Properties

Label 1764.2.b.l.1567.1
Level $1764$
Weight $2$
Character 1764.1567
Analytic conductor $14.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(1567,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.1567"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,0,-4,0,0,0,-4,0,0,0,0,0,0,0,-4,0,0,0,-24,0,0,0,0,-12,24, 0,0,-32,0,-16,-4,0,-32,0,0,32,-24,0,32,0,0,0,24,0,24,0,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(50)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.15911316233388032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 10 x^{10} - 20 x^{9} + 35 x^{8} - 56 x^{7} + 84 x^{6} - 112 x^{5} + 140 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 588)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1567.1
Root \(1.34902 + 0.424442i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1567
Dual form 1764.2.b.l.1567.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.34902 - 0.424442i) q^{2} +(1.63970 + 1.14516i) q^{4} +0.127929i q^{5} +(-1.72593 - 2.24080i) q^{8} +(0.0542984 - 0.172579i) q^{10} -3.99455i q^{11} -0.891655i q^{13} +(1.37722 + 3.75543i) q^{16} -5.82842i q^{17} +6.31490 q^{19} +(-0.146499 + 0.209765i) q^{20} +(-1.69545 + 5.38872i) q^{22} +6.60535i q^{23} +4.98363 q^{25} +(-0.378456 + 1.20286i) q^{26} -2.82968 q^{29} -8.45337 q^{31} +(-0.263934 - 5.65069i) q^{32} +(-2.47383 + 7.86264i) q^{34} -8.67912 q^{37} +(-8.51891 - 2.68031i) q^{38} +(0.286663 - 0.220796i) q^{40} -3.24650i q^{41} -0.881836i q^{43} +(4.57439 - 6.54985i) q^{44} +(2.80359 - 8.91074i) q^{46} -10.0136 q^{47} +(-6.72301 - 2.11526i) q^{50} +(1.02109 - 1.46204i) q^{52} +7.53454 q^{53} +0.511019 q^{55} +(3.81729 + 1.20104i) q^{58} -0.588819 q^{59} -1.68795i q^{61} +(11.4037 + 3.58796i) q^{62} +(-2.04234 + 7.73491i) q^{64} +0.114069 q^{65} -6.35238i q^{67} +(6.67447 - 9.55685i) q^{68} +11.3856i q^{71} -15.5139i q^{73} +(11.7083 + 3.68378i) q^{74} +(10.3545 + 7.23156i) q^{76} -9.82324i q^{79} +(-0.480429 + 0.176187i) q^{80} +(-1.37795 + 4.37958i) q^{82} -1.48021 q^{83} +0.745624 q^{85} +(-0.374288 + 1.18961i) q^{86} +(-8.95097 + 6.89430i) q^{88} -0.449983i q^{89} +(-7.56418 + 10.8308i) q^{92} +(13.5085 + 4.25018i) q^{94} +0.807859i q^{95} -16.2042i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 4 q^{4} - 4 q^{8} - 4 q^{16} - 24 q^{20} - 12 q^{25} + 24 q^{26} - 32 q^{29} - 16 q^{31} - 4 q^{32} - 32 q^{34} + 32 q^{37} - 24 q^{38} + 32 q^{40} + 24 q^{44} + 24 q^{46} + 28 q^{50} - 32 q^{52}+ \cdots + 24 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34902 0.424442i −0.953900 0.300126i
\(3\) 0 0
\(4\) 1.63970 + 1.14516i 0.819849 + 0.572580i
\(5\) 0.127929i 0.0572116i 0.999591 + 0.0286058i \(0.00910675\pi\)
−0.999591 + 0.0286058i \(0.990893\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.72593 2.24080i −0.610208 0.792241i
\(9\) 0 0
\(10\) 0.0542984 0.172579i 0.0171707 0.0545741i
\(11\) 3.99455i 1.20440i −0.798345 0.602201i \(-0.794291\pi\)
0.798345 0.602201i \(-0.205709\pi\)
\(12\) 0 0
\(13\) 0.891655i 0.247301i −0.992326 0.123650i \(-0.960540\pi\)
0.992326 0.123650i \(-0.0394601\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.37722 + 3.75543i 0.344305 + 0.938858i
\(17\) 5.82842i 1.41360i −0.707414 0.706800i \(-0.750138\pi\)
0.707414 0.706800i \(-0.249862\pi\)
\(18\) 0 0
\(19\) 6.31490 1.44874 0.724368 0.689413i \(-0.242132\pi\)
0.724368 + 0.689413i \(0.242132\pi\)
\(20\) −0.146499 + 0.209765i −0.0327582 + 0.0469049i
\(21\) 0 0
\(22\) −1.69545 + 5.38872i −0.361472 + 1.14888i
\(23\) 6.60535i 1.37731i 0.725089 + 0.688656i \(0.241799\pi\)
−0.725089 + 0.688656i \(0.758201\pi\)
\(24\) 0 0
\(25\) 4.98363 0.996727
\(26\) −0.378456 + 1.20286i −0.0742212 + 0.235900i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.82968 −0.525459 −0.262729 0.964870i \(-0.584623\pi\)
−0.262729 + 0.964870i \(0.584623\pi\)
\(30\) 0 0
\(31\) −8.45337 −1.51827 −0.759135 0.650934i \(-0.774378\pi\)
−0.759135 + 0.650934i \(0.774378\pi\)
\(32\) −0.263934 5.65069i −0.0466573 0.998911i
\(33\) 0 0
\(34\) −2.47383 + 7.86264i −0.424258 + 1.34843i
\(35\) 0 0
\(36\) 0 0
\(37\) −8.67912 −1.42684 −0.713419 0.700737i \(-0.752854\pi\)
−0.713419 + 0.700737i \(0.752854\pi\)
\(38\) −8.51891 2.68031i −1.38195 0.434803i
\(39\) 0 0
\(40\) 0.286663 0.220796i 0.0453254 0.0349110i
\(41\) 3.24650i 0.507018i −0.967333 0.253509i \(-0.918415\pi\)
0.967333 0.253509i \(-0.0815847\pi\)
\(42\) 0 0
\(43\) 0.881836i 0.134479i −0.997737 0.0672394i \(-0.978581\pi\)
0.997737 0.0672394i \(-0.0214191\pi\)
\(44\) 4.57439 6.54985i 0.689616 0.987427i
\(45\) 0 0
\(46\) 2.80359 8.91074i 0.413366 1.31382i
\(47\) −10.0136 −1.46063 −0.730314 0.683111i \(-0.760626\pi\)
−0.730314 + 0.683111i \(0.760626\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −6.72301 2.11526i −0.950777 0.299143i
\(51\) 0 0
\(52\) 1.02109 1.46204i 0.141599 0.202749i
\(53\) 7.53454 1.03495 0.517474 0.855699i \(-0.326872\pi\)
0.517474 + 0.855699i \(0.326872\pi\)
\(54\) 0 0
\(55\) 0.511019 0.0689057
\(56\) 0 0
\(57\) 0 0
\(58\) 3.81729 + 1.20104i 0.501235 + 0.157704i
\(59\) −0.588819 −0.0766577 −0.0383288 0.999265i \(-0.512203\pi\)
−0.0383288 + 0.999265i \(0.512203\pi\)
\(60\) 0 0
\(61\) 1.68795i 0.216120i −0.994144 0.108060i \(-0.965536\pi\)
0.994144 0.108060i \(-0.0344638\pi\)
\(62\) 11.4037 + 3.58796i 1.44828 + 0.455672i
\(63\) 0 0
\(64\) −2.04234 + 7.73491i −0.255292 + 0.966864i
