.4039 47.4649i 1.03356 1.79017i
\(704\) 22.5140 22.6789i 0.848527 0.854743i
\(705\) 1.10940 0.640513i 0.0417824 0.0241231i
\(706\) 3.29861 10.4841i 0.124145 0.394574i
\(707\) 0 0
\(708\) −0.965485 0.674291i −0.0362852 0.0253414i
\(709\) −13.0399 22.5857i −0.489723 0.848226i 0.510207 0.860052i \(-0.329569\pi\)
−0.999930 + 0.0118261i \(0.996236\pi\)
\(710\) 1.51785 1.39255i 0.0569638 0.0522615i
\(711\) 8.50718 + 4.91162i 0.319044 + 0.184200i
\(712\) 1.17675 + 0.484911i 0.0441005 + 0.0181728i
\(713\) 55.8375i 2.09113i
\(714\) 0 0
\(715\) 0.455652i 0.0170404i
\(716\) 2.92499 + 0.252318i 0.109312 + 0.00942958i
\(717\) 21.8718 + 12.6277i 0.816818 + 0.471590i
\(718\) 16.0494 + 17.4935i 0.598959 + 0.652852i
\(719\) −19.0610 33.0146i −0.710854 1.23124i −0.964537 0.263948i \(-0.914975\pi\)
0.253683 0.967287i \(-0.418358\pi\)
\(720\) 0.480429 0.176187i 0.0179045 0.00656608i
\(721\) 0 0
\(722\) 28.1647 + 8.86146i 1.04818 + 0.329789i
\(723\) 7.10954 4.10469i 0.264406 0.152655i
\(724\) 19.9548 + 42.6578i 0.741616 + 1.58536i
\(725\) −7.05105 + 12.2128i −0.261870 + 0.453571i
\(726\) −1.52128 6.84235i −0.0564599 0.253943i
\(727\) 30.8059 1.14253 0.571264 0.820766i \(-0.306453\pi\)
0.571264 + 0.820766i \(0.306453\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0.609161 + 2.73986i 0.0225461 + 0.101407i
\(731\) −2.56986 + 4.45112i −0.0950496 + 0.164631i
\(732\) −1.43044 3.05786i −0.0528705 0.113022i
\(733\) −35.6019 + 20.5548i −1.31499 + 0.759207i −0.982917 0.184048i \(-0.941080\pi\)
−0.332068 + 0.943255i \(0.607746\pi\)
\(734\) −5.44517 1.71322i −0.200985 0.0632360i
\(735\) 0 0
\(736\) 37.3248 1.74337i 1.37581 0.0642617i
\(737\) −12.6874 21.9753i −0.467348 0.809471i
\(738\) −3.10385 3.38313i −0.114254 0.124535i
\(739\) −24.9833 14.4241i −0.919027 0.530600i −0.0357022 0.999362i \(-0.511367\pi\)
−0.883324 + 0.468762i \(0.844700\pi\)
\(740\) 2.21241 + 0.190849i 0.0813297 + 0.00701575i
\(741\) 5.63071i 0.206849i
\(742\) 0 0
\(743\) 0.365822i 0.0134207i 0.999977 + 0.00671036i \(0.00213599\pi\)
−0.999977 + 0.00671036i \(0.997864\pi\)
\(744\) 9.10954 22.1064i 0.333972 0.810459i
\(745\) 0.298632 + 0.172415i 0.0109410 + 0.00631681i
\(746\) −21.6535 + 19.8660i −0.792792 + 0.727347i
\(747\) −0.740105 1.28190i −0.0270790 0.0469023i
\(748\) −38.1753 26.6615i −1.39583 0.974841i
\(749\) 0 0
\(750\) −0.542096 + 1.72296i −0.0197945 + 0.0629136i
\(751\) −17.2878 + 9.98114i −0.630842 + 0.364217i −0.781078 0.624433i \(-0.785330\pi\)
0.150236 + 0.988650i \(0.451997\pi\)
\(752\) −39.4625 6.85936i −1.43905 0.250135i
\(753\) −3.27590 + 5.67402i −0.119380 + 0.206773i
\(754\) −3.48315 + 0.774419i −0.126849 + 0.0282027i
\(755\) 0.552224 0.0200975
\(756\) 0 0
