Properties

Label 588.2.o.e.19.7
Level $588$
Weight $2$
Character 588.19
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(19,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,-12,4,0,8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.7
Character \(\chi\) \(=\) 588.19
Dual form 588.2.o.e.31.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.306932 + 1.38050i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-1.81159 - 0.847441i) q^{4} +(0.110790 + 0.0639645i) q^{5} +(1.34902 - 0.424442i) q^{6} +(1.72593 - 2.24080i) q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.122308 + 0.133313i) q^{10} +(-3.45938 + 1.99727i) q^{11} +(0.171888 + 1.99260i) q^{12} -0.891655i q^{13} -0.127929i q^{15} +(2.56369 + 3.07042i) q^{16} +(5.04756 - 2.91421i) q^{17} +(-1.04209 - 0.956063i) q^{18} +(3.15745 - 5.46886i) q^{19} +(-0.146499 - 0.209765i) q^{20} +(-1.69545 - 5.38872i) q^{22} +(-5.72040 - 3.30268i) q^{23} +(-2.80355 - 0.374300i) q^{24} +(-2.49182 - 4.31595i) q^{25} +(1.23093 + 0.273677i) q^{26} +1.00000 q^{27} +2.82968 q^{29} +(0.176607 + 0.0392655i) q^{30} +(-4.22668 - 7.32083i) q^{31} +(-5.02561 + 2.59677i) q^{32} +(3.45938 + 1.99727i) q^{33} +(2.47383 + 7.86264i) q^{34} +(1.63970 - 1.14516i) q^{36} +(4.33956 - 7.51634i) q^{37} +(6.58067 + 6.03744i) q^{38} +(-0.772196 + 0.445827i) q^{39} +(0.334547 - 0.137859i) q^{40} +3.24650i q^{41} +0.881836i q^{43} +(7.95954 - 0.686614i) q^{44} +(-0.110790 + 0.0639645i) q^{45} +(6.31513 - 6.88335i) q^{46} +(5.00678 - 8.67200i) q^{47} +(1.37722 - 3.75543i) q^{48} +(6.72301 - 2.11526i) q^{50} +(-5.04756 - 2.91421i) q^{51} +(-0.755625 + 1.61531i) q^{52} +(3.76727 + 6.52510i) q^{53} +(-0.306932 + 1.38050i) q^{54} -0.511019 q^{55} -6.31490 q^{57} +(-0.868519 + 3.90639i) q^{58} +(0.294409 + 0.509932i) q^{59} +(-0.108412 + 0.231754i) q^{60} +(1.46181 + 0.843974i) q^{61} +(11.4037 - 3.58796i) q^{62} +(-2.04234 - 7.73491i) q^{64} +(0.0570343 - 0.0987862i) q^{65} +(-3.81904 + 4.16266i) q^{66} +(5.50132 - 3.17619i) q^{67} +(-11.6137 + 1.00183i) q^{68} +6.60535i q^{69} +11.3856i q^{71} +(1.07762 + 2.61510i) q^{72} +(-13.4354 + 7.75696i) q^{73} +(9.04439 + 8.29778i) q^{74} +(-2.49182 + 4.31595i) q^{75} +(-10.3545 + 7.23156i) q^{76} +(-0.378456 - 1.20286i) q^{78} +(-8.50718 - 4.91162i) q^{79} +(0.0876323 + 0.504157i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-4.48180 - 0.996452i) q^{82} -1.48021 q^{83} +0.745624 q^{85} +(-1.21738 - 0.270663i) q^{86} +(-1.41484 - 2.45058i) q^{87} +(-1.49516 + 11.1989i) q^{88} +(-0.389696 - 0.224991i) q^{89} +(-0.0542984 - 0.172579i) q^{90} +(7.56418 + 10.8308i) q^{92} +(-4.22668 + 7.32083i) q^{93} +(10.4350 + 9.57360i) q^{94} +(0.699626 - 0.403929i) q^{95} +(4.76168 + 3.05392i) q^{96} -16.2042i q^{97} -3.99455i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} - 12 q^{3} + 4 q^{4} + 8 q^{6} + 8 q^{8} - 12 q^{9} + 4 q^{12} + 4 q^{16} - 4 q^{18} - 48 q^{20} - 4 q^{24} + 12 q^{25} - 24 q^{26} + 24 q^{27} + 64 q^{29} - 16 q^{31} - 4 q^{32} + 64 q^{34}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.306932 + 1.38050i −0.217033 + 0.976164i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −1.81159 0.847441i −0.905793 0.423720i
\(5\) 0.110790 + 0.0639645i 0.0495467 + 0.0286058i 0.524569 0.851368i \(-0.324227\pi\)
−0.475022 + 0.879974i \(0.657560\pi\)
\(6\) 1.34902 0.424442i 0.550734 0.173278i
\(7\) 0 0
\(8\) 1.72593 2.24080i 0.610208 0.792241i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.122308 + 0.133313i −0.0386772 + 0.0421573i
\(11\) −3.45938 + 1.99727i −1.04304 + 0.602201i −0.920693 0.390286i \(-0.872376\pi\)
−0.122349 + 0.992487i \(0.539043\pi\)
\(12\) 0.171888 + 1.99260i 0.0496197 + 0.575214i
\(13\) 0.891655i 0.247301i −0.992326 0.123650i \(-0.960540\pi\)
0.992326 0.123650i \(-0.0394601\pi\)
\(14\) 0 0
\(15\) 0.127929i 0.0330311i
\(16\) 2.56369 + 3.07042i 0.640922 + 0.767606i
\(17\) 5.04756 2.91421i 1.22421 0.706800i 0.258400 0.966038i \(-0.416805\pi\)
0.965813 + 0.259238i \(0.0834714\pi\)
\(18\) −1.04209 0.956063i −0.245622 0.225346i
\(19\) 3.15745 5.46886i 0.724368 1.25464i −0.234865 0.972028i \(-0.575465\pi\)
0.959234 0.282615i \(-0.0912018\pi\)
\(20\) −0.146499 0.209765i −0.0327582 0.0469049i
\(21\) 0 0
\(22\) −1.69545 5.38872i −0.361472 1.14888i
\(23\) −5.72040 3.30268i −1.19279 0.688656i −0.233849 0.972273i \(-0.575132\pi\)
−0.958938 + 0.283617i \(0.908465\pi\)
\(24\) −2.80355 0.374300i −0.572273 0.0764036i
\(25\) −2.49182 4.31595i −0.498363 0.863191i
\(26\) 1.23093 + 0.273677i 0.241406 + 0.0536725i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.82968 0.525459 0.262729 0.964870i \(-0.415377\pi\)
0.262729 + 0.964870i \(0.415377\pi\)
\(30\) 0.176607 + 0.0392655i 0.0322438 + 0.00716886i
\(31\) −4.22668 7.32083i −0.759135 1.31486i −0.943292 0.331963i \(-0.892289\pi\)
0.184158 0.982897i \(-0.441044\pi\)
\(32\) −5.02561 + 2.59677i −0.888411 + 0.459049i
\(33\) 3.45938 + 1.99727i 0.602201 + 0.347681i
\(34\) 2.47383 + 7.86264i 0.424258 + 1.34843i
\(35\) 0 0
\(36\) 1.63970 1.14516i 0.273283 0.190860i
\(37\) 4.33956 7.51634i 0.713419 1.23568i −0.250147 0.968208i \(-0.580479\pi\)
0.963566 0.267471i \(-0.0861878\pi\)
\(38\) 6.58067 + 6.03744i 1.06753 + 0.979402i
\(39\) −0.772196 + 0.445827i −0.123650 + 0.0713895i
\(40\) 0.334547 0.137859i 0.0528965 0.0217975i
\(41\) 3.24650i 0.507018i 0.967333 + 0.253509i \(0.0815847\pi\)
−0.967333 + 0.253509i \(0.918415\pi\)
\(42\) 0 0
\(43\) 0.881836i 0.134479i 0.997737 + 0.0672394i \(0.0214191\pi\)
−0.997737 + 0.0672394i \(0.978581\pi\)
\(44\) 7.95954 0.686614i 1.19995 0.103511i
\(45\) −0.110790 + 0.0639645i −0.0165156 + 0.00953527i
\(46\) 6.31513 6.88335i 0.931115 1.01489i
\(47\) 5.00678 8.67200i 0.730314 1.26494i −0.226435 0.974026i \(-0.572707\pi\)
0.956749 0.290915i \(-0.0939597\pi\)
\(48\) 1.37722 3.75543i 0.198785 0.542050i
\(49\) 0 0
\(50\) 6.72301 2.11526i 0.950777 0.299143i
\(51\) −5.04756 2.91421i −0.706800 0.408071i
\(52\) −0.755625 + 1.61531i −0.104786 + 0.224003i
\(53\) 3.76727 + 6.52510i 0.517474 + 0.896292i 0.999794 + 0.0202966i \(0.00646106\pi\)
−0.482320 + 0.875995i \(0.660206\pi\)
\(54\) −0.306932 + 1.38050i −0.0417681 + 0.187863i
\(55\) −0.511019 −0.0689057
\(56\) 0 0
\(57\) −6.31490 −0.836428
\(58\) −0.868519 + 3.90639i −0.114042 + 0.512934i
\(59\) 0.294409 + 0.509932i 0.0383288 + 0.0663875i 0.884553 0.466439i \(-0.154463\pi\)
−0.846225 + 0.532826i \(0.821130\pi\)
\(60\) −0.108412 + 0.231754i −0.0139960 + 0.0299194i
\(61\) 1.46181 + 0.843974i 0.187165 + 0.108060i 0.590655 0.806924i \(-0.298870\pi\)
−0.403490 + 0.914984i \(0.632203\pi\)
\(62\) 11.4037 3.58796i 1.44828 0.455672i
\(63\) 0 0
\(64\) −2.04234 7.73491i −0.255292 0.966864i
\(65\) 0.0570343 0.0987862i 0.00707423 0.0122529i
\(66\) −3.81904 + 4.16266i −0.470091 + 0.512388i
\(67\) 5.50132 3.17619i 0.672094 0.388033i −0.124776 0.992185i \(-0.539821\pi\)
0.796869 + 0.604151i \(0.206488\pi\)
\(68\) −11.6137 + 1.00183i −1.40837 + 0.121490i
\(69\) 6.60535i 0.795191i
\(70\) 0 0
\(71\) 11.3856i 1.35122i 0.737259 + 0.675610i \(0.236120\pi\)
−0.737259 + 0.675610i \(0.763880\pi\)