\(65\) 0.114069 0.0141485
\(66\) 0 0
\(67\) 6.35238i 0.776067i −0.921645 0.388033i \(-0.873154\pi\)
0.921645 0.388033i \(-0.126846\pi\)
\(68\) 6.67447 9.55685i 0.809398 1.15894i
\(69\) 0 0
\(70\) 0 0
\(71\) 11.3856i 1.35122i 0.737259 + 0.675610i \(0.236120\pi\)
−0.737259 + 0.675610i \(0.763880\pi\)
\(72\) 0 0
\(73\) 15.5139i 1.81577i −0.419223 0.907883i \(-0.637697\pi\)
0.419223 0.907883i \(-0.362303\pi\)
\(74\) 11.7083 + 3.68378i 1.36106 + 0.428231i
\(75\) 0 0
\(76\) 10.3545 + 7.23156i 1.18775 + 0.829517i
\(77\) 0 0
\(78\) 0 0
\(79\) 9.82324i 1.10520i −0.833446 0.552601i \(-0.813636\pi\)
0.833446 0.552601i \(-0.186364\pi\)
\(80\) −0.480429 + 0.176187i −0.0537136 + 0.0196983i
\(81\) 0 0
\(82\) −1.37795 + 4.37958i −0.152169 + 0.483644i
\(83\) −1.48021 −0.162474 −0.0812371 0.996695i \(-0.525887\pi\)
−0.0812371 + 0.996695i \(0.525887\pi\)
\(84\) 0 0
\(85\) 0.745624 0.0808743
\(86\) −0.374288 + 1.18961i −0.0403605 + 0.128279i
\(87\) 0 0
\(88\) −8.95097 + 6.89430i −0.954177 + 0.734935i
\(89\) 0.449983i 0.0476981i −0.999716 0.0238490i \(-0.992408\pi\)
0.999716 0.0238490i \(-0.00759210\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −7.56418 + 10.8308i −0.788620 + 1.12919i
\(93\) 0 0
\(94\) 13.5085 + 4.25018i 1.39329 + 0.438372i
\(95\) 0.807859i 0.0828845i
\(96\) 0 0
\(97\) 16.2042i 1.64529i −0.568555 0.822645i \(-0.692497\pi\)
0.568555 0.822645i \(-0.307503\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 8.17166 + 5.70705i 0.817166 + 0.570705i
\(101\) 12.0661i 1.20062i −0.799767 0.600310i \(-0.795044\pi\)
0.799767 0.600310i \(-0.204956\pi\)
\(102\) 0 0
\(103\) −3.28431 −0.323612 −0.161806 0.986823i \(-0.551732\pi\)
−0.161806 + 0.986823i \(0.551732\pi\)
\(104\) −1.99802 + 1.53893i −0.195922 + 0.150905i
\(105\) 0 0
\(106\) −10.1642 3.19797i −0.987237 0.310615i
\(107\) 3.33543i 0.322449i −0.986918 0.161224i \(-0.948456\pi\)
0.986918 0.161224i \(-0.0515443\pi\)
\(108\) 0 0
\(109\) 4.46096 0.427283 0.213641 0.976912i \(-0.431468\pi\)
0.213641 + 0.976912i \(0.431468\pi\)
\(110\) −0.689373 0.216898i −0.0657292 0.0206804i
\(111\) 0 0
\(112\) 0 0
\(113\) 9.16272 0.861956 0.430978 0.902362i \(-0.358169\pi\)
0.430978 + 0.902362i \(0.358169\pi\)
\(114\) 0 0
\(115\) −0.845016 −0.0787982
\(116\) −4.63983 3.24044i −0.430797 0.300867i
\(117\) 0 0
\(118\) 0.794327 + 0.249919i 0.0731237 + 0.0230069i
\(119\) 0 0
\(120\) 0 0
\(121\) −4.95641 −0.450583
\(122\) −0.716436 + 2.27707i −0.0648631 + 0.206157i
\(123\) 0 0
\(124\) −13.8610 9.68045i −1.24475 0.869330i
\(125\) 1.27720i 0.114236i
\(126\) 0 0
\(127\) 14.0775i 1.24917i −0.780955 0.624587i \(-0.785267\pi\)
0.780955 0.624587i \(-0.214733\pi\)
\(128\) 6.03817 9.56768i 0.533704 0.845671i
\(129\) 0 0
\(130\) −0.153880 0.0484155i −0.0134962 0.00424632i
\(131\) 9.76967 0.853580 0.426790 0.904351i \(-0.359644\pi\)
0.426790 + 0.904351i \(0.359644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.69622 + 8.56948i −0.232918 + 0.740290i
\(135\) 0 0
\(136\) −13.0603 + 10.0594i −1.11991 + 0.862590i
\(137\) 3.96852 0.339054 0.169527 0.985526i \(-0.445776\pi\)
0.169527 + 0.985526i \(0.445776\pi\)
\(138\) 0 0
\(139\) −0.262023 −0.0222245 −0.0111122 0.999938i \(-0.503537\pi\)
−0.0111122 + 0.999938i \(0.503537\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 4.83252 15.3594i 0.405536 1.28893i
\(143\) −3.56176 −0.297849
\(144\) 0 0
\(145\) 0.361999i 0.0300623i
\(146\) −6.58476 + 20.9286i −0.544958 + 1.73206i
\(147\) 0 0
\(148\) −14.2311 9.93897i −1.16979 0.816979i
\(149\) −2.69549 −0.220823 −0.110411 0.993886i \(-0.535217\pi\)
−0.110411 + 0.993886i \(0.535217\pi\)
\(150\) 0 0
\(151\) 4.31664i 0.351284i 0.984454 + 0.175642i \(0.0562000\pi\)
−0.984454 + 0.175642i \(0.943800\pi\)
\(152\) −10.8991 14.1504i −0.884031 1.14775i
\(153\) 0 0
\(154\) 0 0
\(155\) 1.08143i 0.0868626i
\(156\) 0 0
\(157\) 3.20616i 0.255879i −0.991782 0.127940i \(-0.959164\pi\)
0.991782 0.127940i \(-0.0408364\pi\)
\(158\) −4.16940 + 13.2517i −0.331699 + 1.05425i
\(159\) 0 0
\(160\) 0.722888 0.0337648i 0.0571493 0.00266934i
\(161\) 0 0
\(162\) 0 0
\(163\) 23.2619i 1.82201i 0.412393 + 0.911006i \(0.364693\pi\)
−0.412393 + 0.911006i \(0.635307\pi\)
\(164\) 3.71776 5.32328i 0.290308 0.415678i
\(165\) 0 0
\(166\) 1.99683 + 0.628263i 0.154984 + 0.0487627i
\(167\) −9.66864 −0.748182 −0.374091 0.927392i \(-0.622045\pi\)
−0.374091 + 0.927392i \(0.622045\pi\)
\(168\) 0 0
\(169\) 12.2050 0.938842
\(170\) −1.00586 0.316474i −0.0771460 0.0242725i
\(171\) 0 0
\(172\) 1.00984 1.44595i 0.0769998 0.110252i
\(173\) 20.7065i 1.57429i −0.616768 0.787145i \(-0.711559\pi\)
0.616768 0.787145i \(-0.288441\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 15.0012 5.50137i 1.13076 0.414682i
\(177\) 0 0
\(178\) −0.190991 + 0.607035i −0.0143154 + 0.0454992i
\(179\) 1.46793i 0.109718i −0.998494 0.0548589i \(-0.982529\pi\)
0.998494 0.0548589i \(-0.0174709\pi\)
\(180\) 0 0
\(181\) 23.5472i 1.75025i −0.483898 0.875124i \(-0.660779\pi\)
0.483898 0.875124i \(-0.339221\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 14.8013 11.4004i 1.09116 0.840446i
\(185\) 1.11031i 0.0816317i
\(186\) 0 0
\(187\) −23.2819 −1.70254
\(188\) −16.4192 11.4671i −1.19749 0.836326i
\(189\) 0 0
\(190\) 0.342889 1.08982i 0.0248758 0.0790635i
\(191\) 3.69128i 0.267092i −0.991043 0.133546i \(-0.957364\pi\)
0.991043 0.133546i \(-0.0426364\pi\)
\(192\) 0 0
\(193\) −2.71674 −0.195555 −0.0977777 0.995208i \(-0.531173\pi\)