\(757\) −3.04476 −0.110664 −0.0553319 0.998468i \(-0.517622\pi\)
−0.0553319 + 0.998468i \(0.517622\pi\)
\(758\) 14.8818 3.30872i 0.540533 0.120178i
\(759\) 13.1927 22.8504i 0.478865 0.829418i
\(760\) 0.302381 + 2.26487i 0.0109685 + 0.0821556i
\(761\) 6.51310 3.76034i 0.236100 0.136312i −0.377283 0.926098i \(-0.623142\pi\)
0.613383 + 0.789786i \(0.289808\pi\)
\(762\) −5.97507 + 18.9908i −0.216454 + 0.687963i
\(763\) 0 0
\(764\) −4.22711 + 6.05259i −0.152931 + 0.218975i
\(765\) −0.372812 0.645730i −0.0134791 0.0233464i
\(766\) 6.80463 6.24291i 0.245861 0.225566i
\(767\) 0.454683 + 0.262512i 0.0164177 + 0.00947874i
\(768\) −15.0615 5.39910i −0.543486 0.194823i
\(769\) 42.4363i 1.53029i 0.643857 + 0.765146i \(0.277333\pi\)
−0.643857 + 0.765146i \(0.722667\pi\)
\(770\) 0 0
\(771\) 18.7522i 0.675346i
\(772\) −0.466975 + 5.41338i −0.0168068 + 0.194832i
\(773\) 20.5807 + 11.8823i 0.740237 + 0.427376i 0.822155 0.569263i \(-0.192771\pi\)
−0.0819185 + 0.996639i \(0.526105\pi\)
\(774\) 0.843091 + 0.918950i 0.0303043 + 0.0330310i
\(775\) 21.0642 + 36.4843i 0.756650 + 1.31056i
\(776\) 36.3104 27.9673i 1.30347 1.00397i
\(777\) 0 0
\(778\) 42.9928 + 13.5268i 1.54137 + 0.484960i
\(779\) 17.7546 10.2506i 0.636126 0.367267i
\(780\) −0.206645 + 0.0966663i −0.00739908 + 0.00346121i
\(781\) −22.7401 + 39.3871i −0.813706 + 1.40938i
\(782\) −11.8165 53.1477i −0.422557 1.90056i
\(783\) −2.82968 −0.101125
\(784\) 0 0
\(785\) −0.410160 −0.0146393
\(786\) −2.99862 13.4871i −0.106957 0.481068i
\(787\) −9.97597 + 17.2789i −0.355605 + 0.615926i −0.987221 0.159355i \(-0.949058\pi\)
0.631616 + 0.775281i \(0.282392\pi\)
\(788\) −7.42466 + 3.47318i −0.264493 + 0.123727i
\(789\) 1.82321 1.05263i 0.0649079 0.0374746i
\(790\) −1.69528 0.533387i −0.0603154 0.0189770i
\(791\) 0 0
\(792\) −8.95097 + 6.89430i −0.318059 + 0.244978i
\(793\) 0.752534 + 1.30343i 0.0267233 + 0.0462860i
\(794\) −14.7442 16.0708i −0.523252 0.570333i
\(795\) 0.834750 + 0.481943i 0.0296055 + 0.0170928i
\(796\) −0.0357920 + 0.414917i −0.00126862 + 0.0147064i
\(797\) 27.9236i 0.989106i −0.869147 0.494553i \(-0.835332\pi\)
0.869147 0.494553i \(-0.164668\pi\)
\(798\) 0 0
\(799\) 58.3633i 2.06474i
\(800\) 23.7305 15.2196i 0.838998 0.538095i
\(801\) −0.389696 0.224991i −0.0137692 0.00794968i
\(802\) −28.8615 + 26.4790i −1.01913 + 0.935006i
\(803\) −30.9855 53.6685i −1.09346 1.89392i
\(804\) −7.27449 + 10.4160i −0.256551 + 0.367344i
\(805\) 0 0
\(806\) −3.19922 + 10.1682i −0.112688 + 0.358160i
\(807\) 10.2209 5.90104i 0.359793 0.207727i
\(808\) −4.51633 33.8279i −0.158884 1.19006i
\(809\) 10.8699 18.8273i 0.382166 0.661932i −0.609205 0.793013i \(-0.708511\pi\)
0.991372 + 0.131081i \(0.0418448\pi\)
\(810\) −0.176607 + 0.0392655i −0.00620532 + 0.00137965i