\(72\) 1.07762 + 2.61510i 0.126999 + 0.308192i
\(73\) −13.4354 + 7.75696i −1.57250 + 0.907883i −0.576639 + 0.816999i \(0.695636\pi\)
−0.995861 + 0.0908839i \(0.971031\pi\)
\(74\) 9.04439 + 8.29778i 1.05139 + 0.964598i
\(75\) −2.49182 + 4.31595i −0.287730 + 0.498363i
\(76\) −10.3545 + 7.23156i −1.18775 + 0.829517i
\(77\) 0 0
\(78\) −0.378456 1.20286i −0.0428517 0.136197i
\(79\) −8.50718 4.91162i −0.957132 0.552601i −0.0618431 0.998086i \(-0.519698\pi\)
−0.895289 + 0.445485i \(0.853031\pi\)
\(80\) 0.0876323 + 0.504157i 0.00979759 + 0.0563664i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −4.48180 0.996452i −0.494932 0.110040i
\(83\) −1.48021 −0.162474 −0.0812371 0.996695i \(-0.525887\pi\)
−0.0812371 + 0.996695i \(0.525887\pi\)
\(84\) 0 0
\(85\) 0.745624 0.0808743
\(86\) −1.21738 0.270663i −0.131273 0.0291864i
\(87\) −1.41484 2.45058i −0.151687 0.262729i
\(88\) −1.49516 + 11.1989i −0.159384 + 1.19381i
\(89\) −0.389696 0.224991i −0.0413077 0.0238490i 0.479204 0.877704i \(-0.340925\pi\)
−0.520512 + 0.853855i \(0.674259\pi\)
\(90\) −0.0542984 0.172579i −0.00572356 0.0181914i
\(91\) 0 0
\(92\) 7.56418 + 10.8308i 0.788620 + 1.12919i
\(93\) −4.22668 + 7.32083i −0.438287 + 0.759135i
\(94\) 10.4350 + 9.57360i 1.07629 + 0.987441i
\(95\) 0.699626 0.403929i 0.0717801 0.0414423i
\(96\) 4.76168 + 3.05392i 0.485987 + 0.311689i
\(97\) 16.2042i 1.64529i −0.568555 0.822645i \(-0.692497\pi\)
0.568555 0.822645i \(-0.307503\pi\)
\(98\) 0 0
\(99\) 3.99455i 0.401467i
\(100\) 0.856626 + 9.93039i 0.0856626 + 0.993039i
\(101\) 10.4495 6.03304i 1.03977 0.600310i 0.120000 0.992774i \(-0.461711\pi\)
0.919767 + 0.392464i \(0.128377\pi\)
\(102\) 5.57234 6.07372i 0.551744 0.601388i
\(103\) −1.64215 + 2.84429i −0.161806 + 0.280256i −0.935516 0.353283i \(-0.885065\pi\)
0.773710 + 0.633539i \(0.218399\pi\)
\(104\) −1.99802 1.53893i −0.195922 0.150905i
\(105\) 0 0
\(106\) −10.1642 + 3.19797i −0.987237 + 0.310615i
\(107\) 2.88857 + 1.66772i 0.279249 + 0.161224i 0.633083 0.774084i \(-0.281789\pi\)
−0.353835 + 0.935308i \(0.615122\pi\)
\(108\) −1.81159 0.847441i −0.174320 0.0815450i
\(109\) −2.23048 3.86331i −0.213641 0.370038i 0.739210 0.673475i \(-0.235199\pi\)
−0.952851 + 0.303437i \(0.901866\pi\)
\(110\) 0.156848 0.705464i 0.0149548 0.0672633i
\(111\) −8.67912 −0.823786
\(112\) 0 0
\(113\) −9.16272 −0.861956 −0.430978 0.902362i \(-0.641831\pi\)
−0.430978 + 0.902362i \(0.641831\pi\)
\(114\) 1.93824 8.71774i 0.181533 0.816492i
\(115\) −0.422508 0.731806i −0.0393991 0.0682412i
\(116\) −5.12621 2.39799i −0.475957 0.222648i
\(117\) 0.772196 + 0.445827i 0.0713895 + 0.0412168i
\(118\) −0.794327 + 0.249919i −0.0731237 + 0.0230069i
\(119\) 0 0
\(120\) −0.286663 0.220796i −0.0261686 0.0201559i
\(121\) 2.47821 4.29238i 0.225291 0.390216i
\(122\) −1.61379 + 1.75899i −0.146105 + 0.159251i
\(123\) 2.81155 1.62325i 0.253509 0.146363i
\(124\) 1.45303 + 16.8442i 0.130486 + 1.51265i
\(125\) 1.27720i 0.114236i
\(126\) 0 0
\(127\) 14.0775i 1.24917i 0.780955 + 0.624587i \(0.214733\pi\)
−0.780955 + 0.624587i \(0.785267\pi\)
\(128\) 11.3049 0.445371i 0.999225 0.0393656i
\(129\) 0.763693 0.440918i 0.0672394 0.0388207i
\(130\) 0.118869 + 0.109057i 0.0104255 + 0.00956490i
\(131\) −4.88483 + 8.46078i −0.426790 + 0.739222i −0.996586 0.0825645i \(-0.973689\pi\)
0.569796 + 0.821786i \(0.307022\pi\)
\(132\) −4.57439 6.54985i −0.398150 0.570092i
\(133\) 0 0
\(134\) 2.69622 + 8.56948i 0.232918 + 0.740290i
\(135\) 0.110790 + 0.0639645i 0.00953527 + 0.00550519i
\(136\) 2.18158 16.3403i 0.187069 1.40117i
\(137\) 1.98426 + 3.43684i 0.169527 + 0.293629i 0.938254 0.345948i \(-0.112443\pi\)
−0.768727 + 0.639577i \(0.779109\pi\)
\(138\) −9.11872 2.02739i −0.776237 0.172583i
\(139\) 0.262023 0.0222245 0.0111122 0.999938i \(-0.496463\pi\)
0.0111122 + 0.999938i \(0.496463\pi\)
\(140\) 0 0
\(141\) −10.0136 −0.843294
\(142\) −15.7179 3.49459i −1.31901 0.293260i
\(143\) 1.78088 + 3.08457i 0.148925 + 0.257945i
\(144\) −3.94091 + 0.685007i −0.328409 + 0.0570839i
\(145\) 0.313500 + 0.180999i 0.0260348 + 0.0150312i
\(146\) −6.58476 20.9286i −0.544958 1.73206i
\(147\) 0 0
\(148\) −14.2311 + 9.93897i −1.16979 + 0.816979i
\(149\) −1.34774 + 2.33436i −0.110411 + 0.191238i −0.915936 0.401324i \(-0.868550\pi\)
0.805525 + 0.592562i \(0.201884\pi\)
\(150\) −5.19338 4.76467i −0.424037 0.389033i
\(151\) −3.73832 + 2.15832i −0.304220 + 0.175642i −0.644337 0.764741i \(-0.722867\pi\)
0.340117 + 0.940383i \(0.389533\pi\)
\(152\) −6.80507 16.5141i −0.551964 1.33947i
\(153\) 5.82842i 0.471200i
\(154\) 0 0
\(155\) 1.08143i 0.0868626i
\(156\) 1.77671 0.153265i 0.142251 0.0122710i
\(157\) −2.77661 + 1.60308i −0.221598 + 0.127940i −0.606690 0.794939i \(-0.707503\pi\)
0.385092 + 0.922878i \(0.374170\pi\)
\(158\) 9.39164 10.2367i 0.747159 0.814386i
\(159\) 3.76727 6.52510i 0.298764 0.517474i
\(160\) −0.722888 0.0337648i −0.0571493 0.00266934i
\(161\) 0 0
\(162\) 1.34902 0.424442i 0.105989 0.0333473i
\(163\) 20.1454 + 11.6309i 1.57791 + 0.911006i 0.995151 + 0.0983597i \(0.0313596\pi\)
0.582757 + 0.812646i \(0.301974\pi\)
\(164\) 2.75121 5.88131i 0.214834 0.459253i
\(165\) 0.255509 + 0.442555i 0.0198914 + 0.0344529i
\(166\) 0.454323 2.04344i 0.0352623 0.158602i
\(167\) −9.66864 −0.748182 −0.374091 0.927392i \(-0.622045\pi\)
−0.374091 + 0.927392i \(0.622045\pi\)
\(168\) 0 0
\(169\) 12.2050 0.938842
\(170\) −0.228856 + 1.02934i −0.0175524 + 0.0789466i
\(171\) 3.15745 + 5.46886i 0.241456 + 0.418214i
\(172\) 0.747304 1.59752i 0.0569814 0.121810i
\(173\) −17.9324 10.3533i −1.36337 0.787145i −0.373303 0.927709i \(-0.621775\pi\)
−0.990071 + 0.140565i \(0.955108\pi\)
\(174\) 3.81729 1.20104i 0.289388 0.0910503i
\(175\) 0 0
\(176\) −15.0012 5.50137i −1.13076 0.414682i
\(177\) 0.294409 0.509932i 0.0221292 0.0383288i
\(178\) 0.430212 0.468921i 0.0322457 0.0351471i
\(179\) −1.27126 + 0.733963i −0.0950185 + 0.0548589i −0.546756 0.837292i \(-0.684138\pi\)
0.451738 + 0.892151i \(0.350804\pi\)
\(180\) 0.254911 0.0219894i 0.0190000 0.00163900i
\(181\) 23.5472i 1.75025i −0.483898 0.875124i \(-0.660779\pi\)
0.483898 0.875124i \(-0.339221\pi\)
\(182\) 0 0
\(183\) 1.68795i 0.124777i
\(184\) −17.2736 + 7.11808i −1.27343 + 0.524752i
\(185\) 0.961558 0.555156i 0.0706951 0.0408159i
\(186\) −8.80914 8.08195i −0.645917 0.592597i
\(187\) −11.6410 + 20.1627i −0.851271 + 1.47444i
\(188\) −16.4192 + 11.4671i −1.19749 + 0.836326i
\(189\) 0 0
\(190\) 0.342889 + 1.08982i 0.0248758 + 0.0790635i
\(191\) 3.19674 + 1.84564i 0.231308 + 0.133546i 0.611175 0.791495i \(-0.290697\pi\)
−0.379867 + 0.925041i \(0.624030\pi\)
\(192\) −5.67746 + 5.63617i −0.409735 + 0.406756i
\(193\) 1.35837 + 2.35277i 0.0977777 + 0.169356i 0.910764 0.412926i \(-0.135493\pi\)
−0.812987 + 0.582282i \(0.802160\pi\)
\(194\) 22.3700 + 4.97359i 1.60607 + 0.357083i
\(195\) −0.114069 −0.00816862
\(196\) 0 0
\(197\) 4.09843 0.292001 0.146001 0.989284i \(-0.453360\pi\)
0.146001 + 0.989284i \(0.453360\pi\)
\(198\) 5.51449 + 1.22605i 0.391898 + 0.0871318i
\(199\) −0.104115 0.180332i −0.00738048 0.0127834i 0.862312 0.506378i \(-0.169016\pi\)
−0.869692 + 0.493595i \(0.835683\pi\)