−0.0977777 + 0.995208i \(0.531173\pi\)
\(194\) −6.87775 + 21.8598i −0.493794 + 1.56944i
\(195\) 0 0
\(196\) 0 0
\(197\) −4.09843 −0.292001 −0.146001 0.989284i \(-0.546640\pi\)
−0.146001 + 0.989284i \(0.546640\pi\)
\(198\) 0 0
\(199\) −0.208229 −0.0147610 −0.00738048 0.999973i \(-0.502349\pi\)
−0.00738048 + 0.999973i \(0.502349\pi\)
\(200\) −8.60140 11.1673i −0.608211 0.789648i
\(201\) 0 0
\(202\) −5.12135 + 16.2774i −0.360337 + 1.14527i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.415321 0.0290073
\(206\) 4.43059 + 1.39400i 0.308694 + 0.0971243i
\(207\) 0 0
\(208\) 3.34855 1.22801i 0.232180 0.0851469i
\(209\) 25.2252i 1.74486i
\(210\) 0 0
\(211\) 16.5850i 1.14176i 0.821034 + 0.570880i \(0.193398\pi\)
−0.821034 + 0.570880i \(0.806602\pi\)
\(212\) 12.3544 + 8.62825i 0.848502 + 0.592591i
\(213\) 0 0
\(214\) −1.41570 + 4.49956i −0.0967751 + 0.307584i
\(215\) 0.112812 0.00769375
\(216\) 0 0
\(217\) 0 0
\(218\) −6.01792 1.89342i −0.407585 0.128238i
\(219\) 0 0
\(220\) 0.837916 + 0.585198i 0.0564923 + 0.0394540i
\(221\) −5.19694 −0.349584
\(222\) 0 0
\(223\) −21.3432 −1.42925 −0.714624 0.699509i \(-0.753402\pi\)
−0.714624 + 0.699509i \(0.753402\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −12.3607 3.88904i −0.822220 0.258695i
\(227\) −26.9972 −1.79187 −0.895935 0.444185i \(-0.853493\pi\)
−0.895935 + 0.444185i \(0.853493\pi\)
\(228\) 0 0
\(229\) 2.91694i 0.192757i 0.995345 + 0.0963783i \(0.0307259\pi\)
−0.995345 + 0.0963783i \(0.969274\pi\)
\(230\) 1.13994 + 0.358660i 0.0751656 + 0.0236494i
\(231\) 0 0
\(232\) 4.88383 + 6.34074i 0.320639 + 0.416290i
\(233\) −20.3989 −1.33638 −0.668189 0.743991i \(-0.732930\pi\)
−0.668189 + 0.743991i \(0.732930\pi\)
\(234\) 0 0
\(235\) 1.28103i 0.0835649i
\(236\) −0.965485 0.674291i −0.0628477 0.0438926i
\(237\) 0 0
\(238\) 0 0
\(239\) 25.2554i 1.63364i −0.576895 0.816818i \(-0.695736\pi\)
0.576895 0.816818i \(-0.304264\pi\)
\(240\) 0 0
\(241\) 8.20938i 0.528813i −0.964411 0.264406i \(-0.914824\pi\)
0.964411 0.264406i \(-0.0851760\pi\)
\(242\) 6.68629 + 2.10371i 0.429811 + 0.135231i
\(243\) 0 0
\(244\) 1.93297 2.76773i 0.123746 0.177186i
\(245\) 0 0
\(246\) 0 0
\(247\) 5.63071i 0.358273i
\(248\) 14.5899 + 18.9423i 0.926460 + 1.20284i
\(249\) 0 0
\(250\) 0.542096 1.72296i 0.0342851 0.108970i
\(251\) 6.55180 0.413546 0.206773 0.978389i \(-0.433704\pi\)
0.206773 + 0.978389i \(0.433704\pi\)
\(252\) 0 0
\(253\) 26.3854 1.65884
\(254\) −5.97507 + 18.9908i −0.374909 + 1.19159i
\(255\) 0 0
\(256\) −12.2065 + 10.3441i −0.762908 + 0.646507i
\(257\) 18.7522i 1.16973i 0.811130 + 0.584866i \(0.198853\pi\)
−0.811130 + 0.584866i \(0.801147\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.187038 + 0.130627i 0.0115996 + 0.00810112i
\(261\) 0 0
\(262\) −13.1795 4.14666i −0.814229 0.256181i
\(263\) 2.10526i 0.129816i 0.997891 + 0.0649079i \(0.0206754\pi\)
−0.997891 + 0.0649079i \(0.979325\pi\)
\(264\) 0 0
\(265\) 0.963886i 0.0592111i
\(266\) 0 0
\(267\) 0 0
\(268\) 7.27449 10.4160i 0.444360 0.636258i
\(269\) 11.8021i 0.719586i 0.933032 + 0.359793i \(0.117153\pi\)
−0.933032 + 0.359793i \(0.882847\pi\)
\(270\) 0 0
\(271\) 11.3243 0.687900 0.343950 0.938988i \(-0.388235\pi\)
0.343950 + 0.938988i \(0.388235\pi\)
\(272\) 21.8882 8.02702i 1.32717 0.486710i
\(273\) 0 0
\(274\) −5.35361 1.68441i −0.323423 0.101759i
\(275\) 19.9074i 1.20046i
\(276\) 0 0
\(277\) −11.7638 −0.706821 −0.353410 0.935468i \(-0.614978\pi\)
−0.353410 + 0.935468i \(0.614978\pi\)
\(278\) 0.353473 + 0.111213i 0.0211999 + 0.00667014i
\(279\) 0 0
\(280\) 0 0
\(281\) 9.80481 0.584906 0.292453 0.956280i \(-0.405529\pi\)
0.292453 + 0.956280i \(0.405529\pi\)
\(282\) 0 0
\(283\) 24.6465 1.46508 0.732542 0.680722i \(-0.238334\pi\)
0.732542 + 0.680722i \(0.238334\pi\)
\(284\) −13.0383 + 18.6689i −0.773681 + 1.10780i
\(285\) 0 0
\(286\) 4.80487 + 1.51176i 0.284118 + 0.0893922i
\(287\) 0 0
\(288\) 0 0
\(289\) −16.9705 −0.998264
\(290\) −0.153647 + 0.488343i −0.00902248 + 0.0286765i
\(291\) 0 0
\(292\) 17.7659 25.4381i 1.03967 1.48865i
\(293\) 2.41042i 0.140818i 0.997518 + 0.0704091i \(0.0224305\pi\)
−0.997518 + 0.0704091i \(0.977570\pi\)
\(294\) 0 0
\(295\) 0.0753270i 0.00438571i
\(296\) 14.9795 + 19.4481i 0.870668 + 1.13040i
\(297\) 0 0
\(298\) 3.63626 + 1.14408i 0.210643 + 0.0662746i
\(299\) 5.88969 0.340610
\(300\) 0 0
\(301\) 0 0
\(302\) 1.83216 5.82323i 0.105429 0.335089i
\(303\) 0 0
\(304\) 8.69701 + 23.7152i 0.498808 + 1.36016i
\(305\) 0.215938 0.0123646
\(306\) 0 0
\(307\) −24.4054 −1.39289 −0.696446 0.717609i \(-0.745236\pi\)
−0.696446 + 0.717609i \(0.745236\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.459004 + 1.45887i −0.0260697 + 0.0828582i
\(311\) 31.1866 1.76843 0.884215 0.467079i \(-0.154694\pi\)
0.884215 + 0.467079i \(0.154694\pi\)
\(312\) 0 0
\(313\) 2.53807i 0.143460i −0.997424 0.0717302i \(-0.977148\pi\)
0.997424 0.0717302i \(-0.0228521\pi\)
\(314\) −1.36083 + 4.32516i −0.0767959 + 0.244083i
\(315\) 0 0
\(316\) 11.2492 16.1072i 0.632816 0.906098i
\(317\) 18.2520 1.02514 0.512568 0.858646i \(-0.328694\pi\)
0.512568 + 0.858646i \(0.328694\pi\)
\(318\) 0 0
\(319\) 11.3033i 0.632864i
\(320\) −0.989520 0.261274i −0.0553158 0.0146057i
\(321\) 0 0
\(322\) 0 0
\(323\) 36.8059i 2.04793i
\(324\) 0 0
\(325\) 4.44368i 0.246491i
\(326\) 9.87332 31.3807i 0.546832 1.73802i
\(327\) 0 0
\(328\) −7.27474 + 5.60322i −0.401680 + 0.309386i