\(811\) −21.4122 −0.751885 −0.375942 0.926643i \(-0.622681\pi\)
−0.375942 + 0.926643i \(0.622681\pi\)
\(812\) 0 0
\(813\) −11.3243 −0.397159
\(814\) −47.8609 + 10.6411i −1.67752 + 0.372969i
\(815\) −1.48794 + 2.57718i −0.0521201 + 0.0902747i
\(816\) −3.99251 + 22.9693i −0.139766 + 0.804086i
\(817\) −4.82264 + 2.78435i −0.168723 + 0.0974122i
\(818\) −10.5464 + 33.5199i −0.368746 + 1.17200i
\(819\) 0 0
\(820\) 0.681001 + 0.475609i 0.0237816 + 0.0166090i
\(821\) 13.3550 + 23.1315i 0.466092 + 0.807294i 0.999250 0.0387210i \(-0.0123284\pi\)
−0.533158 + 0.846015i \(0.678995\pi\)
\(822\) −4.13554 + 3.79416i −0.144244 + 0.132336i
\(823\) −20.9990 12.1238i −0.731979 0.422608i 0.0871667 0.996194i \(-0.472219\pi\)
−0.819146 + 0.573585i \(0.805552\pi\)
\(824\) −3.53924 + 8.58877i −0.123295 + 0.299204i
\(825\) 19.9074i 0.693085i
\(826\) 0 0
\(827\) 34.2930i 1.19248i −0.802805 0.596242i \(-0.796660\pi\)
0.802805 0.596242i \(-0.203340\pi\)
\(828\) −13.1618 1.13538i −0.457405 0.0394572i
\(829\) 0.699010 + 0.403574i 0.0242776 + 0.0140167i 0.512090 0.858932i \(-0.328872\pi\)
−0.487812 + 0.872949i \(0.662205\pi\)
\(830\) 0.181042 + 0.197331i 0.00628406 + 0.00684947i
\(831\) −5.88192 10.1878i −0.204042 0.353410i
\(832\) 6.89687 + 1.82106i 0.239106 + 0.0631340i
\(833\) 0 0
\(834\) 0.353473 + 0.111213i 0.0122398 + 0.00385101i
\(835\) −1.07119 + 0.618450i −0.0370699 + 0.0214023i
\(836\) −21.3768 45.6975i −0.739333 1.58048i
\(837\) −4.22668 + 7.32083i −0.146096 + 0.253045i
\(838\) 6.72447 + 30.2450i 0.232293 + 1.04480i
\(839\) −27.7282 −0.957284 −0.478642 0.878010i \(-0.658871\pi\)
−0.478642 + 0.878010i \(0.658871\pi\)
\(840\) 0 0
\(841\) −20.9929 −0.723893
\(842\) 5.77725 + 25.9847i 0.199097 + 0.895491i
\(843\) −4.90240 + 8.49121i −0.168848 + 0.292453i
\(844\) −14.0548 30.0452i −0.483787 1.03420i
\(845\) −1.35218 + 0.780684i −0.0465165 + 0.0268563i
\(846\) 13.5085 + 4.25018i 0.464431 + 0.146124i
\(847\) 0 0
\(848\) −10.3767 28.2954i −0.356338 0.971670i
\(849\) 12.3233 + 21.3445i 0.422933 + 0.732542i
\(850\) −27.7705 30.2692i −0.952520 1.03822i
\(851\) −49.6481 28.6643i −1.70191 0.982600i
\(852\) 22.6869 + 1.95704i 0.777241 + 0.0670472i
\(853\) 16.3380i 0.559402i 0.960087 + 0.279701i \(0.0902354\pi\)
−0.960087 + 0.279701i \(0.909765\pi\)
\(854\) 0 0
\(855\) 0.807859i 0.0276282i
\(856\) 8.72248 + 3.59434i 0.298128 + 0.122852i
\(857\) −25.5734 14.7648i −0.873569 0.504355i −0.00503640 0.999987i \(-0.501603\pi\)
−0.868533 + 0.495632i \(0.834936\pi\)
\(858\) 3.71166 3.40526i 0.126714 0.116254i
\(859\) 7.56296 + 13.0994i 0.258045 + 0.446947i 0.965718 0.259593i \(-0.0835884\pi\)
−0.707673 + 0.706540i \(0.750255\pi\)
\(860\) −0.184978 0.129188i −0.00630771 0.00440528i