\(200\) −13.9719 1.86537i −0.987961 0.131902i
\(201\) −5.50132 3.17619i −0.388033 0.224031i
\(202\) 5.12135 + 16.2774i 0.360337 + 1.14527i
\(203\) 0 0
\(204\) 6.67447 + 9.55685i 0.467306 + 0.669114i
\(205\) −0.207661 + 0.359679i −0.0145036 + 0.0251210i
\(206\) −3.42253 3.14000i −0.238459 0.218774i
\(207\) 5.72040 3.30268i 0.397596 0.229552i
\(208\) 2.73776 2.28592i 0.189829 0.158500i
\(209\) 25.2252i 1.74486i
\(210\) 0 0
\(211\) 16.5850i 1.14176i −0.821034 0.570880i \(-0.806602\pi\)
0.821034 0.570880i \(-0.193398\pi\)
\(212\) −1.29510 15.0133i −0.0889475 1.03112i
\(213\) 9.86020 5.69279i 0.675610 0.390064i
\(214\) −3.18889 + 3.47581i −0.217988 + 0.237602i
\(215\) −0.0564062 + 0.0976985i −0.00384687 + 0.00666298i
\(216\) 1.72593 2.24080i 0.117435 0.152467i
\(217\) 0 0
\(218\) 6.01792 1.89342i 0.407585 0.128238i
\(219\) 13.4354 + 7.75696i 0.907883 + 0.524167i
\(220\) 0.925754 + 0.433058i 0.0624143 + 0.0291968i
\(221\) −2.59847 4.50068i −0.174792 0.302749i
\(222\) 2.66390 11.9816i 0.178789 0.804150i
\(223\) 21.3432 1.42925 0.714624 0.699509i \(-0.246598\pi\)
0.714624 + 0.699509i \(0.246598\pi\)
\(224\) 0 0
\(225\) 4.98363 0.332242
\(226\) 2.81233 12.6492i 0.187073 0.841411i
\(227\) 13.4986 + 23.3803i 0.895935 + 1.55180i 0.832643 + 0.553810i \(0.186827\pi\)
0.0632918 + 0.997995i \(0.479840\pi\)
\(228\) 11.4400 + 5.35150i 0.757631 + 0.354412i
\(229\) −2.52614 1.45847i −0.166932 0.0963783i 0.414206 0.910183i \(-0.364059\pi\)
−0.581138 + 0.813805i \(0.697393\pi\)
\(230\) 1.13994 0.358660i 0.0751656 0.0236494i
\(231\) 0 0
\(232\) 4.88383 6.34074i 0.320639 0.416290i
\(233\) −10.1995 + 17.6660i −0.668189 + 1.15734i 0.310221 + 0.950665i \(0.399597\pi\)
−0.978410 + 0.206673i \(0.933736\pi\)
\(234\) −0.852478 + 0.929181i −0.0557282 + 0.0607425i
\(235\) 1.10940 0.640513i 0.0723693 0.0417824i
\(236\) −0.101211 1.17328i −0.00658826 0.0763741i
\(237\) 9.82324i 0.638088i
\(238\) 0 0
\(239\) 25.2554i 1.63364i −0.576895 0.816818i \(-0.695736\pi\)
0.576895 0.816818i \(-0.304264\pi\)
\(240\) 0.392796 0.327970i 0.0253549 0.0211704i
\(241\) −7.10954 + 4.10469i −0.457965 + 0.264406i −0.711188 0.703001i \(-0.751843\pi\)
0.253223 + 0.967408i \(0.418509\pi\)
\(242\) 5.16501 + 4.73864i 0.332019 + 0.304611i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) −1.93297 2.76773i −0.123746 0.177186i
\(245\) 0 0
\(246\) 1.37795 + 4.37958i 0.0878548 + 0.279232i
\(247\) −4.87634 2.81535i −0.310274 0.179137i
\(248\) −23.6994 3.16409i −1.50492 0.200920i
\(249\) 0.740105 + 1.28190i 0.0469023 + 0.0812371i
\(250\) 1.76318 + 0.392012i 0.111513 + 0.0247930i
\(251\) 6.55180 0.413546 0.206773 0.978389i \(-0.433704\pi\)
0.206773 + 0.978389i \(0.433704\pi\)
\(252\) 0 0
\(253\) 26.3854 1.65884
\(254\) −19.4340 4.32082i −1.21940 0.271113i
\(255\) −0.372812 0.645730i −0.0233464 0.0404372i
\(256\) −2.85501 + 15.7432i −0.178438 + 0.983951i
\(257\) 16.2399 + 9.37612i 1.01302 + 0.584866i 0.912074 0.410026i \(-0.134480\pi\)
0.100944 + 0.994892i \(0.467814\pi\)
\(258\) 0.374288 + 1.18961i 0.0233022 + 0.0740621i
\(259\) 0 0
\(260\) −0.187038 + 0.130627i −0.0115996 + 0.00810112i
\(261\) −1.41484 + 2.45058i −0.0875765 + 0.151687i
\(262\) −10.1808 9.34042i −0.628974 0.577053i
\(263\) 1.82321 1.05263i 0.112424 0.0649079i −0.442734 0.896653i \(-0.645991\pi\)
0.555158 + 0.831745i \(0.312658\pi\)
\(264\) 10.4461 4.30461i 0.642915 0.264931i
\(265\) 0.963886i 0.0592111i
\(266\) 0 0
\(267\) 0.449983i 0.0275385i
\(268\) −12.6578 + 1.09190i −0.773195 + 0.0666982i
\(269\) −10.2209 + 5.90104i −0.623180 + 0.359793i −0.778106 0.628133i \(-0.783819\pi\)
0.154926 + 0.987926i \(0.450486\pi\)
\(270\) −0.122308 + 0.133313i −0.00744344 + 0.00811318i
\(271\) 5.66213 9.80709i 0.343950 0.595738i −0.641213 0.767363i \(-0.721568\pi\)
0.985162 + 0.171625i \(0.0549017\pi\)
\(272\) 21.8882 + 8.02702i 1.32717 + 0.486710i
\(273\) 0 0
\(274\) −5.35361 + 1.68441i −0.323423 + 0.101759i
\(275\) 17.2403 + 9.95368i 1.03963 + 0.600230i
\(276\) 5.59765 11.9662i 0.336939 0.720278i
\(277\) 5.88192 + 10.1878i 0.353410 + 0.612125i 0.986845 0.161672i \(-0.0516886\pi\)
−0.633434 + 0.773797i \(0.718355\pi\)
\(278\) −0.0804231 + 0.361724i −0.00482345 + 0.0216947i
\(279\) 8.45337 0.506090
\(280\) 0 0
\(281\) −9.80481 −0.584906 −0.292453 0.956280i \(-0.594471\pi\)
−0.292453 + 0.956280i \(0.594471\pi\)
\(282\) 3.07348 13.8238i 0.183023 0.823194i
\(283\) 12.3233 + 21.3445i 0.732542 + 1.26880i 0.955794 + 0.294039i \(0.0949994\pi\)
−0.223252 + 0.974761i \(0.571667\pi\)
\(284\) 9.64861 20.6260i 0.572540 1.22393i
\(285\) −0.699626 0.403929i −0.0414423 0.0239267i
\(286\) −4.80487 + 1.51176i −0.284118 + 0.0893922i
\(287\) 0 0
\(288\) 0.263934 5.65069i 0.0155524 0.332970i
\(289\) 8.48525 14.6969i 0.499132 0.864522i
\(290\) −0.346093 + 0.377234i −0.0203233 + 0.0221519i
\(291\) −14.0333 + 8.10212i −0.822645 + 0.474954i
\(292\) 30.9130 2.66665i 1.80905 0.156054i
\(293\) 2.41042i 0.140818i −0.997518 0.0704091i \(-0.977570\pi\)
0.997518 0.0704091i \(-0.0224305\pi\)
\(294\) 0 0
\(295\) 0.0753270i 0.00438571i
\(296\) −9.35281 22.6967i −0.543621 1.31922i
\(297\) −3.45938 + 1.99727i −0.200734 + 0.115894i
\(298\) −2.80893 2.57705i −0.162717 0.149285i
\(299\) −2.94485 + 5.10062i −0.170305 + 0.294977i
\(300\) 8.17166 5.70705i 0.471791 0.329497i
\(301\) 0 0
\(302\) −1.83216 5.82323i −0.105429 0.335089i
\(303\) −10.4495 6.03304i −0.600310 0.346589i
\(304\) 24.8864 4.32575i 1.42733 0.248099i
\(305\) 0.107969 + 0.187007i 0.00618228 + 0.0107080i
\(306\) −8.04616 1.78893i −0.459968 0.102266i
\(307\) 24.4054 1.39289 0.696446 0.717609i \(-0.254764\pi\)
0.696446 + 0.717609i \(0.254764\pi\)
\(308\) 0 0
\(309\) 3.28431 0.186838
\(310\) 1.49292 + 0.331925i 0.0847922 + 0.0188521i
\(311\) −15.5933 27.0084i −0.884215 1.53151i −0.846610 0.532213i \(-0.821360\pi\)
−0.0376050 0.999293i \(-0.511973\pi\)
\(312\) −0.333746 + 2.49980i −0.0188947 + 0.141523i
\(313\) 2.19804 + 1.26904i 0.124240 + 0.0717302i 0.560832 0.827929i \(-0.310481\pi\)
−0.436592 + 0.899660i \(0.643815\pi\)
\(314\) −1.36083 4.32516i −0.0767959 0.244083i
\(315\) 0 0
\(316\) 11.2492 + 16.1072i 0.632816 + 0.906098i
\(317\) 9.12602 15.8067i 0.512568 0.887795i −0.487325 0.873221i \(-0.662027\pi\)
0.999894 0.0145742i \(-0.00463927\pi\)
\(318\) 7.85164 + 7.20349i 0.440298 + 0.403952i
\(319\) −9.78895 + 5.65165i −0.548076 + 0.316432i
\(320\) 0.268489 0.987586i 0.0150090 0.0552078i
\(321\) 3.33543i 0.186166i
\(322\) 0 0
\(323\) 36.8059i 2.04793i
\(324\) 0.171888 + 1.99260i 0.00954932 + 0.110700i
\(325\) −3.84834 + 2.22184i −0.213468 + 0.123246i
\(326\) −22.2398 + 24.2409i −1.23175 + 1.34258i
\(327\) −2.23048 + 3.86331i −0.123346 + 0.213641i
\(328\) 7.27474 + 5.60322i 0.401680 + 0.309386i
\(329\) 0 0
\(330\) −0.689373 + 0.216898i −0.0379487 + 0.0119398i
\(331\) 17.9504 + 10.3637i 0.986644 + 0.569639i 0.904270 0.426962i \(-0.140416\pi\)
0.0823747 + 0.996601i \(0.473750\pi\)
\(332\) 2.68153 + 1.25439i 0.147168 + 0.0688436i
\(333\) 4.33956 + 7.51634i 0.237806 + 0.411893i
\(334\) 2.96761 13.3476i 0.162380 0.730348i
\(335\) 0.812654 0.0444000
\(336\) 0 0