\(329\) 0 0
\(330\) 0 0
\(331\) 20.7274i 1.13928i 0.821895 + 0.569639i \(0.192917\pi\)
−0.821895 + 0.569639i \(0.807083\pi\)
\(332\) −2.42710 1.69508i −0.133204 0.0930294i
\(333\) 0 0
\(334\) 13.0432 + 4.10378i 0.713690 + 0.224549i
\(335\) 0.812654 0.0444000
\(336\) 0 0
\(337\) −0.330532 −0.0180052 −0.00900261 0.999959i \(-0.502866\pi\)
−0.00900261 + 0.999959i \(0.502866\pi\)
\(338\) −16.4647 5.18029i −0.895561 0.281771i
\(339\) 0 0
\(340\) 1.22260 + 0.853858i 0.0663047 + 0.0463070i
\(341\) 33.7674i 1.82861i
\(342\) 0 0
\(343\) 0 0
\(344\) −1.97602 + 1.52199i −0.106540 + 0.0820600i
\(345\) 0 0
\(346\) −8.78872 + 27.9335i −0.472485 + 1.50171i
\(347\) 21.9951i 1.18076i 0.807127 + 0.590378i \(0.201021\pi\)
−0.807127 + 0.590378i \(0.798979\pi\)
\(348\) 0 0
\(349\) 26.6709i 1.42766i 0.700318 + 0.713831i \(0.253041\pi\)
−0.700318 + 0.713831i \(0.746959\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −22.5720 + 1.05430i −1.20309 + 0.0561941i
\(353\) 7.77165i 0.413643i 0.978379 + 0.206822i \(0.0663120\pi\)
−0.978379 + 0.206822i \(0.933688\pi\)
\(354\) 0 0
\(355\) −1.45655 −0.0773055
\(356\) 0.515302 0.737836i 0.0273109 0.0391052i
\(357\) 0 0
\(358\) −0.623049 + 1.98026i −0.0329292 + 0.104660i
\(359\) 16.7870i 0.885984i 0.896526 + 0.442992i \(0.146083\pi\)
−0.896526 + 0.442992i \(0.853917\pi\)
\(360\) 0 0
\(361\) 20.8779 1.09884
\(362\) −9.99441 + 31.7656i −0.525295 + 1.66956i
\(363\) 0 0
\(364\) 0 0
\(365\) 1.98468 0.103883
\(366\) 0 0
\(367\) −4.03640 −0.210698 −0.105349 0.994435i \(-0.533596\pi\)
−0.105349 + 0.994435i \(0.533596\pi\)
\(368\) −24.8059 + 9.09703i −1.29310 + 0.474215i
\(369\) 0 0
\(370\) −0.471263 + 1.49783i −0.0244998 + 0.0778685i
\(371\) 0 0
\(372\) 0 0
\(373\) 20.7790 1.07590 0.537948 0.842978i \(-0.319200\pi\)
0.537948 + 0.842978i \(0.319200\pi\)
\(374\) 31.4077 + 9.88181i 1.62405 + 0.510976i
\(375\) 0 0
\(376\) 17.2827 + 22.4384i 0.891287 + 1.15717i
\(377\) 2.52310i 0.129946i
\(378\) 0 0
\(379\) 10.7800i 0.553732i 0.960909 + 0.276866i \(0.0892958\pi\)
−0.960909 + 0.276866i \(0.910704\pi\)
\(380\) −0.925127 + 1.32464i −0.0474580 + 0.0679528i
\(381\) 0 0
\(382\) −1.56673 + 4.97960i −0.0801611 + 0.254779i
\(383\) 6.52981 0.333658 0.166829 0.985986i \(-0.446647\pi\)
0.166829 + 0.985986i \(0.446647\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.66493 + 1.15310i 0.186540 + 0.0586912i
\(387\) 0 0
\(388\) 18.5564 26.5701i 0.942060 1.34889i
\(389\) −31.8697 −1.61586 −0.807928 0.589281i \(-0.799411\pi\)
−0.807928 + 0.589281i \(0.799411\pi\)
\(390\) 0 0
\(391\) 38.4988 1.94697
\(392\) 0 0
\(393\) 0 0
\(394\) 5.52886 + 1.73955i 0.278540 + 0.0876371i
\(395\) 1.25668 0.0632303
\(396\) 0 0
\(397\) 15.4218i 0.773997i 0.922080 + 0.386999i \(0.126488\pi\)
−0.922080 + 0.386999i \(0.873512\pi\)
\(398\) 0.280905 + 0.0883811i 0.0140805 + 0.00443015i
\(399\) 0 0
\(400\) 6.86357 + 18.7157i 0.343178 + 0.935785i
\(401\) −27.6959 −1.38307 −0.691533 0.722345i \(-0.743064\pi\)
−0.691533 + 0.722345i \(0.743064\pi\)
\(402\) 0 0
\(403\) 7.53748i 0.375469i
\(404\) 13.8176 19.7847i 0.687450 0.984327i
\(405\) 0 0
\(406\) 0 0
\(407\) 34.6692i 1.71849i
\(408\) 0 0
\(409\) 24.8476i 1.22864i 0.789058 + 0.614319i \(0.210569\pi\)
−0.789058 + 0.614319i \(0.789431\pi\)
\(410\) −0.560276 0.176280i −0.0276700 0.00870583i
\(411\) 0 0
\(412\) −5.38527 3.76105i −0.265313 0.185294i
\(413\) 0 0
\(414\) 0 0
\(415\) 0.189362i 0.00929541i
\(416\) −5.03847 + 0.235338i −0.247031 + 0.0115384i
\(417\) 0 0
\(418\) −10.7066 + 34.0292i −0.523677 + 1.66442i
\(419\) 21.9087 1.07031 0.535155 0.844754i \(-0.320253\pi\)
0.535155 + 0.844754i \(0.320253\pi\)
\(420\) 0 0
\(421\) −18.8226 −0.917357 −0.458679 0.888602i \(-0.651677\pi\)
−0.458679 + 0.888602i \(0.651677\pi\)
\(422\) 7.03938 22.3735i 0.342671 1.08912i
\(423\) 0 0
\(424\) −13.0041 16.8834i −0.631534 0.819929i
\(425\) 29.0467i 1.40897i
\(426\) 0 0
\(427\) 0 0
\(428\) 3.81960 5.46911i 0.184628 0.264359i
\(429\) 0 0
\(430\) −0.152186 0.0478823i −0.00733906 0.00230909i
\(431\) 21.8458i 1.05227i −0.850400 0.526137i \(-0.823640\pi\)
0.850400 0.526137i \(-0.176360\pi\)
\(432\) 0 0
\(433\) 23.7440i 1.14107i −0.821275 0.570533i \(-0.806737\pi\)
0.821275 0.570533i \(-0.193263\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 7.31463 + 5.10851i 0.350307 + 0.244653i
\(437\) 41.7121i 1.99536i
\(438\) 0 0
\(439\) 31.8858 1.52183 0.760914 0.648852i \(-0.224751\pi\)
0.760914 + 0.648852i \(0.224751\pi\)
\(440\) −0.881982 1.14509i −0.0420468 0.0545900i
\(441\) 0 0
\(442\) 7.01076 + 2.20580i 0.333468 + 0.104919i
\(443\) 15.6824i 0.745095i −0.928013 0.372548i \(-0.878484\pi\)
0.928013 0.372548i \(-0.121516\pi\)
\(444\) 0 0
\(445\) 0.0575658 0.00272888
\(446\) 28.7924 + 9.05895i 1.36336 + 0.428954i
\(447\) 0 0
\(448\) 0 0
\(449\) 9.72484 0.458943 0.229472 0.973315i \(-0.426300\pi\)
0.229472 + 0.973315i \(0.426300\pi\)
\(450\) 0 0
\(451\) −12.9683 −0.610653
\(452\) 15.0241 + 10.4928i 0.706674 + 0.493539i
\(453\) 0 0
\(454\) 36.4198 + 11.4588i 1.70926 + 0.537786i
\(455\) 0 0
\(456\) 0 0
\(457\) −11.4077 −0.533628 −0.266814 0.963748i \(-0.585971\pi\)
−0.266814 + 0.963748i \(0.585971\pi\)
\(458\) 1.23807 3.93500i 0.0578512 0.183870i
\(459\) 0 0
\(460\) −1.38557 0.967678i −0.0646026 0.0451182i
\(461\) 19.6446i 0.914940i 0.889225 + 0.457470i \(0.151244\pi\)
−0.889225 + 0.457470i \(0.848756\pi\)
\(462\) 0 0
