Properties

Label 588.2.o.f.19.4
Level $588$
Weight $2$
Character 588.19
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(19,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,12,4,0,-8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.4
Character \(\chi\) \(=\) 588.19
Dual form 588.2.o.f.31.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04209 + 0.956063i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.171888 - 1.99260i) q^{4} +(0.110790 + 0.0639645i) q^{5} +(-1.34902 - 0.424442i) q^{6} +(1.72593 + 2.24080i) q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.176607 + 0.0392655i) q^{10} +(3.45938 - 1.99727i) q^{11} +(1.81159 - 0.847441i) q^{12} -0.891655i q^{13} +0.127929i q^{15} +(-3.94091 - 0.685007i) q^{16} +(5.04756 - 2.91421i) q^{17} +(-0.306932 - 1.38050i) q^{18} +(-3.15745 + 5.46886i) q^{19} +(0.146499 - 0.209765i) q^{20} +(-1.69545 + 5.38872i) q^{22} +(5.72040 + 3.30268i) q^{23} +(-1.07762 + 2.61510i) q^{24} +(-2.49182 - 4.31595i) q^{25} +(0.852478 + 0.929181i) q^{26} -1.00000 q^{27} +2.82968 q^{29} +(-0.122308 - 0.133313i) q^{30} +(4.22668 + 7.32083i) q^{31} +(4.76168 - 3.05392i) q^{32} +(3.45938 + 1.99727i) q^{33} +(-2.47383 + 7.86264i) q^{34} +(1.63970 + 1.14516i) q^{36} +(4.33956 - 7.51634i) q^{37} +(-1.93824 - 8.71774i) q^{38} +(0.772196 - 0.445827i) q^{39} +(0.0478838 + 0.358656i) q^{40} +3.24650i q^{41} -0.881836i q^{43} +(-3.38514 - 7.23647i) q^{44} +(-0.110790 + 0.0639645i) q^{45} +(-9.11872 + 2.02739i) q^{46} +(-5.00678 + 8.67200i) q^{47} +(-1.37722 - 3.75543i) q^{48} +(6.72301 + 2.11526i) q^{50} +(5.04756 + 2.91421i) q^{51} +(-1.77671 - 0.153265i) q^{52} +(3.76727 + 6.52510i) q^{53} +(1.04209 - 0.956063i) q^{54} +0.511019 q^{55} -6.31490 q^{57} +(-2.94877 + 2.70535i) q^{58} +(-0.294409 - 0.509932i) q^{59} +(0.254911 + 0.0219894i) q^{60} +(1.46181 + 0.843974i) q^{61} +(-11.4037 - 3.58796i) q^{62} +(-2.04234 + 7.73491i) q^{64} +(0.0570343 - 0.0987862i) q^{65} +(-5.51449 + 1.22605i) q^{66} +(-5.50132 + 3.17619i) q^{67} +(-4.93924 - 10.5587i) q^{68} +6.60535i q^{69} -11.3856i q^{71} +(-2.80355 + 0.374300i) q^{72} +(-13.4354 + 7.75696i) q^{73} +(2.66390 + 11.9816i) q^{74} +(2.49182 - 4.31595i) q^{75} +(10.3545 + 7.23156i) q^{76} +(-0.378456 + 1.20286i) q^{78} +(8.50718 + 4.91162i) q^{79} +(-0.392796 - 0.327970i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.10385 - 3.38313i) q^{82} +1.48021 q^{83} +0.745624 q^{85} +(0.843091 + 0.918950i) q^{86} +(1.41484 + 2.45058i) q^{87} +(10.4461 + 4.30461i) q^{88} +(-0.389696 - 0.224991i) q^{89} +(0.0542984 - 0.172579i) q^{90} +(7.56418 - 10.8308i) q^{92} +(-4.22668 + 7.32083i) q^{93} +(-3.07348 - 13.8238i) q^{94} +(-0.699626 + 0.403929i) q^{95} +(5.02561 + 2.59677i) q^{96} -16.2042i q^{97} +3.99455i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} + 12 q^{3} + 4 q^{4} - 8 q^{6} + 8 q^{8} - 12 q^{9} - 4 q^{12} + 4 q^{16} - 4 q^{18} + 48 q^{20} + 4 q^{24} + 12 q^{25} + 24 q^{26} - 24 q^{27} + 64 q^{29} + 16 q^{31} - 4 q^{32} - 64 q^{34}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04209 + 0.956063i −0.736866 + 0.676038i