\(337\) −0.330532 −0.0180052 −0.00900261 0.999959i \(-0.502866\pi\)
−0.00900261 + 0.999959i \(0.502866\pi\)
\(338\) −3.74608 + 16.8490i −0.203760 + 0.916464i
\(339\) 4.58136 + 7.93515i 0.248825 + 0.430978i
\(340\) −1.35076 0.631872i −0.0732554 0.0342681i
\(341\) 29.2434 + 16.8837i 1.58362 + 0.914303i
\(342\) −8.51891 + 2.68031i −0.460650 + 0.144934i
\(343\) 0 0
\(344\) 1.97602 + 1.52199i 0.106540 + 0.0820600i
\(345\) −0.422508 + 0.731806i −0.0227471 + 0.0393991i
\(346\) 19.7968 21.5780i 1.06428 1.16004i
\(347\) 19.0483 10.9975i 1.02257 0.590378i 0.107719 0.994181i \(-0.465645\pi\)
0.914846 + 0.403803i \(0.132312\pi\)
\(348\) 0.486388 + 5.63843i 0.0260731 + 0.302251i
\(349\) 26.6709i 1.42766i 0.700318 + 0.713831i \(0.253041\pi\)
−0.700318 + 0.713831i \(0.746959\pi\)
\(350\) 0 0
\(351\) 0.891655i 0.0475930i
\(352\) 12.1990 19.0207i 0.650210 1.01381i
\(353\) −6.73045 + 3.88583i −0.358226 + 0.206822i −0.668302 0.743890i \(-0.732979\pi\)
0.310076 + 0.950712i \(0.399645\pi\)
\(354\) 0.613600 + 0.562948i 0.0326125 + 0.0299203i
\(355\) −0.728273 + 1.26141i −0.0386527 + 0.0669485i
\(356\) 0.515302 + 0.737836i 0.0273109 + 0.0391052i
\(357\) 0 0
\(358\) −0.623049 1.98026i −0.0329292 0.104660i
\(359\) −14.5380 8.39350i −0.767285 0.442992i 0.0646204 0.997910i \(-0.479416\pi\)
−0.831905 + 0.554918i \(0.812750\pi\)
\(360\) −0.0478838 + 0.358656i −0.00252370 + 0.0189028i
\(361\) −10.4390 18.0808i −0.549419 0.951621i
\(362\) 32.5070 + 7.22737i 1.70853 + 0.379862i
\(363\) −4.95641 −0.260144
\(364\) 0 0
\(365\) −1.98468 −0.103883
\(366\) 2.33022 + 0.518085i 0.121803 + 0.0270807i
\(367\) −2.01820 3.49562i −0.105349 0.182470i 0.808532 0.588453i \(-0.200263\pi\)
−0.913881 + 0.405983i \(0.866929\pi\)
\(368\) −4.52471 26.0311i −0.235867 1.35696i
\(369\) −2.81155 1.62325i −0.146363 0.0845029i
\(370\) 0.471263 + 1.49783i 0.0244998 + 0.0778685i
\(371\) 0 0
\(372\) 13.8610 9.68045i 0.718658 0.501908i
\(373\) −10.3895 + 17.9951i −0.537948 + 0.931753i 0.461066 + 0.887366i \(0.347467\pi\)
−0.999014 + 0.0443876i \(0.985866\pi\)
\(374\) −24.2618 22.2590i −1.25455 1.15098i
\(375\) −1.10608 + 0.638598i −0.0571180 + 0.0329771i
\(376\) −10.7908 26.1864i −0.556495 1.35046i
\(377\) 2.52310i 0.129946i
\(378\) 0 0
\(379\) 10.7800i 0.553732i −0.960909 0.276866i \(-0.910704\pi\)
0.960909 0.276866i \(-0.0892958\pi\)
\(380\) −1.60974 + 0.138861i −0.0825779 + 0.00712342i
\(381\) 12.1915 7.03874i 0.624587 0.360606i
\(382\) −3.52910 + 3.84663i −0.180564 + 0.196811i
\(383\) −3.26491 + 5.65498i −0.166829 + 0.288956i −0.937303 0.348515i \(-0.886686\pi\)
0.770474 + 0.637471i \(0.220019\pi\)
\(384\) −6.03817 9.56768i −0.308134 0.488249i
\(385\) 0 0
\(386\) −3.66493 + 1.15310i −0.186540 + 0.0586912i
\(387\) −0.763693 0.440918i −0.0388207 0.0224131i
\(388\) −13.7321 + 29.3554i −0.697143 + 1.49029i
\(389\) −15.9348 27.5999i −0.807928 1.39937i −0.914296 0.405046i \(-0.867255\pi\)
0.106368 0.994327i \(-0.466078\pi\)
\(390\) 0.0350112 0.157472i 0.00177286 0.00797391i
\(391\) −38.4988 −1.94697
\(392\) 0 0
\(393\) 9.76967 0.492814
\(394\) −1.25794 + 5.65791i −0.0633740 + 0.285041i
\(395\) −0.628339 1.08832i −0.0316152 0.0547591i
\(396\) −3.38514 + 7.23647i −0.170110 + 0.363646i
\(397\) −13.3557 7.71089i −0.670301 0.386999i 0.125889 0.992044i \(-0.459822\pi\)
−0.796191 + 0.605046i \(0.793155\pi\)
\(398\) 0.280905 0.0883811i 0.0140805 0.00443015i
\(399\) 0 0
\(400\) 6.86357 18.7157i 0.343178 0.935785i
\(401\) −13.8479 + 23.9853i −0.691533 + 1.19777i 0.279803 + 0.960057i \(0.409731\pi\)
−0.971336 + 0.237712i \(0.923602\pi\)
\(402\) 6.07328 6.61973i 0.302907 0.330162i
\(403\) −6.52765 + 3.76874i −0.325166 + 0.187734i
\(404\) −24.0429 + 2.07401i −1.19618 + 0.103186i
\(405\) 0.127929i 0.00635684i
\(406\) 0 0
\(407\) 34.6692i 1.71849i
\(408\) −15.2419 + 6.28084i −0.754586 + 0.310948i
\(409\) 21.5187 12.4238i 1.06403 0.614319i 0.137486 0.990504i \(-0.456098\pi\)
0.926545 + 0.376185i \(0.122764\pi\)
\(410\) −0.432801 0.397073i −0.0213745 0.0196100i
\(411\) 1.98426 3.43684i 0.0978764 0.169527i
\(412\) 5.38527 3.76105i 0.265313 0.185294i
\(413\) 0 0
\(414\) 2.80359 + 8.91074i 0.137789 + 0.437939i
\(415\) −0.163992 0.0946810i −0.00805006 0.00464771i
\(416\) 2.31543 + 4.48111i 0.113523 + 0.219704i
\(417\) −0.131011 0.226918i −0.00641566 0.0111122i
\(418\) −34.8234 7.74240i −1.70327 0.378693i
\(419\) 21.9087 1.07031 0.535155 0.844754i \(-0.320253\pi\)
0.535155 + 0.844754i \(0.320253\pi\)
\(420\) 0 0
\(421\) −18.8226 −0.917357 −0.458679 0.888602i \(-0.651677\pi\)
−0.458679 + 0.888602i \(0.651677\pi\)
\(422\) 22.8957 + 5.09047i 1.11455 + 0.247800i
\(423\) 5.00678 + 8.67200i 0.243438 + 0.421647i
\(424\) 21.1235 + 2.82018i 1.02585 + 0.136960i
\(425\) −25.1552 14.5234i −1.22021 0.704486i
\(426\) 4.83252 + 15.3594i 0.234136 + 0.744163i
\(427\) 0 0
\(428\) −3.81960 5.46911i −0.184628 0.264359i
\(429\) 1.78088 3.08457i 0.0859816 0.148925i
\(430\) −0.117560 0.107856i −0.00566926 0.00520127i
\(431\) −18.9190 + 10.9229i −0.911295 + 0.526137i −0.880848 0.473400i \(-0.843027\pi\)
−0.0304476 + 0.999536i \(0.509693\pi\)
\(432\) 2.56369 + 3.07042i 0.123346 + 0.147726i
\(433\) 23.7440i 1.14107i −0.821275 0.570533i \(-0.806737\pi\)
0.821275 0.570533i \(-0.193263\pi\)
\(434\) 0 0
\(435\) 0.361999i 0.0173565i
\(436\) 0.766785 + 8.88891i 0.0367223 + 0.425702i
\(437\) −36.1238 + 20.8561i −1.72803 + 0.997681i
\(438\) −14.8323 + 16.1668i −0.708714 + 0.772482i
\(439\) 15.9429 27.6140i 0.760914 1.31794i −0.181466 0.983397i \(-0.558084\pi\)
0.942380 0.334545i \(-0.108583\pi\)
\(440\) −0.881982 + 1.14509i −0.0420468 + 0.0545900i
\(441\) 0 0
\(442\) 7.01076 2.20580i 0.333468 0.104919i
\(443\) 13.5814 + 7.84122i 0.645272 + 0.372548i 0.786642 0.617409i \(-0.211818\pi\)
−0.141371 + 0.989957i \(0.545151\pi\)
\(444\) 15.7230 + 7.35504i 0.746179 + 0.349055i
\(445\) −0.0287829 0.0498535i −0.00136444 0.00236328i
\(446\) −6.55090 + 29.4644i −0.310194 + 1.39518i
\(447\) 2.69549 0.127492
\(448\) 0 0
\(449\) −9.72484 −0.458943 −0.229472 0.973315i \(-0.573700\pi\)
−0.229472 + 0.973315i \(0.573700\pi\)
\(450\) −1.52963 + 6.87993i −0.0721077 + 0.324323i
\(451\) −6.48414 11.2309i −0.305326 0.528841i
\(452\) 16.5991 + 7.76486i 0.780754 + 0.365228i
\(453\) 3.73832 + 2.15832i 0.175642 + 0.101407i
\(454\) −36.4198 + 11.4588i −1.70926 + 0.537786i
\(455\) 0 0
\(456\) −10.8991 + 14.1504i −0.510395 + 0.662653i
\(457\) 5.70383 9.87933i 0.266814 0.462135i −0.701223 0.712942i \(-0.747362\pi\)
0.968037 + 0.250806i \(0.0806957\pi\)
\(458\) 2.78877 3.03970i 0.130311 0.142036i
\(459\) 5.04756 2.91421i 0.235600 0.136024i
\(460\) 0.145248 + 1.68378i 0.00677222 + 0.0785066i
\(461\) 19.6446i 0.914940i −0.889225 0.457470i \(-0.848756\pi\)
0.889225 0.457470i \(-0.151244\pi\)
\(462\) 0 0
\(463\) 6.73057i 0.312796i 0.987694 + 0.156398i \(0.0499883\pi\)
−0.987694 + 0.156398i \(0.950012\pi\)
\(464\) 7.25443 + 8.68833i 0.336778 + 0.403345i
\(465\) −0.936547 + 0.540715i −0.0434313 + 0.0250751i
\(466\) −21.2575 19.5027i −0.984733 0.903444i
\(467\) −11.0608 + 19.1579i −0.511833 + 0.886522i 0.488072 + 0.872803i \(0.337700\pi\)