\(463\) 6.73057i 0.312796i −0.987694 0.156398i \(-0.950012\pi\)
0.987694 0.156398i \(-0.0499883\pi\)
\(464\) −3.89710 10.6267i −0.180918 0.493331i
\(465\) 0 0
\(466\) 27.5185 + 8.65816i 1.27477 + 0.401082i
\(467\) 22.1216 1.02367 0.511833 0.859085i \(-0.328966\pi\)
0.511833 + 0.859085i \(0.328966\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −0.543721 + 1.72813i −0.0250800 + 0.0797125i
\(471\) 0 0
\(472\) 1.01626 + 1.31942i 0.0467771 + 0.0607314i
\(473\) −3.52254 −0.161966
\(474\) 0 0
\(475\) 31.4711 1.44399
\(476\) 0 0
\(477\) 0 0
\(478\) −10.7194 + 34.0700i −0.490296 + 1.55832i
\(479\) 21.2649 0.971618 0.485809 0.874065i \(-0.338525\pi\)
0.485809 + 0.874065i \(0.338525\pi\)
\(480\) 0 0
\(481\) 7.73878i 0.352858i
\(482\) −3.48441 + 11.0746i −0.158710 + 0.504434i
\(483\) 0 0
\(484\) −8.12702 5.67588i −0.369410 0.257995i
\(485\) 2.07299 0.0941297
\(486\) 0 0
\(487\) 35.4341i 1.60567i −0.596200 0.802836i \(-0.703323\pi\)
0.596200 0.802836i \(-0.296677\pi\)
\(488\) −3.78235 + 2.91328i −0.171219 + 0.131878i
\(489\) 0 0
\(490\) 0 0
\(491\) 15.1925i 0.685628i 0.939403 + 0.342814i \(0.111380\pi\)
−0.939403 + 0.342814i \(0.888620\pi\)
\(492\) 0 0
\(493\) 16.4926i 0.742789i
\(494\) −2.38991 + 7.59592i −0.107527 + 0.341757i
\(495\) 0 0
\(496\) −11.6422 31.7460i −0.522748 1.42544i
\(497\) 0 0
\(498\) 0 0
\(499\) 11.0894i 0.496431i −0.968705 0.248216i \(-0.920156\pi\)
0.968705 0.248216i \(-0.0798442\pi\)
\(500\) −1.46259 + 2.09422i −0.0654092 + 0.0936562i
\(501\) 0 0
\(502\) −8.83849 2.78086i −0.394481 0.124116i
\(503\) −5.67396 −0.252989 −0.126495 0.991967i \(-0.540373\pi\)
−0.126495 + 0.991967i \(0.540373\pi\)
\(504\) 0 0
\(505\) 1.54360 0.0686894
\(506\) −35.5944 11.1991i −1.58236 0.497859i
\(507\) 0 0
\(508\) 16.1210 23.0828i 0.715252 1.02413i
\(509\) 12.7986i 0.567288i 0.958930 + 0.283644i \(0.0915435\pi\)
−0.958930 + 0.283644i \(0.908457\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 20.8573 8.77344i 0.921771 0.387735i
\(513\) 0 0
\(514\) 7.95924 25.2971i 0.351067 1.11581i
\(515\) 0.420158i 0.0185144i
\(516\) 0 0
\(517\) 39.9997i 1.75918i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.196874 0.255604i −0.00863350 0.0112090i
\(521\) 28.2632i 1.23823i −0.785299 0.619117i \(-0.787491\pi\)
0.785299 0.619117i \(-0.212509\pi\)
\(522\) 0 0
\(523\) −10.7622 −0.470599 −0.235300 0.971923i \(-0.575607\pi\)
−0.235300 + 0.971923i \(0.575607\pi\)
\(524\) 16.0193 + 11.1878i 0.699807 + 0.488742i
\(525\) 0 0
\(526\) 0.893560 2.84003i 0.0389611 0.123831i
\(527\) 49.2698i 2.14623i
\(528\) 0 0
\(529\) −20.6307 −0.896986
\(530\) 0.409114 1.30030i 0.0177708 0.0564814i
\(531\) 0 0
\(532\) 0 0
\(533\) −2.89475 −0.125386
\(534\) 0 0
\(535\) 0.426699 0.0184478
\(536\) −14.2344 + 10.9638i −0.614832 + 0.473562i
\(537\) 0 0
\(538\) 5.00930 15.9212i 0.215966 0.686413i
\(539\) 0 0
\(540\) 0 0
\(541\) −5.32590 −0.228978 −0.114489 0.993424i \(-0.536523\pi\)
−0.114489 + 0.993424i \(0.536523\pi\)
\(542\) −15.2766 4.80649i −0.656187 0.206456i
\(543\) 0 0
\(544\) −32.9346 + 1.53832i −1.41206 + 0.0659548i
\(545\) 0.570686i 0.0244455i
\(546\) 0 0
\(547\) 18.5001i 0.791007i −0.918465 0.395503i \(-0.870570\pi\)
0.918465 0.395503i \(-0.129430\pi\)
\(548\) 6.50718 + 4.54459i 0.277973 + 0.194135i
\(549\) 0 0
\(550\) −8.44952 + 26.8554i −0.360289 + 1.14512i
\(551\) −17.8692 −0.761252
\(552\) 0 0
\(553\) 0 0
\(554\) 15.8696 + 4.99307i 0.674236 + 0.212135i
\(555\) 0 0
\(556\) −0.429638 0.300058i −0.0182207 0.0127253i
\(557\) 29.9362 1.26844 0.634219 0.773153i \(-0.281322\pi\)
0.634219 + 0.773153i \(0.281322\pi\)
\(558\) 0 0
\(559\) −0.786294 −0.0332567
\(560\) 0 0
\(561\) 0 0
\(562\) −13.2269 4.16157i −0.557941 0.175545i
\(563\) 12.3772 0.521635 0.260818 0.965388i \(-0.416008\pi\)
0.260818 + 0.965388i \(0.416008\pi\)
\(564\) 0 0
\(565\) 1.17218i 0.0493139i
\(566\) −33.2486 10.4610i −1.39754 0.439709i
\(567\) 0 0
\(568\) 25.5128 19.6507i 1.07049 0.824525i
\(569\) 36.7233 1.53952 0.769761 0.638332i \(-0.220375\pi\)
0.769761 + 0.638332i \(0.220375\pi\)
\(570\) 0 0
\(571\) 6.32118i 0.264533i 0.991214 + 0.132267i \(0.0422255\pi\)
−0.991214 + 0.132267i \(0.957775\pi\)
\(572\) −5.84021 4.07878i −0.244191 0.170542i
\(573\) 0 0
\(574\) 0 0
\(575\) 32.9187i 1.37280i
\(576\) 0 0
\(577\) 5.08565i 0.211718i 0.994381 + 0.105859i \(0.0337593\pi\)
−0.994381 + 0.105859i \(0.966241\pi\)
\(578\) 22.8935 + 7.20299i 0.952244 + 0.299605i
\(579\) 0 0
\(580\) 0.414546 0.593569i 0.0172131 0.0246466i
\(581\) 0 0
\(582\) 0 0
\(583\) 30.0971i 1.24649i
\(584\) −34.7635 + 26.7759i −1.43853 + 1.10800i
\(585\) 0 0
\(586\) 1.02308 3.25170i 0.0422631 0.134326i
\(587\) −30.0719 −1.24120 −0.620601 0.784127i \(-0.713111\pi\)
−0.620601 + 0.784127i \(0.713111\pi\)
\(588\) 0 0
\(589\) −53.3821 −2.19957
\(590\) −0.0319719 + 0.101617i −0.00131626 + 0.00418353i
\(591\) 0 0
\(592\) −11.9531 32.5938i −0.491268 1.33960i
\(593\) 21.5543i 0.885130i 0.896736 + 0.442565i \(0.145931\pi\)
−0.896736 + 0.442565i \(0.854069\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.41978 3.08676i −0.181041 0.126439i
\(597\) 0 0
\(598\) −7.94530 2.49983i −0.324908 0.102226i
\(599\) 18.3543i 0.749936i 0.927038 + 0.374968i \(0.122346\pi\)
−0.927038 + 0.374968i \(0.877654\pi\)
\(600\) 0 0
\(601\) 12.2204i 0.498482i 0.968441 + 0.249241i \(0.0801812\pi\)
−0.968441 + 0.249241i \(0.919819\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −4.94325 + 7.07799i −0.201138 + 0.288000i