\(861\) 0 0
\(862\) −9.27225 + 29.4703i −0.315814 + 1.00376i
\(863\) 14.0116 8.08962i 0.476962 0.275374i −0.242188 0.970229i \(-0.577865\pi\)
0.719149 + 0.694856i \(0.244532\pi\)
\(864\) 5.02561 + 2.59677i 0.170975 + 0.0883440i
\(865\) −1.32448 + 2.29407i −0.0450338 + 0.0780008i
\(866\) −32.7788 + 7.28779i −1.11387 + 0.247649i
\(867\) 16.9705 0.576348
\(868\) 0 0
\(869\) 39.2394 1.33111
\(870\) 0.499741 0.111109i 0.0169428 0.00376694i
\(871\) 2.83207 4.90528i 0.0959609 0.166209i
\(872\) −12.5065 + 1.66974i −0.423525 + 0.0565444i
\(873\) −14.0333 + 8.10212i −0.474954 + 0.274215i
\(874\) 17.7044 56.2704i 0.598859 1.90337i
\(875\) 0 0
\(876\) −17.7659 + 25.4381i −0.600254 + 0.859475i
\(877\) −19.8411 34.3658i −0.669987 1.16045i −0.977907 0.209039i \(-0.932967\pi\)
0.307921 0.951412i \(-0.400367\pi\)
\(878\) −33.2278 + 30.4849i −1.12138 + 1.02881i
\(879\) −2.08748 1.20521i −0.0704091 0.0406507i
\(880\) 1.31009 1.56904i 0.0441632 0.0528925i
\(881\) 27.4290i 0.924106i −0.886852 0.462053i \(-0.847113\pi\)
0.886852 0.462053i \(-0.152887\pi\)
\(882\) 0 0
\(883\) 37.1425i 1.24994i 0.780647 + 0.624972i \(0.214890\pi\)
−0.780647 + 0.624972i \(0.785110\pi\)
\(884\) 0.893290 10.3554i 0.0300446 0.348291i
\(885\) −0.0652351 0.0376635i −0.00219285 0.00126605i
\(886\) −14.9934 16.3425i −0.503713 0.549036i
\(887\) 13.8563 + 23.9998i 0.465248 + 0.805834i 0.999213 0.0396732i \(-0.0126317\pi\)
−0.533964 + 0.845507i \(0.679298\pi\)
\(888\) 14.9795 + 19.4481i 0.502681 + 0.652637i
\(889\) 0 0
\(890\) 0.0776574 + 0.0244334i 0.00260308 + 0.000819008i
\(891\) 3.45938 1.99727i 0.115894 0.0669112i
\(892\) 38.6651 18.0871i 1.29460 0.605601i
\(893\) −31.6173 + 54.7628i −1.05803 + 1.83257i
\(894\) 0.827330 + 3.72113i 0.0276700 + 0.124453i
\(895\) 0.187790 0.00627714
\(896\) 0 0
\(897\) 5.88969 0.196651
\(898\) 2.98486 + 13.4252i 0.0996060 + 0.448004i
\(899\) 11.9602 20.7156i 0.398894 0.690905i
\(900\) −9.02828 + 4.22333i −0.300943 + 0.140778i
\(901\) −38.0311 + 21.9572i −1.26700 + 0.731502i
\(902\) −17.4944 5.50428i −0.582501 0.183273i
\(903\) 0 0
\(904\) −15.8142 20.5318i −0.525973 0.682877i
\(905\) 1.50618 + 2.60879i 0.0500673 + 0.0867190i
\(906\) 4.12698 + 4.49832i 0.137110 + 0.149447i
\(907\) 34.6185 + 19.9870i 1.14949 + 0.663658i 0.948763 0.315989i \(-0.102336\pi\)
0.200727 + 0.979647i \(0.435670\pi\)
\(908\) 4.64050 53.7947i 0.154000 1.78524i
\(909\) 12.0661i 0.400207i
\(910\) 0 0
\(911\) 35.0711i 1.16196i 0.813918 + 0.580979i \(0.197330\pi\)
−0.813918 + 0.580979i \(0.802670\pi\)
\(912\) −16.1894 + 19.3894i −0.536085 + 0.642047i
\(913\) −5.12061 2.95639i −0.169467 0.0978421i
\(914\) 11.8878 10.9064i 0.393213 0.360753i
\(915\) −0.107969 0.187007i −0.00356934 0.00618228i