−0.999906 + 0.0137185i \(0.995633\pi\)
\(468\) −1.02109 1.46204i −0.0471997 0.0675830i
\(469\) 0 0
\(470\) 0.543721 + 1.72813i 0.0250800 + 0.0797125i
\(471\) 2.77661 + 1.60308i 0.127940 + 0.0738660i
\(472\) 1.65078 + 0.220395i 0.0759835 + 0.0101445i
\(473\) −1.76127 3.05061i −0.0809832 0.140267i
\(474\) −13.5610 3.01506i −0.622879 0.138486i
\(475\) −31.4711 −1.44399
\(476\) 0 0
\(477\) −7.53454 −0.344983
\(478\) 34.8652 + 7.75168i 1.59470 + 0.354554i
\(479\) −10.6325 18.4159i −0.485809 0.841446i 0.514058 0.857755i \(-0.328142\pi\)
−0.999867 + 0.0163095i \(0.994808\pi\)
\(480\) 0.332203 + 0.642922i 0.0151629 + 0.0293452i
\(481\) −6.70198 3.86939i −0.305584 0.176429i
\(482\) −3.48441 11.0746i −0.158710 0.504434i
\(483\) 0 0
\(484\) −8.12702 + 5.67588i −0.369410 + 0.257995i
\(485\) 1.03650 1.79526i 0.0470648 0.0815187i
\(486\) −1.04209 0.956063i −0.0472700 0.0433679i
\(487\) 30.6868 17.7171i 1.39055 0.802836i 0.397177 0.917742i \(-0.369990\pi\)
0.993376 + 0.114906i \(0.0366566\pi\)
\(488\) 4.41415 1.81897i 0.199819 0.0823410i
\(489\) 23.2619i 1.05194i
\(490\) 0 0
\(491\) 15.1925i 0.685628i 0.939403 + 0.342814i \(0.111380\pi\)
−0.939403 + 0.342814i \(0.888620\pi\)
\(492\) −6.46897 + 0.558033i −0.291644 + 0.0251581i
\(493\) 14.2830 8.24629i 0.643274 0.371394i
\(494\) 5.38331 5.86768i 0.242207 0.264000i
\(495\) 0.255509 0.442555i 0.0114843 0.0198914i
\(496\) 11.6422 31.7460i 0.522748 1.42544i
\(497\) 0 0
\(498\) −1.99683 + 0.628263i −0.0894801 + 0.0281532i
\(499\) −9.60373 5.54472i −0.429922 0.248216i 0.269391 0.963031i \(-0.413178\pi\)
−0.699313 + 0.714815i \(0.746511\pi\)
\(500\) −1.08235 + 2.31375i −0.0484041 + 0.103474i
\(501\) 4.83432 + 8.37329i 0.215982 + 0.374091i
\(502\) −2.01095 + 9.04479i −0.0897533 + 0.403689i
\(503\) −5.67396 −0.252989 −0.126495 0.991967i \(-0.540373\pi\)
−0.126495 + 0.991967i \(0.540373\pi\)
\(504\) 0 0
\(505\) 1.54360 0.0686894
\(506\) −8.09851 + 36.4252i −0.360023 + 1.61930i
\(507\) −6.10248 10.5698i −0.271020 0.469421i
\(508\) 11.9298 25.5026i 0.529301 1.13149i
\(509\) 11.0839 + 6.39931i 0.491286 + 0.283644i 0.725108 0.688635i \(-0.241790\pi\)
−0.233822 + 0.972279i \(0.575123\pi\)
\(510\) 1.00586 0.316474i 0.0445402 0.0140137i
\(511\) 0 0
\(512\) −20.8573 8.77344i −0.921771 0.387735i
\(513\) 3.15745 5.46886i 0.139405 0.241456i
\(514\) −17.9283 + 19.5415i −0.790784 + 0.861937i
\(515\) −0.363867 + 0.210079i −0.0160339 + 0.00925719i
\(516\) −1.75715 + 0.151577i −0.0773541 + 0.00667280i
\(517\) 39.9997i 1.75918i
\(518\) 0 0
\(519\) 20.7065i 0.908916i
\(520\) −0.122923 0.298300i −0.00539052 0.0130813i
\(521\) 24.4767 14.1316i 1.07234 0.619117i 0.143521 0.989647i \(-0.454157\pi\)
0.928820 + 0.370531i \(0.120824\pi\)
\(522\) −2.94877 2.70535i −0.129064 0.118410i
\(523\) −5.38111 + 9.32036i −0.235300 + 0.407551i −0.959360 0.282186i \(-0.908941\pi\)
0.724060 + 0.689737i \(0.242274\pi\)
\(524\) 16.0193 11.1878i 0.699807 0.488742i
\(525\) 0 0
\(526\) 0.893560 + 2.84003i 0.0389611 + 0.123831i
\(527\) −42.6689 24.6349i −1.85869 1.07311i
\(528\) 2.73629 + 15.7421i 0.119082 + 0.685089i
\(529\) 10.3153 + 17.8667i 0.448493 + 0.776813i
\(530\) −1.33065 0.295847i −0.0577997 0.0128508i
\(531\) −0.588819 −0.0255526
\(532\) 0 0
\(533\) 2.89475 0.125386
\(534\) −0.621203 0.138114i −0.0268821 0.00597677i
\(535\) 0.213349 + 0.369532i 0.00922390 + 0.0159763i
\(536\) 2.37770 17.8092i 0.102701 0.769241i
\(537\) 1.27126 + 0.733963i 0.0548589 + 0.0316728i
\(538\) −5.00930 15.9212i −0.215966 0.686413i
\(539\) 0 0
\(540\) −0.146499 0.209765i −0.00630432 0.00902685i
\(541\) 2.66295 4.61237i 0.114489 0.198301i −0.803086 0.595863i \(-0.796810\pi\)
0.917575 + 0.397562i \(0.130144\pi\)
\(542\) 11.8009 + 10.8267i 0.506890 + 0.465047i
\(543\) −20.3925 + 11.7736i −0.875124 + 0.505253i
\(544\) −17.7995 + 27.7531i −0.763149 + 1.18990i
\(545\) 0.570686i 0.0244455i
\(546\) 0 0
\(547\) 18.5001i 0.791007i 0.918465 + 0.395503i \(0.129430\pi\)
−0.918465 + 0.395503i \(0.870570\pi\)
\(548\) −0.682141 7.90768i −0.0291396 0.337799i
\(549\) −1.46181 + 0.843974i −0.0623884 + 0.0360199i
\(550\) −19.0327 + 20.7452i −0.811557 + 0.884578i
\(551\) 8.93458 15.4751i 0.380626 0.659263i
\(552\) 14.8013 + 11.4004i 0.629983 + 0.485232i
\(553\) 0 0
\(554\) −15.8696 + 4.99307i −0.674236 + 0.212135i
\(555\) −0.961558 0.555156i −0.0408159 0.0235650i
\(556\) −0.474677 0.222049i −0.0201308 0.00941697i
\(557\) 14.9681 + 25.9255i 0.634219 + 1.09850i 0.986680 + 0.162673i \(0.0520116\pi\)
−0.352461 + 0.935827i \(0.614655\pi\)
\(558\) −2.59460 + 11.6699i −0.109838 + 0.494027i
\(559\) 0.786294 0.0332567
\(560\) 0 0
\(561\) 23.2819 0.982963
\(562\) 3.00940 13.5356i 0.126944 0.570964i
\(563\) −6.18858 10.7189i −0.260818 0.451749i 0.705642 0.708569i \(-0.250659\pi\)
−0.966459 + 0.256819i \(0.917325\pi\)
\(564\) 18.1404 + 8.48590i 0.763850 + 0.357321i
\(565\) −1.01514 0.586089i −0.0427071 0.0246570i
\(566\) −33.2486 + 10.4610i −1.39754 + 0.439709i
\(567\) 0 0
\(568\) 25.5128 + 19.6507i 1.07049 + 0.824525i
\(569\) 18.3617 31.8033i 0.769761 1.33327i −0.167931 0.985799i \(-0.553709\pi\)
0.937692 0.347467i \(-0.112958\pi\)
\(570\) 0.772364 0.841858i 0.0323507 0.0352616i
\(571\) −5.47430 + 3.16059i −0.229092 + 0.132267i −0.610153 0.792283i \(-0.708892\pi\)
0.381061 + 0.924550i \(0.375559\pi\)
\(572\) −0.612223 7.09716i −0.0255983 0.296747i
\(573\) 3.69128i 0.154206i
\(574\) 0 0
\(575\) 32.9187i 1.37280i
\(576\) 7.71980 + 2.09874i 0.321658 + 0.0874474i
\(577\) 4.40430 2.54283i 0.183354 0.105859i −0.405514 0.914089i \(-0.632907\pi\)
0.588867 + 0.808230i \(0.299574\pi\)
\(578\) 17.6847 + 16.2249i 0.735587 + 0.674865i
\(579\) 1.35837 2.35277i 0.0564520 0.0977777i
\(580\) −0.414546 0.593569i −0.0172131 0.0246466i
\(581\) 0 0
\(582\) −6.87775 21.8598i −0.285092 0.906118i
\(583\) −26.0648 15.0485i −1.07950 0.623247i
\(584\) −5.80686 + 43.4941i −0.240289 + 1.79980i
\(585\) 0.0570343 + 0.0987862i 0.00235808 + 0.00408431i
\(586\) 3.32759 + 0.739833i 0.137462 + 0.0305622i
\(587\) −30.0719 −1.24120 −0.620601 0.784127i \(-0.713111\pi\)
−0.620601 + 0.784127i \(0.713111\pi\)
\(588\) 0 0
\(589\) −53.3821 −2.19957
\(590\) −0.103989 0.0231202i −0.00428117 0.000951845i
\(591\) −2.04922 3.54935i −0.0842935 0.146001i
\(592\) 34.2036 5.94526i 1.40576 0.244349i
\(593\) 18.6666 + 10.7772i 0.766545 + 0.442565i 0.831641 0.555314i \(-0.187402\pi\)
−0.0650955 + 0.997879i \(0.520735\pi\)
\(594\) −1.69545 5.38872i −0.0695653 0.221102i
\(595\) 0 0
\(596\) 4.41978 3.08676i 0.181041 0.126439i
\(597\) −0.104115 + 0.180332i −0.00426112 + 0.00738048i
\(598\) −6.13757 5.63092i −0.250984 0.230265i
\(599\) 15.8953 9.17715i 0.649464 0.374968i −0.138787 0.990322i \(-0.544320\pi\)
0.788251 + 0.615354i \(0.210987\pi\)
\(600\) 5.37048 + 13.0327i 0.219249 + 0.532057i
\(601\) 12.2204i 0.498482i 0.968441 + 0.249241i \(0.0801812\pi\)
−0.968441 + 0.249241i \(0.919819\pi\)
\(602\) 0 0
\(603\) 6.35238i 0.258689i
\(604\) 8.60135 0.741979i 0.349984 0.0301907i
\(605\) 0.549120 0.317034i 0.0223249 0.0128893i
\(606\) 11.5359 12.5739i 0.468615 0.510780i