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0.171888 1.99260i 0.0859439 0.996300i
\(5\) 0.110790 + 0.0639645i 0.0495467 + 0.0286058i 0.524569 0.851368i \(-0.324227\pi\)
−0.475022 + 0.879974i \(0.657560\pi\)
\(6\) −1.34902 0.424442i −0.550734 0.173278i
\(7\) 0 0
\(8\) 1.72593 + 2.24080i 0.610208 + 0.792241i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.176607 + 0.0392655i −0.0558479 + 0.0124168i
\(11\) 3.45938 1.99727i 1.04304 0.602201i 0.122349 0.992487i \(-0.460957\pi\)
0.920693 + 0.390286i \(0.127624\pi\)
\(12\) 1.81159 0.847441i 0.522960 0.244635i
\(13\) 0.891655i 0.247301i −0.992326 0.123650i \(-0.960540\pi\)
0.992326 0.123650i \(-0.0394601\pi\)
\(14\) 0 0
\(15\) 0.127929i 0.0330311i
\(16\) −3.94091 0.685007i −0.985227 0.171252i
\(17\) 5.04756 2.91421i 1.22421 0.706800i 0.258400 0.966038i \(-0.416805\pi\)
0.965813 + 0.259238i \(0.0834714\pi\)
\(18\) −0.306932 1.38050i −0.0723445 0.325388i
\(19\) −3.15745 + 5.46886i −0.724368 + 1.25464i 0.234865 + 0.972028i \(0.424535\pi\)
−0.959234 + 0.282615i \(0.908798\pi\)
\(20\) 0.146499 0.209765i 0.0327582 0.0469049i
\(21\) 0 0
\(22\) −1.69545 + 5.38872i −0.361472 + 1.14888i
\(23\) 5.72040 + 3.30268i 1.19279 + 0.688656i 0.958938 0.283617i \(-0.0915345\pi\)
0.233849 + 0.972273i \(0.424868\pi\)
\(24\) −1.07762 + 2.61510i −0.219969 + 0.533804i
\(25\) −2.49182 4.31595i −0.498363 0.863191i
\(26\) 0.852478 + 0.929181i 0.167185 + 0.182227i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 2.82968 0.525459 0.262729 0.964870i \(-0.415377\pi\)
0.262729 + 0.964870i \(0.415377\pi\)
\(30\) −0.122308 0.133313i −0.0223303 0.0243395i
\(31\) 4.22668 + 7.32083i 0.759135 + 1.31486i 0.943292 + 0.331963i \(0.107711\pi\)
−0.184158 + 0.982897i \(0.558956\pi\)
\(32\) 4.76168 3.05392i 0.841754 0.539862i
\(33\) 3.45938 + 1.99727i 0.602201 + 0.347681i
\(34\) −2.47383 + 7.86264i −0.424258 + 1.34843i
\(35\) 0 0
\(36\) 1.63970 + 1.14516i 0.273283 + 0.190860i
\(37\) 4.33956 7.51634i 0.713419 1.23568i −0.250147 0.968208i \(-0.580479\pi\)
0.963566 0.267471i \(-0.0861878\pi\)
\(38\) −1.93824 8.71774i −0.314424 1.41420i
\(39\) 0.772196 0.445827i 0.123650 0.0713895i
\(40\) 0.0478838 + 0.358656i 0.00757110 + 0.0567084i
\(41\) 3.24650i 0.507018i 0.967333 + 0.253509i \(0.0815847\pi\)
−0.967333 + 0.253509i \(0.918415\pi\)
\(42\) 0 0
\(43\) 0.881836i 0.134479i −0.997737 0.0672394i \(-0.978581\pi\)
0.997737 0.0672394i \(-0.0214191\pi\)
\(44\) −3.38514 7.23647i −0.510329 1.09094i
\(45\) −0.110790 + 0.0639645i −0.0165156 + 0.00953527i
\(46\) −9.11872 + 2.02739i −1.34448 + 0.298922i
\(47\) −5.00678 + 8.67200i −0.730314 + 1.26494i 0.226435 + 0.974026i \(0.427293\pi\)
−0.956749 + 0.290915i \(0.906040\pi\)
\(48\) −1.37722 3.75543i −0.198785 0.542050i
\(49\) 0 0
\(50\) 6.72301 + 2.11526i 0.950777 + 0.299143i
\(51\) 5.04756 + 2.91421i 0.706800 + 0.408071i
\(52\) −1.77671 0.153265i −0.246386 0.0212540i
\(53\) 3.76727 + 6.52510i 0.517474 + 0.896292i 0.999794 + 0.0202966i \(0.00646106\pi\)
−0.482320 + 0.875995i \(0.660206\pi\)
\(54\) 1.04209 0.956063i 0.141810 0.130104i
\(55\) 0.511019 0.0689057
\(56\) 0 0
\(57\) −6.31490 −0.836428
\(58\) −2.94877 + 2.70535i −0.387193 + 0.355230i