\(605\) 0.634069i 0.0257786i
\(606\) 0 0
\(607\) 26.5749 1.07864 0.539322 0.842100i \(-0.318681\pi\)
0.539322 + 0.842100i \(0.318681\pi\)
\(608\) −1.66671 35.6835i −0.0675942 1.44716i
\(609\) 0 0
\(610\) −0.291304 0.0916530i −0.0117945 0.00371092i
\(611\) 8.92864i 0.361214i
\(612\) 0 0
\(613\) −19.1590 −0.773824 −0.386912 0.922117i \(-0.626458\pi\)
−0.386912 + 0.922117i \(0.626458\pi\)
\(614\) 32.9234 + 10.3587i 1.32868 + 0.418043i
\(615\) 0 0
\(616\) 0 0
\(617\) 14.7860 0.595263 0.297632 0.954681i \(-0.403803\pi\)
0.297632 + 0.954681i \(0.403803\pi\)
\(618\) 0 0
\(619\) 25.3494 1.01888 0.509439 0.860507i \(-0.329853\pi\)
0.509439 + 0.860507i \(0.329853\pi\)
\(620\) 1.23841 1.77322i 0.0497358 0.0712142i
\(621\) 0 0
\(622\) −42.0713 13.2369i −1.68691 0.530751i
\(623\) 0 0
\(624\) 0 0
\(625\) 24.7548 0.990191
\(626\) −1.07726 + 3.42391i −0.0430561 + 0.136847i
\(627\) 0 0
\(628\) 3.67156 5.25713i 0.146511 0.209782i
\(629\) 50.5856i 2.01698i
\(630\) 0 0
\(631\) 36.7075i 1.46130i −0.682752 0.730650i \(-0.739217\pi\)
0.682752 0.730650i \(-0.260783\pi\)
\(632\) −22.0119 + 16.9542i −0.875586 + 0.674403i
\(633\) 0 0
\(634\) −24.6223 7.74693i −0.977878 0.307670i
\(635\) 1.80092 0.0714673
\(636\) 0 0
\(637\) 0 0
\(638\) 4.79760 15.2484i 0.189939 0.603688i
\(639\) 0 0
\(640\) 1.22398 + 0.772457i 0.0483822 + 0.0305341i
\(641\) 7.29371 0.288084 0.144042 0.989572i \(-0.453990\pi\)
0.144042 + 0.989572i \(0.453990\pi\)
\(642\) 0 0
\(643\) −20.6956 −0.816155 −0.408077 0.912947i \(-0.633801\pi\)
−0.408077 + 0.912947i \(0.633801\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −15.6220 + 49.6518i −0.614638 + 1.95352i
\(647\) −15.8548 −0.623315 −0.311658 0.950194i \(-0.600884\pi\)
−0.311658 + 0.950194i \(0.600884\pi\)
\(648\) 0 0
\(649\) 2.35206i 0.0923266i
\(650\) −1.88608 + 5.99461i −0.0739783 + 0.235128i
\(651\) 0 0
\(652\) −26.6386 + 38.1425i −1.04325 + 1.49377i
\(653\) 28.8161 1.12766 0.563831 0.825890i \(-0.309327\pi\)
0.563831 + 0.825890i \(0.309327\pi\)
\(654\) 0 0
\(655\) 1.24982i 0.0488347i
\(656\) 12.1920 4.47114i 0.476017 0.174569i
\(657\) 0 0
\(658\) 0 0
\(659\) 20.6316i 0.803693i −0.915707 0.401846i \(-0.868369\pi\)
0.915707 0.401846i \(-0.131631\pi\)
\(660\) 0 0
\(661\) 23.9517i 0.931611i 0.884887 + 0.465806i \(0.154235\pi\)
−0.884887 + 0.465806i \(0.845765\pi\)
\(662\) 8.79756 27.9616i 0.341927 1.08676i
\(663\) 0 0
\(664\) 2.55474 + 3.31685i 0.0991431 + 0.128719i
\(665\) 0 0
\(666\) 0 0
\(667\) 18.6911i 0.723721i
\(668\) −15.8537 11.0721i −0.613396 0.428394i
\(669\) 0 0
\(670\) −1.09628 0.344924i −0.0423532 0.0133256i
\(671\) −6.74259 −0.260295
\(672\) 0 0
\(673\) 3.43936 0.132577 0.0662887 0.997800i \(-0.478884\pi\)
0.0662887 + 0.997800i \(0.478884\pi\)
\(674\) 0.445894 + 0.140292i 0.0171752 + 0.00540383i
\(675\) 0 0
\(676\) 20.0124 + 13.9766i 0.769709 + 0.537562i
\(677\) 33.1949i 1.27579i −0.770125 0.637893i \(-0.779806\pi\)
0.770125 0.637893i \(-0.220194\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.28689 1.67079i −0.0493501 0.0640720i
\(681\) 0 0
\(682\) 14.3323 45.5528i 0.548812 1.74431i
\(683\) 8.54104i 0.326814i 0.986559 + 0.163407i \(0.0522483\pi\)
−0.986559 + 0.163407i \(0.947752\pi\)
\(684\) 0 0
\(685\) 0.507689i 0.0193978i
\(686\) 0 0
\(687\) 0 0
\(688\) 3.31168 1.21448i 0.126256 0.0463017i
\(689\) 6.71821i 0.255943i
\(690\) 0 0
\(691\) −2.45848 −0.0935249 −0.0467625 0.998906i \(-0.514890\pi\)
−0.0467625 + 0.998906i \(0.514890\pi\)
\(692\) 23.7123 33.9525i 0.901406 1.29068i
\(693\) 0 0
\(694\) 9.33563 29.6717i 0.354375 1.12632i
\(695\) 0.0335203i 0.00127150i
\(696\) 0 0
\(697\) −18.9220 −0.716720
\(698\) 11.3203 35.9795i 0.428478 1.36185i
\(699\) 0 0
\(700\) 0 0
\(701\) −43.1693 −1.63048 −0.815241 0.579123i \(-0.803395\pi\)
−0.815241 + 0.579123i \(0.803395\pi\)
\(702\) 0 0
\(703\) −54.8077 −2.06711
\(704\) 30.8975 + 8.15822i 1.16449 + 0.307475i
\(705\) 0 0
\(706\) 3.29861 10.4841i 0.124145 0.394574i
\(707\) 0 0
\(708\) 0 0
\(709\) 26.0798 0.979447 0.489723 0.871878i \(-0.337098\pi\)
0.489723 + 0.871878i \(0.337098\pi\)
\(710\) 1.96491 + 0.618219i 0.0737417 + 0.0232014i
\(711\) 0 0
\(712\) −1.00832 + 0.776638i −0.0377884 + 0.0291057i
\(713\) 55.8375i 2.09113i
\(714\) 0 0
\(715\) 0.455652i 0.0170404i
\(716\) 1.68101 2.40695i 0.0628222 0.0899521i
\(717\) 0 0
\(718\) 7.12511 22.6460i 0.265907 0.845140i
\(719\) −38.1219 −1.42171 −0.710854 0.703340i \(-0.751691\pi\)
−0.710854 + 0.703340i \(0.751691\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −28.1647 8.86146i −1.04818 0.329789i
\(723\) 0 0
\(724\) 26.9653 38.6103i 1.00216 1.43494i
\(725\) −14.1021 −0.523739
\(726\) 0 0
\(727\) 30.8059 1.14253 0.571264 0.820766i \(-0.306453\pi\)
0.571264 + 0.820766i \(0.306453\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2.67737 0.842381i −0.0990939 0.0311779i
\(731\) −5.13971 −0.190099
\(732\) 0 0
\(733\) 41.1095i 1.51841i −0.650849 0.759207i \(-0.725587\pi\)
0.650849 0.759207i \(-0.274413\pi\)
\(734\) 5.44517 + 1.71322i 0.200985 + 0.0632360i
\(735\) 0 0
\(736\) 37.3248 1.74337i 1.37581 0.0642617i
\(737\) −25.3749 −0.934696
\(738\) 0 0
\(739\) 28.8483i 1.06120i 0.847622 + 0.530600i \(0.178033\pi\)
−0.847622 + 0.530600i \(0.821967\pi\)
\(740\) 1.27148 1.82058i 0.0467407 0.0669257i
\(741\) 0 0
\(742\) 0 0
\(743\) 0.365822i 0.0134207i −0.999977 0.00671036i \(-0.997864\pi\)