\(916\) −3.34036 + 4.78290i −0.110369 + 0.158031i
\(917\) 0 0
\(918\) 2.47383 7.86264i 0.0816484 0.259506i
\(919\) −0.286521 + 0.165423i −0.00945146 + 0.00545681i −0.504718 0.863284i \(-0.668404\pi\)
0.495267 + 0.868741i \(0.335070\pi\)
\(920\) 2.36905 0.316289i 0.0781052 0.0104278i
\(921\) −12.2027 + 21.1357i −0.402093 + 0.696446i
\(922\) −27.1195 + 6.02955i −0.893132 + 0.198573i
\(923\) −10.1520 −0.334157
\(924\) 0 0
\(925\) −43.2536 −1.42217
\(926\) −9.29159 + 2.06583i −0.305341 + 0.0678872i
\(927\) 1.64215 2.84429i 0.0539354 0.0934188i
\(928\) −14.2209 7.34805i −0.466823 0.241211i
\(929\) 24.6448 14.2287i 0.808571 0.466829i −0.0378883 0.999282i \(-0.512063\pi\)
0.846459 + 0.532453i \(0.178730\pi\)
\(930\) 0.459004 1.45887i 0.0150513 0.0478382i
\(931\) 0 0
\(932\) 33.4481 + 23.3600i 1.09563 + 0.765183i
\(933\) −15.5933 27.0084i −0.510502 0.884215i
\(934\) 23.0526 21.1497i 0.754306 0.692038i
\(935\) −2.57940 1.48922i −0.0843553 0.0487026i
\(936\) −2.33176 0.960867i −0.0762161 0.0314069i
\(937\) 11.8966i 0.388645i −0.980938 0.194323i \(-0.937749\pi\)
0.980938 0.194323i \(-0.0622509\pi\)
\(938\) 0 0
\(939\) 2.53807i 0.0828269i
\(940\) −2.55257 0.220193i −0.0832557 0.00718189i
\(941\) −14.5463 8.39834i −0.474197 0.273778i 0.243798 0.969826i \(-0.421607\pi\)
−0.717995 + 0.696048i \(0.754940\pi\)
\(942\) −3.06529 3.34109i −0.0998725 0.108859i
\(943\) −10.7221 18.5713i −0.349161 0.604764i
\(944\) 0.810934 + 2.21127i 0.0263936 + 0.0719707i
\(945\) 0 0
\(946\) 4.75197 + 1.49511i 0.154500 + 0.0486103i
\(947\) 17.8680 10.3161i 0.580631 0.335227i −0.180753 0.983528i \(-0.557854\pi\)
0.761384 + 0.648301i \(0.224520\pi\)
\(948\) −8.32462 17.7957i −0.270371 0.577976i
\(949\) 6.91653 11.9798i 0.224520 0.388880i
\(950\) −9.65948 43.4460i −0.313395 1.40958i
\(951\) 18.2520 0.591863
\(952\) 0 0
\(953\) 21.9025 0.709492 0.354746 0.934963i \(-0.384567\pi\)
0.354746 + 0.934963i \(0.384567\pi\)
\(954\) 2.31259 + 10.4015i 0.0748728 + 0.336760i
\(955\) −0.236111 + 0.408956i −0.00764037 + 0.0132335i
\(956\) −21.4025 45.7523i −0.692205 1.47974i
\(957\) −9.78895 + 5.65165i −0.316432 + 0.182692i
\(958\) −28.6867 9.02571i −0.926826 0.291608i
\(959\) 0 0
\(960\) −0.989520 0.261274i −0.0319366 0.00843260i
\(961\) −20.2297 35.0389i −0.652571 1.13029i
\(962\) −7.39876 8.06448i −0.238546 0.260009i
\(963\) −2.88857 1.66772i −0.0930829 0.0537414i
\(964\) −16.3580 1.41109i −0.526856 0.0454482i
\(965\) 0.347550i 0.0111880i
\(966\) 0 0
\(967\) 0.651178i 0.0209405i −0.999945 0.0104702i \(-0.996667\pi\)
0.999945 0.0104702i \(-0.00333284\pi\)
\(968\) −5.34114 + 12.9615i −0.171671 + 0.416598i
\(969\) 31.8748 + 18.4029i 1.02397 + 0.591188i
\(970\) 2.16024 1.98191i 0.0693610 0.0636353i