\(607\) 13.2875 23.0146i 0.539322 0.934133i −0.459619 0.888116i \(-0.652014\pi\)
0.998941 0.0460167i \(-0.0146527\pi\)
\(608\) −1.66671 + 35.6835i −0.0675942 + 1.44716i
\(609\) 0 0
\(610\) −0.291304 + 0.0916530i −0.0117945 + 0.00371092i
\(611\) −7.73243 4.46432i −0.312821 0.180607i
\(612\) 4.93924 10.5587i 0.199657 0.426810i
\(613\) 9.57949 + 16.5922i 0.386912 + 0.670151i 0.992032 0.125983i \(-0.0402084\pi\)
−0.605120 + 0.796134i \(0.706875\pi\)
\(614\) −7.49080 + 33.6918i −0.302304 + 1.35969i
\(615\) 0.415321 0.0167474
\(616\) 0 0
\(617\) −14.7860 −0.595263 −0.297632 0.954681i \(-0.596197\pi\)
−0.297632 + 0.954681i \(0.596197\pi\)
\(618\) −1.00806 + 4.53400i −0.0405500 + 0.182384i
\(619\) 12.6747 + 21.9532i 0.509439 + 0.882374i 0.999940 + 0.0109337i \(0.00348038\pi\)
−0.490501 + 0.871440i \(0.663186\pi\)
\(620\) −0.916449 + 1.95911i −0.0368055 + 0.0786796i
\(621\) −5.72040 3.30268i −0.229552 0.132532i
\(622\) 42.0713 13.2369i 1.68691 0.530751i
\(623\) 0 0
\(624\) −3.34855 1.22801i −0.134049 0.0491596i
\(625\) −12.3774 + 21.4383i −0.495096 + 0.857531i
\(626\) −2.42656 + 2.64489i −0.0969847 + 0.105711i
\(627\) 21.8456 12.6126i 0.872430 0.503698i
\(628\) 6.38859 0.551099i 0.254932 0.0219913i
\(629\) 50.5856i 2.01698i
\(630\) 0 0
\(631\) 36.7075i 1.46130i 0.682752 + 0.730650i \(0.260783\pi\)
−0.682752 + 0.730650i \(0.739217\pi\)
\(632\) −25.6887 + 10.5857i −1.02184 + 0.421078i
\(633\) −14.3630 + 8.29251i −0.570880 + 0.329598i
\(634\) 19.0202 + 17.4501i 0.755389 + 0.693032i
\(635\) −0.900459 + 1.55964i −0.0357336 + 0.0618925i
\(636\) −12.3544 + 8.62825i −0.489883 + 0.342132i
\(637\) 0 0
\(638\) −4.79760 15.2484i −0.189939 0.603688i
\(639\) −9.86020 5.69279i −0.390064 0.225203i
\(640\) 1.28096 + 0.673772i 0.0506344 + 0.0266332i
\(641\) 3.64685 + 6.31654i 0.144042 + 0.249488i 0.929015 0.370042i \(-0.120657\pi\)
−0.784973 + 0.619530i \(0.787323\pi\)
\(642\) 4.60458 + 1.02375i 0.181728 + 0.0404042i
\(643\) 20.6956 0.816155 0.408077 0.912947i \(-0.366199\pi\)
0.408077 + 0.912947i \(0.366199\pi\)
\(644\) 0 0
\(645\) 0.112812 0.00444199
\(646\) 50.8107 + 11.2969i 1.99912 + 0.444470i
\(647\) 7.92738 + 13.7306i 0.311658 + 0.539807i 0.978721 0.205194i \(-0.0657825\pi\)
−0.667064 + 0.745001i \(0.732449\pi\)
\(648\) −2.80355 0.374300i −0.110134 0.0147039i
\(649\) −2.03695 1.17603i −0.0799572 0.0461633i
\(650\) −1.88608 5.99461i −0.0739783 0.235128i
\(651\) 0 0
\(652\) −26.6386 38.1425i −1.04325 1.49377i
\(653\) 14.4081 24.9555i 0.563831 0.976584i −0.433326 0.901237i \(-0.642660\pi\)
0.997157 0.0753469i \(-0.0240064\pi\)
\(654\) −4.64871 4.26496i −0.181779 0.166773i
\(655\) −1.08238 + 0.624912i −0.0422921 + 0.0244173i
\(656\) −9.96812 + 8.32301i −0.389190 + 0.324959i
\(657\) 15.5139i 0.605256i
\(658\) 0 0
\(659\) 20.6316i 0.803693i −0.915707 0.401846i \(-0.868369\pi\)
0.915707 0.401846i \(-0.131631\pi\)
\(660\) −0.0878379 1.01826i −0.00341908 0.0396355i
\(661\) 20.7427 11.9758i 0.806799 0.465806i −0.0390440 0.999237i \(-0.512431\pi\)
0.845843 + 0.533432i \(0.179098\pi\)
\(662\) −19.8167 + 21.5997i −0.770196 + 0.839496i
\(663\) −2.59847 + 4.50068i −0.100916 + 0.174792i
\(664\) −2.55474 + 3.31685i −0.0991431 + 0.128719i
\(665\) 0 0
\(666\) −11.7083 + 3.68378i −0.453687 + 0.142744i
\(667\) −16.1869 9.34553i −0.626760 0.361860i
\(668\) 17.5156 + 8.19360i 0.677698 + 0.317020i
\(669\) −10.6716 18.4838i −0.412588 0.714624i
\(670\) −0.249429 + 1.12187i −0.00963629 + 0.0433417i
\(671\) −6.74259 −0.260295
\(672\) 0 0
\(673\) 3.43936 0.132577 0.0662887 0.997800i \(-0.478884\pi\)
0.0662887 + 0.997800i \(0.478884\pi\)
\(674\) 0.101451 0.456301i 0.00390773 0.0175761i
\(675\) −2.49182 4.31595i −0.0959101 0.166121i
\(676\) −22.1103 10.3430i −0.850397 0.397807i
\(677\) −28.7477 16.5975i −1.10486 0.637893i −0.167369 0.985894i \(-0.553527\pi\)
−0.937494 + 0.348002i \(0.886860\pi\)
\(678\) −12.3607 + 3.88904i −0.474709 + 0.149358i
\(679\) 0 0
\(680\) 1.28689 1.67079i 0.0493501 0.0640720i
\(681\) 13.4986 23.3803i 0.517268 0.895935i
\(682\) −32.2837 + 35.1885i −1.23621 + 1.34744i
\(683\) 7.39676 4.27052i 0.283029 0.163407i −0.351765 0.936088i \(-0.614418\pi\)
0.634794 + 0.772682i \(0.281085\pi\)
\(684\) −1.08545 12.5831i −0.0415034 0.481125i
\(685\) 0.507689i 0.0193978i
\(686\) 0 0
\(687\) 2.91694i 0.111288i
\(688\) −2.70761 + 2.26075i −0.103227 + 0.0861904i
\(689\) 5.81814 3.35910i 0.221653 0.127972i
\(690\) −0.880580 0.807889i −0.0335231 0.0307558i
\(691\) −1.22924 + 2.12910i −0.0467625 + 0.0809950i −0.888459 0.458956i \(-0.848224\pi\)
0.841697 + 0.539950i \(0.181557\pi\)
\(692\) 23.7123 + 33.9525i 0.901406 + 1.29068i
\(693\) 0 0
\(694\) 9.33563 + 29.6717i 0.354375 + 1.12632i
\(695\) 0.0290295 + 0.0167602i 0.00110115 + 0.000635749i
\(696\) −7.93316 1.05915i −0.300706 0.0401470i
\(697\) 9.46098 + 16.3869i 0.358360 + 0.620698i
\(698\) −36.8193 8.18615i −1.39363 0.309850i
\(699\) 20.3989 0.771559
\(700\) 0 0
\(701\) 43.1693 1.63048 0.815241 0.579123i \(-0.196605\pi\)
0.815241 + 0.579123i \(0.196605\pi\)
\(702\) 1.23093 + 0.273677i 0.0464586 + 0.0103293i
\(703\) −27.4039 47.4649i −1.03356 1.79017i
\(704\) 22.5140 + 22.6789i 0.848527 + 0.854743i
\(705\) −1.10940 0.640513i −0.0417824 0.0241231i
\(706\) −3.29861 10.4841i −0.124145 0.394574i
\(707\) 0 0
\(708\) −0.965485 + 0.674291i −0.0362852 + 0.0253414i
\(709\) −13.0399 + 22.5857i −0.489723 + 0.848226i −0.999930 0.0118261i \(-0.996236\pi\)
0.510207 + 0.860052i \(0.329569\pi\)
\(710\) −1.51785 1.39255i −0.0569638 0.0522615i
\(711\) 8.50718 4.91162i 0.319044 0.184200i
\(712\) −1.17675 + 0.484911i −0.0441005 + 0.0181728i
\(713\) 55.8375i 2.09113i
\(714\) 0 0
\(715\) 0.455652i 0.0170404i
\(716\) 2.92499 0.252318i 0.109312 0.00942958i
\(717\) −21.8718 + 12.6277i −0.816818 + 0.471590i
\(718\) 16.0494 17.4935i 0.598959 0.652852i
\(719\) 19.0610 33.0146i 0.710854 1.23124i −0.253683 0.967287i \(-0.581642\pi\)
0.964537 0.263948i \(-0.0850246\pi\)
\(720\) −0.480429 0.176187i −0.0179045 0.00656608i
\(721\) 0 0
\(722\) 28.1647 8.86146i 1.04818 0.329789i
\(723\) 7.10954 + 4.10469i 0.264406 + 0.152655i
\(724\) −19.9548 + 42.6578i −0.741616 + 1.58536i
\(725\) −7.05105 12.2128i −0.261870 0.453571i
\(726\) 1.52128 6.84235i 0.0564599 0.253943i
\(727\) −30.8059 −1.14253 −0.571264 0.820766i \(-0.693547\pi\)
−0.571264 + 0.820766i \(0.693547\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0.609161 2.73986i 0.0225461 0.101407i
\(731\) 2.56986 + 4.45112i 0.0950496 + 0.164631i
\(732\) −1.43044 + 3.05786i −0.0528705 + 0.113022i
\(733\) 35.6019 + 20.5548i 1.31499 + 0.759207i 0.982917 0.184048i \(-0.0589203\pi\)
0.332068 + 0.943255i \(0.392254\pi\)
\(734\) 5.44517 1.71322i 0.200985 0.0632360i
\(735\) 0 0
\(736\) 37.3248 + 1.74337i 1.37581 + 0.0642617i
\(737\) −12.6874 + 21.9753i −0.467348 + 0.809471i
\(738\) 3.10385 3.38313i 0.114254 0.124535i
\(739\) −24.9833 + 14.4241i −0.919027 + 0.530600i −0.883324 0.468762i \(-0.844700\pi\)
−0.0357022 + 0.999362i \(0.511367\pi\)
\(740\) −2.21241 + 0.190849i −0.0813297 + 0.00701575i
\(741\) 5.63071i 0.206849i
\(742\) 0 0
\(743\) 0.365822i 0.0134207i −0.999977 0.00671036i \(-0.997864\pi\)