0.999977 0.00671036i \(-0.00213599\pi\)
\(744\) 0 0
\(745\) 0.344831i 0.0126336i
\(746\) −28.0312 8.81948i −1.02630 0.322904i
\(747\) 0 0
\(748\) −38.1753 26.6615i −1.39583 0.974841i
\(749\) 0 0
\(750\) 0 0
\(751\) 19.9623i 0.728434i −0.931314 0.364217i \(-0.881337\pi\)
0.931314 0.364217i \(-0.118663\pi\)
\(752\) −13.7909 37.6052i −0.502902 1.37132i
\(753\) 0 0
\(754\) 1.07091 3.40371i 0.0390002 0.123956i
\(755\) −0.552224 −0.0200975
\(756\) 0 0
\(757\) −3.04476 −0.110664 −0.0553319 0.998468i \(-0.517622\pi\)
−0.0553319 + 0.998468i \(0.517622\pi\)
\(758\) 4.57549 14.5424i 0.166189 0.528205i
\(759\) 0 0
\(760\) 1.81025 1.39431i 0.0656646 0.0505768i
\(761\) 7.52068i 0.272624i −0.990666 0.136312i \(-0.956475\pi\)
0.990666 0.136312i \(-0.0435250\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4.22711 6.05259i 0.152931 0.218975i
\(765\) 0 0
\(766\) −8.80884 2.77153i −0.318276 0.100139i
\(767\) 0.525023i 0.0189575i
\(768\) 0 0
\(769\) 42.4363i 1.53029i 0.643857 + 0.765146i \(0.277333\pi\)
−0.643857 + 0.765146i \(0.722667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.45464 3.11110i −0.160326 0.111971i
\(773\) 23.7646i 0.854752i 0.904074 + 0.427376i \(0.140562\pi\)
−0.904074 + 0.427376i \(0.859438\pi\)
\(774\) 0 0
\(775\) −42.1285 −1.51330
\(776\) −36.3104 + 27.9673i −1.30347 + 1.00397i
\(777\) 0 0
\(778\) 42.9928 + 13.5268i 1.54137 + 0.484960i
\(779\) 20.5013i 0.734535i
\(780\) 0 0
\(781\) 45.4803 1.62741
\(782\) −51.9355 16.3405i −1.85721 0.584335i
\(783\) 0 0
\(784\) 0 0
\(785\) 0.410160 0.0146393
\(786\) 0 0
\(787\) 19.9519 0.711210 0.355605 0.934636i \(-0.384275\pi\)
0.355605 + 0.934636i \(0.384275\pi\)
\(788\) −6.72019 4.69336i −0.239397 0.167194i
\(789\) 0 0
\(790\) −1.69528 0.533387i −0.0603154 0.0189770i
\(791\) 0 0
\(792\) 0 0
\(793\) −1.50507 −0.0534465
\(794\) 6.54565 20.8043i 0.232296 0.738316i
\(795\) 0 0
\(796\) −0.341433 0.238455i −0.0121018 0.00845183i
\(797\) 27.9236i 0.989106i 0.869147 + 0.494553i \(0.164668\pi\)
−0.869147 + 0.494553i \(0.835332\pi\)
\(798\) 0 0
\(799\) 58.3633i 2.06474i
\(800\) −1.31535 28.1610i −0.0465046 0.995641i
\(801\) 0 0
\(802\) 37.3622 + 11.7553i 1.31931 + 0.415093i
\(803\) −61.9711 −2.18691
\(804\) 0 0
\(805\) 0 0
\(806\) 3.19922 10.1682i 0.112688 0.358160i
\(807\) 0 0
\(808\) −27.0376 + 20.8252i −0.951181 + 0.732628i
\(809\) 21.7399 0.764333 0.382166 0.924094i \(-0.375178\pi\)
0.382166 + 0.924094i \(0.375178\pi\)
\(810\) 0 0
\(811\) −21.4122 −0.751885 −0.375942 0.926643i \(-0.622681\pi\)
−0.375942 + 0.926643i \(0.622681\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 14.7150 46.7693i 0.515762 1.63926i
\(815\) −2.97587 −0.104240
\(816\) 0 0
\(817\) 5.56870i 0.194824i
\(818\) 10.5464 33.5199i 0.368746 1.17200i
\(819\) 0 0
\(820\) 0.681001 + 0.475609i 0.0237816 + 0.0166090i
\(821\) 26.7099 0.932183 0.466092 0.884736i \(-0.345662\pi\)
0.466092 + 0.884736i \(0.345662\pi\)
\(822\) 0 0
\(823\) 24.2476i 0.845217i 0.906312 + 0.422608i \(0.138885\pi\)
−0.906312 + 0.422608i \(0.861115\pi\)
\(824\) 5.66848 + 7.35946i 0.197471 + 0.256379i
\(825\) 0 0
\(826\) 0 0
\(827\) 34.2930i 1.19248i 0.802805 + 0.596242i \(0.203340\pi\)
−0.802805 + 0.596242i \(0.796660\pi\)
\(828\) 0 0
\(829\) 0.807148i 0.0280334i −0.999902 0.0140167i \(-0.995538\pi\)
0.999902 0.0140167i \(-0.00446180\pi\)
\(830\) −0.0803731 + 0.255453i −0.00278979 + 0.00886689i
\(831\) 0 0
\(832\) 6.89687 + 1.82106i 0.239106 + 0.0631340i
\(833\) 0 0
\(834\) 0 0
\(835\) 1.23690i 0.0428047i
\(836\) 28.8868 41.3616i 0.999071 1.43052i
\(837\) 0 0
\(838\) −29.5552 9.29896i −1.02097 0.321227i
\(839\) 27.7282 0.957284 0.478642 0.878010i \(-0.341129\pi\)
0.478642 + 0.878010i \(0.341129\pi\)
\(840\) 0 0
\(841\) −20.9929 −0.723893
\(842\) 25.3920 + 7.98910i 0.875067 + 0.275322i
\(843\) 0 0
\(844\) −18.9925 + 27.1944i −0.653748 + 0.936071i
\(845\) 1.56137i 0.0537127i
\(846\) 0 0
\(847\) 0 0
\(848\) 10.3767 + 28.2954i 0.356338 + 0.971670i
\(849\) 0 0
\(850\) −12.3286 + 39.1845i −0.422869 + 1.34402i
\(851\) 57.3287i 1.96520i
\(852\) 0 0
\(853\) 16.3380i 0.559402i 0.960087 + 0.279701i \(0.0902354\pi\)
−0.960087 + 0.279701i \(0.909765\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −7.47403 + 5.75672i −0.255457 + 0.196761i
\(857\) 29.5296i 1.00871i −0.863496 0.504355i \(-0.831730\pi\)
0.863496 0.504355i \(-0.168270\pi\)
\(858\) 0 0
\(859\) −15.1259 −0.516090 −0.258045 0.966133i \(-0.583078\pi\)
−0.258045 + 0.966133i \(0.583078\pi\)
\(860\) 0.184978 + 0.129188i 0.00630771 + 0.00440528i
\(861\) 0 0
\(862\) −9.27225 + 29.4703i −0.315814 + 1.00376i
\(863\) 16.1792i 0.550748i −0.961337 0.275374i \(-0.911198\pi\)
0.961337 0.275374i \(-0.0888016\pi\)
\(864\) 0 0
\(865\) 2.64897 0.0900676
\(866\) −10.0780 + 32.0311i −0.342463 + 1.08846i
\(867\) 0 0
\(868\) 0 0
\(869\) −39.2394 −1.33111
\(870\) 0 0
\(871\) −5.66413 −0.191922
\(872\) −7.69930 9.99611i −0.260731 0.338511i
\(873\) 0 0
\(874\) 17.7044 56.2704i 0.598859 1.90337i
\(875\) 0 0
\(876\) 0 0
\(877\) 39.6822 1.33997 0.669987 0.742373i \(-0.266300\pi\)
0.669987 + 0.742373i \(0.266300\pi\)
\(878\) −43.0146 13.5337i −1.45167 0.456740i
\(879\) 0 0
\(880\) 0.703786 + 1.91910i 0.0237246 + 0.0646927i
\(881\) 27.4290i 0.924106i 0.886852 + 0.462053i \(0.152887\pi\)
−0.886852 + 0.462053i \(0.847113\pi\)
\(882\) 0 0
\(883\) 37.1425i 1.24994i 0.780647 + 0.624972i \(0.214890\pi\)