\(971\) 29.7321 + 51.4974i 0.954147 + 1.65263i 0.736308 + 0.676646i \(0.236567\pi\)
0.217839 + 0.975985i \(0.430099\pi\)
\(972\) −1.63970 1.14516i −0.0525933 0.0367310i
\(973\) 0 0
\(974\) 15.0397 47.8012i 0.481904 1.53165i
\(975\) 3.84834 2.22184i 0.123246 0.0711558i
\(976\) −1.15626 + 6.65205i −0.0370109 + 0.212927i
\(977\) 11.1218 19.2636i 0.355819 0.616297i −0.631438 0.775426i \(-0.717535\pi\)
0.987258 + 0.159129i \(0.0508685\pi\)
\(978\) −32.1131 + 7.13981i −1.02687 + 0.228306i
\(979\) −1.79748 −0.0574476
\(980\) 0 0
\(981\) 4.46096 0.142428
\(982\) −20.9733 + 4.66306i −0.669286 + 0.148804i
\(983\) −9.54779 + 16.5373i −0.304527 + 0.527457i −0.977156 0.212523i \(-0.931832\pi\)
0.672629 + 0.739980i \(0.265165\pi\)
\(984\) 1.21516 + 9.10172i 0.0387380 + 0.290152i
\(985\) −0.454065 + 0.262154i −0.0144677 + 0.00835293i
\(986\) −7.00014 + 22.2488i −0.222930 + 0.708546i
\(987\) 0 0
\(988\) 6.44806 9.23266i 0.205140 0.293730i
\(989\) 2.91242 + 5.04446i 0.0926096 + 0.160404i
\(990\) −0.532525 + 0.488566i −0.0169248 + 0.0155276i
\(991\) −23.6878 13.6762i −0.752468 0.434438i 0.0741168 0.997250i \(-0.476386\pi\)
−0.826585 + 0.562812i \(0.809720\pi\)
\(992\) −40.2522 + 25.8159i −1.27801 + 0.819656i
\(993\) 20.7274i 0.657763i
\(994\) 0 0
\(995\) 0.0266385i 0.000844499i
\(996\) −0.254430 + 2.94947i −0.00806193 + 0.0934575i
\(997\) −28.3135 16.3468i −0.896697 0.517708i −0.0205701 0.999788i \(-0.506548\pi\)
−0.876127 + 0.482080i \(0.839881\pi\)
\(998\) 10.6022 + 11.5561i 0.335607 + 0.365804i
\(999\) −4.33956 7.51634i −0.137298 0.237806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.o.f.31.7 24
4.3 odd 2 588.2.o.e.31.4 24
7.2 even 3 inner 588.2.o.f.19.4 24
7.3 odd 6 588.2.b.d.391.12 yes 12
7.4 even 3 588.2.b.c.391.12 yes 12
7.5 odd 6 588.2.o.e.19.4 24
7.6 odd 2 588.2.o.e.31.7 24
21.11 odd 6 1764.2.b.l.1567.1 12
21.17 even 6 1764.2.b.m.1567.1 12
28.3 even 6 588.2.b.c.391.11 12
28.11 odd 6 588.2.b.d.391.11 yes 12
28.19 even 6 inner 588.2.o.f.19.7 24
28.23 odd 6 588.2.o.e.19.7 24
28.27 even 2 inner 588.2.o.f.31.4 24
84.11 even 6 1764.2.b.m.1567.2 12
84.59 odd 6 1764.2.b.l.1567.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.11 12 28.3 even 6
588.2.b.c.391.12 yes 12 7.4 even 3
588.2.b.d.391.11 yes 12 28.11 odd 6
588.2.b.d.391.12 yes 12 7.3 odd 6
588.2.o.e.19.4 24 7.5 odd 6
588.2.o.e.19.7 24 28.23 odd 6
588.2.o.e.31.4 24 4.3 odd 2
588.2.o.e.31.7 24 7.6 odd 2
588.2.o.f.19.4 24 7.2 even 3 inner
588.2.o.f.19.7 24 28.19 even 6 inner
588.2.o.f.31.4 24 28.27 even 2 inner
588.2.o.f.31.7 24 1.1 even 1 trivial
1764.2.b.l.1567.1 12 21.11 odd 6
1764.2.b.l.1567.2 12 84.59 odd 6
1764.2.b.m.1567.1 12 21.17 even 6
1764.2.b.m.1567.2 12 84.11 even 6