0.999977 0.00671036i \(-0.00213599\pi\)
\(744\) 9.10954 + 22.1064i 0.333972 + 0.810459i
\(745\) −0.298632 + 0.172415i −0.0109410 + 0.00631681i
\(746\) −21.6535 19.8660i −0.792792 0.727347i
\(747\) 0.740105 1.28190i 0.0270790 0.0469023i
\(748\) 38.1753 26.6615i 1.39583 0.974841i
\(749\) 0 0
\(750\) −0.542096 1.72296i −0.0197945 0.0629136i
\(751\) −17.2878 9.98114i −0.630842 0.364217i 0.150236 0.988650i \(-0.451997\pi\)
−0.781078 + 0.624433i \(0.785330\pi\)
\(752\) 39.4625 6.85936i 1.43905 0.250135i
\(753\) −3.27590 5.67402i −0.119380 0.206773i
\(754\) 3.48315 + 0.774419i 0.126849 + 0.0282027i
\(755\) −0.552224 −0.0200975
\(756\) 0 0
\(757\) −3.04476 −0.110664 −0.0553319 0.998468i \(-0.517622\pi\)
−0.0553319 + 0.998468i \(0.517622\pi\)
\(758\) 14.8818 + 3.30872i 0.540533 + 0.120178i
\(759\) −13.1927 22.8504i −0.478865 0.829418i
\(760\) 0.302381 2.26487i 0.0109685 0.0821556i
\(761\) −6.51310 3.76034i −0.236100 0.136312i 0.377283 0.926098i \(-0.376858\pi\)
−0.613383 + 0.789786i \(0.710192\pi\)
\(762\) 5.97507 + 18.9908i 0.216454 + 0.687963i
\(763\) 0 0
\(764\) −4.22711 6.05259i −0.152931 0.218975i
\(765\) −0.372812 + 0.645730i −0.0134791 + 0.0233464i
\(766\) −6.80463 6.24291i −0.245861 0.225566i
\(767\) 0.454683 0.262512i 0.0164177 0.00947874i
\(768\) 15.0615 5.39910i 0.543486 0.194823i
\(769\) 42.4363i 1.53029i 0.643857 + 0.765146i \(0.277333\pi\)
−0.643857 + 0.765146i \(0.722667\pi\)
\(770\) 0 0
\(771\) 18.7522i 0.675346i
\(772\) −0.466975 5.41338i −0.0168068 0.194832i
\(773\) −20.5807 + 11.8823i −0.740237 + 0.427376i −0.822155 0.569263i \(-0.807229\pi\)
0.0819185 + 0.996639i \(0.473895\pi\)
\(774\) 0.843091 0.918950i 0.0303043 0.0330310i
\(775\) −21.0642 + 36.4843i −0.756650 + 1.31056i
\(776\) −36.3104 27.9673i −1.30347 1.00397i
\(777\) 0 0
\(778\) 42.9928 13.5268i 1.54137 0.484960i
\(779\) 17.7546 + 10.2506i 0.636126 + 0.367267i
\(780\) 0.206645 + 0.0966663i 0.00739908 + 0.00346121i
\(781\) −22.7401 39.3871i −0.813706 1.40938i
\(782\) 11.8165 53.1477i 0.422557 1.90056i
\(783\) 2.82968 0.101125
\(784\) 0 0
\(785\) −0.410160 −0.0146393
\(786\) −2.99862 + 13.4871i −0.106957 + 0.481068i
\(787\) 9.97597 + 17.2789i 0.355605 + 0.615926i 0.987221 0.159355i \(-0.0509416\pi\)
−0.631616 + 0.775281i \(0.717608\pi\)
\(788\) −7.42466 3.47318i −0.264493 0.123727i
\(789\) −1.82321 1.05263i −0.0649079 0.0374746i
\(790\) 1.69528 0.533387i 0.0603154 0.0189770i
\(791\) 0 0
\(792\) −8.95097 6.89430i −0.318059 0.244978i
\(793\) 0.752534 1.30343i 0.0267233 0.0462860i
\(794\) 14.7442 16.0708i 0.523252 0.570333i
\(795\) 0.834750 0.481943i 0.0296055 0.0170928i
\(796\) 0.0357920 + 0.414917i 0.00126862 + 0.0147064i
\(797\) 27.9236i 0.989106i −0.869147 0.494553i \(-0.835332\pi\)
0.869147 0.494553i \(-0.164668\pi\)
\(798\) 0 0
\(799\) 58.3633i 2.06474i
\(800\) 23.7305 + 15.2196i 0.838998 + 0.538095i
\(801\) 0.389696 0.224991i 0.0137692 0.00794968i
\(802\) −28.8615 26.4790i −1.01913 0.935006i
\(803\) 30.9855 53.6685i 1.09346 1.89392i
\(804\) 7.27449 + 10.4160i 0.256551 + 0.367344i
\(805\) 0 0
\(806\) −3.19922 10.1682i −0.112688 0.358160i
\(807\) 10.2209 + 5.90104i 0.359793 + 0.207727i
\(808\) 4.51633 33.8279i 0.158884 1.19006i
\(809\) 10.8699 + 18.8273i 0.382166 + 0.661932i 0.991372 0.131081i \(-0.0418448\pi\)
−0.609205 + 0.793013i \(0.708511\pi\)
\(810\) 0.176607 + 0.0392655i 0.00620532 + 0.00137965i
\(811\) 21.4122 0.751885 0.375942 0.926643i \(-0.377319\pi\)
0.375942 + 0.926643i \(0.377319\pi\)
\(812\) 0 0
\(813\) −11.3243 −0.397159
\(814\) −47.8609 10.6411i −1.67752 0.372969i
\(815\) 1.48794 + 2.57718i 0.0521201 + 0.0902747i
\(816\) −3.99251 22.9693i −0.139766 0.804086i
\(817\) 4.82264 + 2.78435i 0.168723 + 0.0974122i
\(818\) 10.5464 + 33.5199i 0.368746 + 1.17200i
\(819\) 0 0
\(820\) 0.681001 0.475609i 0.0237816 0.0166090i
\(821\) 13.3550 23.1315i 0.466092 0.807294i −0.533158 0.846015i \(-0.678995\pi\)
0.999250 + 0.0387210i \(0.0123284\pi\)
\(822\) 4.13554 + 3.79416i 0.144244 + 0.132336i
\(823\) −20.9990 + 12.1238i −0.731979 + 0.422608i −0.819146 0.573585i \(-0.805552\pi\)
0.0871667 + 0.996194i \(0.472219\pi\)
\(824\) 3.53924 + 8.58877i 0.123295 + 0.299204i
\(825\) 19.9074i 0.693085i
\(826\) 0 0
\(827\) 34.2930i 1.19248i 0.802805 + 0.596242i \(0.203340\pi\)
−0.802805 + 0.596242i \(0.796660\pi\)
\(828\) −13.1618 + 1.13538i −0.457405 + 0.0394572i
\(829\) −0.699010 + 0.403574i −0.0242776 + 0.0140167i −0.512090 0.858932i \(-0.671128\pi\)
0.487812 + 0.872949i \(0.337795\pi\)
\(830\) 0.181042 0.197331i 0.00628406 0.00684947i
\(831\) 5.88192 10.1878i 0.204042 0.353410i
\(832\) −6.89687 + 1.82106i −0.239106 + 0.0631340i
\(833\) 0 0
\(834\) 0.353473 0.111213i 0.0122398 0.00385101i
\(835\) −1.07119 0.618450i −0.0370699 0.0214023i
\(836\) 21.3768 45.6975i 0.739333 1.58048i
\(837\) −4.22668 7.32083i −0.146096 0.253045i
\(838\) −6.72447 + 30.2450i −0.232293 + 1.04480i
\(839\) 27.7282 0.957284 0.478642 0.878010i \(-0.341129\pi\)
0.478642 + 0.878010i \(0.341129\pi\)
\(840\) 0 0
\(841\) −20.9929 −0.723893
\(842\) 5.77725 25.9847i 0.199097 0.895491i
\(843\) 4.90240 + 8.49121i 0.168848 + 0.292453i
\(844\) −14.0548 + 30.0452i −0.483787 + 1.03420i
\(845\) 1.35218 + 0.780684i 0.0465165 + 0.0268563i
\(846\) −13.5085 + 4.25018i −0.464431 + 0.146124i
\(847\) 0 0
\(848\) −10.3767 + 28.2954i −0.356338 + 0.971670i
\(849\) 12.3233 21.3445i 0.422933 0.732542i
\(850\) 27.7705 30.2692i 0.952520 1.03822i
\(851\) −49.6481 + 28.6643i −1.70191 + 0.982600i
\(852\) −22.6869 + 1.95704i −0.777241 + 0.0670472i
\(853\) 16.3380i 0.559402i 0.960087 + 0.279701i \(0.0902354\pi\)
−0.960087 + 0.279701i \(0.909765\pi\)
\(854\) 0 0
\(855\) 0.807859i 0.0276282i
\(856\) 8.72248 3.59434i 0.298128 0.122852i
\(857\) 25.5734 14.7648i 0.873569 0.504355i 0.00503640 0.999987i \(-0.498397\pi\)
0.868533 + 0.495632i \(0.165064\pi\)
\(858\) 3.71166 + 3.40526i 0.126714 + 0.116254i
\(859\) −7.56296 + 13.0994i −0.258045 + 0.446947i −0.965718 0.259593i \(-0.916412\pi\)
0.707673 + 0.706540i \(0.249745\pi\)
\(860\) 0.184978 0.129188i 0.00630771 0.00440528i
\(861\) 0 0
\(862\) −9.27225 29.4703i −0.315814 1.00376i
\(863\) 14.0116 + 8.08962i 0.476962 + 0.275374i 0.719149 0.694856i \(-0.244532\pi\)
−0.242188 + 0.970229i \(0.577865\pi\)
\(864\) −5.02561 + 2.59677i −0.170975 + 0.0883440i
\(865\) −1.32448 2.29407i −0.0450338 0.0780008i
\(866\) 32.7788 + 7.28779i 1.11387 + 0.247649i
\(867\) −16.9705 −0.576348
\(868\) 0 0
\(869\) 39.2394 1.33111
\(870\) 0.499741 + 0.111109i 0.0169428 + 0.00376694i
\(871\) −2.83207 4.90528i −0.0959609 0.166209i
\(872\) −12.5065 1.66974i −0.423525 0.0565444i
\(873\) 14.0333 + 8.10212i 0.474954 + 0.274215i
\(874\) −17.7044 56.2704i −0.598859 1.90337i
\(875\) 0 0
\(876\) −17.7659 25.4381i −0.600254 0.859475i
\(877\) −19.8411 + 34.3658i −0.669987 + 1.16045i 0.307921 + 0.951412i \(0.400367\pi\)
−0.977907 + 0.209039i \(0.932967\pi\)
\(878\) 33.2278 + 30.4849i 1.12138 + 1.02881i
\(879\) −2.08748 + 1.20521i −0.0704091 + 0.0406507i
\(880\) −1.31009 1.56904i −0.0441632 0.0528925i
\(881\) 27.4290i 0.924106i −0.886852 0.462053i \(-0.847113\pi\)