−0.780647 + 0.624972i \(0.785110\pi\)
\(884\) −8.52141 5.95132i −0.286606 0.200165i
\(885\) 0 0
\(886\) −6.65628 + 21.1559i −0.223622 + 0.710746i
\(887\) 27.7126 0.930497 0.465248 0.885180i \(-0.345965\pi\)
0.465248 + 0.885180i \(0.345965\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −0.0776574 0.0244334i −0.00260308 0.000819008i
\(891\) 0 0
\(892\) −34.9964 24.4414i −1.17177 0.818358i
\(893\) −63.2346 −2.11607
\(894\) 0 0
\(895\) 0.187790 0.00627714
\(896\) 0 0
\(897\) 0 0
\(898\) −13.1190 4.12763i −0.437786 0.137741i
\(899\) 23.9203 0.797788
\(900\) 0 0
\(901\) 43.9145i 1.46300i
\(902\) 17.4944 + 5.50428i 0.582501 + 0.183273i
\(903\) 0 0
\(904\) −15.8142 20.5318i −0.525973 0.682877i
\(905\) 3.01237 0.100135
\(906\) 0 0
\(907\) 39.9740i 1.32732i −0.748036 0.663658i \(-0.769003\pi\)
0.748036 0.663658i \(-0.230997\pi\)
\(908\) −44.2673 30.9161i −1.46906 1.02599i
\(909\) 0 0
\(910\) 0 0
\(911\) 35.0711i 1.16196i −0.813918 0.580979i \(-0.802670\pi\)
0.813918 0.580979i \(-0.197330\pi\)
\(912\) 0 0
\(913\) 5.91277i 0.195684i
\(914\) 15.3891 + 4.84189i 0.509028 + 0.160155i
\(915\) 0 0
\(916\) −3.34036 + 4.78290i −0.110369 + 0.158031i
\(917\) 0 0
\(918\) 0 0
\(919\) 0.330846i 0.0109136i −0.999985 0.00545681i \(-0.998263\pi\)
0.999985 0.00545681i \(-0.00173696\pi\)
\(920\) 1.45844 + 1.89351i 0.0480833 + 0.0624272i
\(921\) 0 0
\(922\) 8.33799 26.5009i 0.274597 0.872761i
\(923\) 10.1520 0.334157
\(924\) 0 0
\(925\) −43.2536 −1.42217
\(926\) −2.85674 + 9.07966i −0.0938782 + 0.298376i
\(927\) 0 0
\(928\) 0.746849 + 15.9897i 0.0245165 + 0.524887i
\(929\) 28.4574i 0.933658i −0.884348 0.466829i \(-0.845396\pi\)
0.884348 0.466829i \(-0.154604\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −33.4481 23.3600i −1.09563 0.765183i
\(933\) 0 0
\(934\) −29.8425 9.38934i −0.976476 0.307229i
\(935\) 2.97843i 0.0974051i
\(936\) 0 0
\(937\) 11.8966i 0.388645i −0.980938 0.194323i \(-0.937749\pi\)
0.980938 0.194323i \(-0.0622509\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.46698 2.10050i 0.0478475 0.0685106i
\(941\) 16.7967i 0.547556i −0.961793 0.273778i \(-0.911727\pi\)
0.961793 0.273778i \(-0.0882733\pi\)
\(942\) 0 0
\(943\) 21.4443 0.698321
\(944\) −0.810934 2.21127i −0.0263936 0.0719707i
\(945\) 0 0
\(946\) 4.75197 + 1.49511i 0.154500 + 0.0486103i
\(947\) 20.6321i 0.670455i −0.942137 0.335227i \(-0.891187\pi\)
0.942137 0.335227i \(-0.108813\pi\)
\(948\) 0 0
\(949\) −13.8331 −0.449040
\(950\) −42.4551 13.3577i −1.37743 0.433380i
\(951\) 0 0
\(952\) 0 0
\(953\) −21.9025 −0.709492 −0.354746 0.934963i \(-0.615433\pi\)
−0.354746 + 0.934963i \(0.615433\pi\)
\(954\) 0 0
\(955\) 0.472222 0.0152807
\(956\) 28.9215 41.4112i 0.935387 1.33934i
\(957\) 0 0
\(958\) −28.6867 9.02571i −0.926826 0.291608i
\(959\) 0 0
\(960\) 0 0
\(961\) 40.4594 1.30514
\(962\) 3.28466 10.4398i 0.105902 0.336591i
\(963\) 0 0
\(964\) 9.40105 13.4609i 0.302787 0.433547i
\(965\) 0.347550i 0.0111880i
\(966\) 0 0
\(967\) 0.651178i 0.0209405i −0.999945 0.0104702i \(-0.996667\pi\)
0.999945 0.0104702i \(-0.00333284\pi\)
\(968\) 8.55441 + 11.1063i 0.274949 + 0.356970i
\(969\) 0 0
\(970\) −2.79650 0.879864i −0.0897903 0.0282507i
\(971\) 59.4641 1.90829 0.954147 0.299338i \(-0.0967659\pi\)
0.954147 + 0.299338i \(0.0967659\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −15.0397 + 47.8012i −0.481904 + 1.53165i
\(975\) 0 0
\(976\) 6.33898 2.32468i 0.202906 0.0744111i
\(977\) 22.2437 0.711639 0.355819 0.934555i \(-0.384202\pi\)
0.355819 + 0.934555i \(0.384202\pi\)
\(978\) 0 0
\(979\) −1.79748 −0.0574476
\(980\) 0 0
\(981\) 0 0
\(982\) 6.44834 20.4950i 0.205775 0.654021i
\(983\) −19.0956 −0.609055 −0.304527 0.952504i \(-0.598498\pi\)
−0.304527 + 0.952504i \(0.598498\pi\)
\(984\) 0 0
\(985\) 0.524309i 0.0167059i
\(986\) 7.00014 22.2488i 0.222930 0.708546i
\(987\) 0 0
\(988\) 6.44806 9.23266i 0.205140 0.293730i
\(989\) 5.82484 0.185219
\(990\) 0 0
\(991\) 27.3523i 0.868876i 0.900702 + 0.434438i \(0.143053\pi\)
−0.900702 + 0.434438i \(0.856947\pi\)
\(992\) 2.23113 + 47.7674i 0.0708384 + 1.51662i
\(993\) 0 0
\(994\) 0 0
\(995\) 0.0266385i 0.000844499i
\(996\) 0 0
\(997\) 32.6936i 1.03542i 0.855557 + 0.517708i \(0.173215\pi\)
−0.855557 + 0.517708i \(0.826785\pi\)
\(998\) −4.70682 + 14.9598i −0.148992 + 0.473546i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.b.l.1567.1 12
3.2 odd 2 588.2.b.c.391.12 yes 12
4.3 odd 2 1764.2.b.m.1567.2 12
7.6 odd 2 1764.2.b.m.1567.1 12
12.11 even 2 588.2.b.d.391.11 yes 12
21.2 odd 6 588.2.o.f.31.7 24
21.5 even 6 588.2.o.e.31.7 24
21.11 odd 6 588.2.o.f.19.4 24
21.17 even 6 588.2.o.e.19.4 24
21.20 even 2 588.2.b.d.391.12 yes 12
28.27 even 2 inner 1764.2.b.l.1567.2 12
84.11 even 6 588.2.o.e.19.7 24
84.23 even 6 588.2.o.e.31.4 24
84.47 odd 6 588.2.o.f.31.4 24
84.59 odd 6 588.2.o.f.19.7 24
84.83 odd 2 588.2.b.c.391.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.11 12 84.83 odd 2
588.2.b.c.391.12 yes 12 3.2 odd 2
588.2.b.d.391.11 yes 12 12.11 even 2
588.2.b.d.391.12 yes 12 21.20 even 2
588.2.o.e.19.4 24 21.17 even 6
588.2.o.e.19.7 24 84.11 even 6
588.2.o.e.31.4 24 84.23 even 6
588.2.o.e.31.7 24 21.5 even 6
588.2.o.f.19.4 24 21.11 odd 6
588.2.o.f.19.7 24 84.59 odd 6
588.2.o.f.31.4 24 84.47 odd 6
588.2.o.f.31.7 24 21.2 odd 6
1764.2.b.l.1567.1 12 1.1 even 1 trivial
1764.2.b.l.1567.2 12 28.27 even 2 inner
1764.2.b.m.1567.1 12 7.6 odd 2
1764.2.b.m.1567.2 12 4.3 odd 2