0.886852 0.462053i \(-0.152887\pi\)
\(882\) 0 0
\(883\) 37.1425i 1.24994i −0.780647 0.624972i \(-0.785110\pi\)
0.780647 0.624972i \(-0.214890\pi\)
\(884\) 0.893290 + 10.3554i 0.0300446 + 0.348291i
\(885\) 0.0652351 0.0376635i 0.00219285 0.00126605i
\(886\) −14.9934 + 16.3425i −0.503713 + 0.549036i
\(887\) −13.8563 + 23.9998i −0.465248 + 0.805834i −0.999213 0.0396732i \(-0.987368\pi\)
0.533964 + 0.845507i \(0.320702\pi\)
\(888\) −14.9795 + 19.4481i −0.502681 + 0.652637i
\(889\) 0 0
\(890\) 0.0776574 0.0244334i 0.00260308 0.000819008i
\(891\) 3.45938 + 1.99727i 0.115894 + 0.0669112i
\(892\) −38.6651 18.0871i −1.29460 0.605601i
\(893\) −31.6173 54.7628i −1.05803 1.83257i
\(894\) −0.827330 + 3.72113i −0.0276700 + 0.124453i
\(895\) −0.187790 −0.00627714
\(896\) 0 0
\(897\) 5.88969 0.196651
\(898\) 2.98486 13.4252i 0.0996060 0.448004i
\(899\) −11.9602 20.7156i −0.398894 0.690905i
\(900\) −9.02828 4.22333i −0.300943 0.140778i
\(901\) 38.0311 + 21.9572i 1.26700 + 0.731502i
\(902\) 17.4944 5.50428i 0.582501 0.183273i
\(903\) 0 0
\(904\) −15.8142 + 20.5318i −0.525973 + 0.682877i
\(905\) 1.50618 2.60879i 0.0500673 0.0867190i
\(906\) −4.12698 + 4.49832i −0.137110 + 0.149447i
\(907\) 34.6185 19.9870i 1.14949 0.663658i 0.200727 0.979647i \(-0.435670\pi\)
0.948763 + 0.315989i \(0.102336\pi\)
\(908\) −4.64050 53.7947i −0.154000 1.78524i
\(909\) 12.0661i 0.400207i
\(910\) 0 0
\(911\) 35.0711i 1.16196i −0.813918 0.580979i \(-0.802670\pi\)
0.813918 0.580979i \(-0.197330\pi\)
\(912\) −16.1894 19.3894i −0.536085 0.642047i
\(913\) 5.12061 2.95639i 0.169467 0.0978421i
\(914\) 11.8878 + 10.9064i 0.393213 + 0.360753i
\(915\) 0.107969 0.187007i 0.00356934 0.00618228i
\(916\) 3.34036 + 4.78290i 0.110369 + 0.158031i
\(917\) 0 0
\(918\) 2.47383 + 7.86264i 0.0816484 + 0.259506i
\(919\) −0.286521 0.165423i −0.00945146 0.00545681i 0.495267 0.868741i \(-0.335070\pi\)
−0.504718 + 0.863284i \(0.668404\pi\)
\(920\) −2.36905 0.316289i −0.0781052 0.0104278i
\(921\) −12.2027 21.1357i −0.402093 0.696446i
\(922\) 27.1195 + 6.02955i 0.893132 + 0.198573i
\(923\) 10.1520 0.334157
\(924\) 0 0
\(925\) −43.2536 −1.42217
\(926\) −9.29159 2.06583i −0.305341 0.0678872i
\(927\) −1.64215 2.84429i −0.0539354 0.0934188i
\(928\) −14.2209 + 7.34805i −0.466823 + 0.241211i
\(929\) −24.6448 14.2287i −0.808571 0.466829i 0.0378883 0.999282i \(-0.487937\pi\)
−0.846459 + 0.532453i \(0.821270\pi\)
\(930\) −0.459004 1.45887i −0.0150513 0.0478382i
\(931\) 0 0
\(932\) 33.4481 23.3600i 1.09563 0.765183i
\(933\) −15.5933 + 27.0084i −0.510502 + 0.884215i
\(934\) −23.0526 21.1497i −0.754306 0.692038i
\(935\) −2.57940 + 1.48922i −0.0843553 + 0.0487026i
\(936\) 2.33176 0.960867i 0.0762161 0.0314069i
\(937\) 11.8966i 0.388645i −0.980938 0.194323i \(-0.937749\pi\)
0.980938 0.194323i \(-0.0622509\pi\)
\(938\) 0 0
\(939\) 2.53807i 0.0828269i
\(940\) −2.55257 + 0.220193i −0.0832557 + 0.00718189i
\(941\) 14.5463 8.39834i 0.474197 0.273778i −0.243798 0.969826i \(-0.578393\pi\)
0.717995 + 0.696048i \(0.245060\pi\)
\(942\) −3.06529 + 3.34109i −0.0998725 + 0.108859i
\(943\) 10.7221 18.5713i 0.349161 0.604764i
\(944\) −0.810934 + 2.21127i −0.0263936 + 0.0719707i
\(945\) 0 0
\(946\) 4.75197 1.49511i 0.154500 0.0486103i
\(947\) 17.8680 + 10.3161i 0.580631 + 0.335227i 0.761384 0.648301i \(-0.224520\pi\)
−0.180753 + 0.983528i \(0.557854\pi\)
\(948\) 8.32462 17.7957i 0.270371 0.577976i
\(949\) 6.91653 + 11.9798i 0.224520 + 0.388880i
\(950\) 9.65948 43.4460i 0.313395 1.40958i
\(951\) −18.2520 −0.591863
\(952\) 0 0
\(953\) 21.9025 0.709492 0.354746 0.934963i \(-0.384567\pi\)
0.354746 + 0.934963i \(0.384567\pi\)
\(954\) 2.31259 10.4015i 0.0748728 0.336760i
\(955\) 0.236111 + 0.408956i 0.00764037 + 0.0132335i
\(956\) −21.4025 + 45.7523i −0.692205 + 1.47974i
\(957\) 9.78895 + 5.65165i 0.316432 + 0.182692i
\(958\) 28.6867 9.02571i 0.926826 0.291608i
\(959\) 0 0
\(960\) −0.989520 + 0.261274i −0.0319366 + 0.00843260i
\(961\) −20.2297 + 35.0389i −0.652571 + 1.13029i
\(962\) 7.39876 8.06448i 0.238546 0.260009i
\(963\) −2.88857 + 1.66772i −0.0930829 + 0.0537414i
\(964\) 16.3580 1.41109i 0.526856 0.0454482i
\(965\) 0.347550i 0.0111880i
\(966\) 0 0
\(967\) 0.651178i 0.0209405i 0.999945 + 0.0104702i \(0.00333284\pi\)
−0.999945 + 0.0104702i \(0.996667\pi\)
\(968\) −5.34114 12.9615i −0.171671 0.416598i
\(969\) −31.8748 + 18.4029i −1.02397 + 0.591188i
\(970\) 2.16024 + 1.98191i 0.0693610 + 0.0636353i
\(971\) −29.7321 + 51.4974i −0.954147 + 1.65263i −0.217839 + 0.975985i \(0.569901\pi\)
−0.736308 + 0.676646i \(0.763433\pi\)
\(972\) 1.63970 1.14516i 0.0525933 0.0367310i
\(973\) 0 0
\(974\) 15.0397 + 47.8012i 0.481904 + 1.53165i
\(975\) 3.84834 + 2.22184i 0.123246 + 0.0711558i
\(976\) 1.15626 + 6.65205i 0.0370109 + 0.212927i
\(977\) 11.1218 + 19.2636i 0.355819 + 0.616297i 0.987258 0.159129i \(-0.0508685\pi\)
−0.631438 + 0.775426i \(0.717535\pi\)
\(978\) 32.1131 + 7.13981i 1.02687 + 0.228306i
\(979\) 1.79748 0.0574476
\(980\) 0 0
\(981\) 4.46096 0.142428
\(982\) −20.9733 4.66306i −0.669286 0.148804i
\(983\) 9.54779 + 16.5373i 0.304527 + 0.527457i 0.977156 0.212523i \(-0.0681682\pi\)
−0.672629 + 0.739980i \(0.734835\pi\)
\(984\) 1.21516 9.10172i 0.0387380 0.290152i
\(985\) 0.454065 + 0.262154i 0.0144677 + 0.00835293i
\(986\) 7.00014 + 22.2488i 0.222930 + 0.708546i
\(987\) 0 0
\(988\) 6.44806 + 9.23266i 0.205140 + 0.293730i
\(989\) 2.91242 5.04446i 0.0926096 0.160404i
\(990\) 0.532525 + 0.488566i 0.0169248 + 0.0155276i
\(991\) −23.6878 + 13.6762i −0.752468 + 0.434438i −0.826585 0.562812i \(-0.809720\pi\)
0.0741168 + 0.997250i \(0.476386\pi\)
\(992\) 40.2522 + 25.8159i 1.27801 + 0.819656i
\(993\) 20.7274i 0.657763i
\(994\) 0 0
\(995\) 0.0266385i 0.000844499i
\(996\) −0.254430 2.94947i −0.00806193 0.0934575i
\(997\) 28.3135 16.3468i 0.896697 0.517708i 0.0205701 0.999788i \(-0.493452\pi\)
0.876127 + 0.482080i \(0.160119\pi\)
\(998\) 10.6022 11.5561i 0.335607 0.365804i
\(999\) 4.33956 7.51634i 0.137298 0.237806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.o.e.19.7 24
4.3 odd 2 588.2.o.f.19.4 24
7.2 even 3 588.2.b.d.391.11 yes 12
7.3 odd 6 588.2.o.f.31.4 24
7.4 even 3 inner 588.2.o.e.31.4 24
7.5 odd 6 588.2.b.c.391.11 12
7.6 odd 2 588.2.o.f.19.7 24
21.2 odd 6 1764.2.b.m.1567.2 12
21.5 even 6 1764.2.b.l.1567.2 12
28.3 even 6 inner 588.2.o.e.31.7 24
28.11 odd 6 588.2.o.f.31.7 24
28.19 even 6 588.2.b.d.391.12 yes 12
28.23 odd 6 588.2.b.c.391.12 yes 12
28.27 even 2 inner 588.2.o.e.19.4 24
84.23 even 6 1764.2.b.l.1567.1 12
84.47 odd 6 1764.2.b.m.1567.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.11 12 7.5 odd 6
588.2.b.c.391.12 yes 12 28.23 odd 6
588.2.b.d.391.11 yes 12 7.2 even 3
588.2.b.d.391.12 yes 12 28.19 even 6
588.2.o.e.19.4 24 28.27 even 2 inner
588.2.o.e.19.7 24 1.1 even 1 trivial
588.2.o.e.31.4 24 7.4 even 3 inner
588.2.o.e.31.7 24 28.3 even 6 inner
588.2.o.f.19.4 24 4.3 odd 2
588.2.o.f.19.7 24 7.6 odd 2
588.2.o.f.31.4 24 7.3 odd 6
588.2.o.f.31.7 24 28.11 odd 6
1764.2.b.l.1567.1 12 84.23 even 6
1764.2.b.l.1567.2 12 21.5 even 6
1764.2.b.m.1567.1 12 84.47 odd 6
1764.2.b.m.1567.2 12 21.2 odd 6