\(59\) −0.294409 0.509932i −0.0383288 0.0663875i 0.846225 0.532826i \(-0.178870\pi\)
−0.884553 + 0.466439i \(0.845537\pi\)
\(60\) 0.254911 + 0.0219894i 0.0329089 + 0.00283882i
\(61\) 1.46181 + 0.843974i 0.187165 + 0.108060i 0.590655 0.806924i \(-0.298870\pi\)
−0.403490 + 0.914984i \(0.632203\pi\)
\(62\) −11.4037 3.58796i −1.44828 0.455672i
\(63\) 0 0
\(64\) −2.04234 + 7.73491i −0.255292 + 0.966864i
\(65\) 0.0570343 0.0987862i 0.00707423 0.0122529i
\(66\) −5.51449 + 1.22605i −0.678787 + 0.150917i
\(67\) −5.50132 + 3.17619i −0.672094 + 0.388033i −0.796869 0.604151i \(-0.793512\pi\)
0.124776 + 0.992185i \(0.460179\pi\)
\(68\) −4.93924 10.5587i −0.598971 1.28043i
\(69\) 6.60535i 0.795191i
\(70\) 0 0
\(71\) 11.3856i 1.35122i −0.737259 0.675610i \(-0.763880\pi\)
0.737259 0.675610i \(-0.236120\pi\)
\(72\) −2.80355 + 0.374300i −0.330402 + 0.0441117i
\(73\) −13.4354 + 7.75696i −1.57250 + 0.907883i −0.576639 + 0.816999i \(0.695636\pi\)
−0.995861 + 0.0908839i \(0.971031\pi\)
\(74\) 2.66390 + 11.9816i 0.309672 + 1.39283i
\(75\) 2.49182 4.31595i 0.287730 0.498363i
\(76\) 10.3545 + 7.23156i 1.18775 + 0.829517i
\(77\) 0 0
\(78\) −0.378456 + 1.20286i −0.0428517 + 0.136197i
\(79\) 8.50718 + 4.91162i 0.957132 + 0.552601i 0.895289 0.445485i \(-0.146969\pi\)
0.0618431 + 0.998086i \(0.480302\pi\)
\(80\) −0.392796 0.327970i −0.0439160 0.0366682i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −3.10385 3.38313i −0.342763 0.373604i
\(83\) 1.48021 0.162474 0.0812371 0.996695i \(-0.474113\pi\)
0.0812371 + 0.996695i \(0.474113\pi\)
\(84\) 0 0
\(85\) 0.745624 0.0808743
\(86\) 0.843091 + 0.918950i 0.0909128 + 0.0990929i
\(87\) 1.41484 + 2.45058i 0.151687 + 0.262729i
\(88\) 10.4461 + 4.30461i 1.11356 + 0.458873i
\(89\) −0.389696 0.224991i −0.0413077 0.0238490i 0.479204 0.877704i \(-0.340925\pi\)
−0.520512 + 0.853855i \(0.674259\pi\)
\(90\) 0.0542984 0.172579i 0.00572356 0.0181914i
\(91\) 0 0
\(92\) 7.56418 10.8308i 0.788620 1.12919i
\(93\) −4.22668 + 7.32083i −0.438287 + 0.759135i
\(94\) −3.07348 13.8238i −0.317005 1.42581i
\(95\) −0.699626 + 0.403929i −0.0717801 + 0.0414423i
\(96\) 5.02561 + 2.59677i 0.512924 + 0.265032i
\(97\) 16.2042i 1.64529i −0.568555 0.822645i \(-0.692497\pi\)
0.568555 0.822645i \(-0.307503\pi\)
\(98\) 0 0
\(99\) 3.99455i 0.401467i
\(100\) −9.02828 + 4.22333i −0.902828 + 0.422333i
\(101\) 10.4495 6.03304i 1.03977 0.600310i 0.120000 0.992774i \(-0.461711\pi\)
0.919767 + 0.392464i \(0.128377\pi\)
\(102\) −8.04616 + 1.78893i −0.796689 + 0.177130i
\(103\) 1.64215 2.84429i 0.161806 0.280256i −0.773710 0.633539i \(-0.781601\pi\)
0.935516 + 0.353283i \(0.114935\pi\)
\(104\) 1.99802 1.53893i 0.195922 0.150905i
\(105\) 0 0
\(106\) −10.1642 3.19797i −0.987237 0.310615i
\(107\) −2.88857 1.66772i −0.279249 0.161224i 0.353835 0.935308i \(-0.384878\pi\)
−0.633083 + 0.774084i \(0.718211\pi\)
\(108\) −0.171888 + 1.99260i −0.0165399 + 0.191738i
\(109\) −2.23048 3.86331i −0.213641 0.370038i 0.739210 0.673475i \(-0.235199\pi\)
−0.952851 + 0.303437i \(0.901866\pi\)
\(110\) −0.532525 + 0.488566i −0.0507743 + 0.0465829i
\(111\) 8.67912 0.823786
\(112\) 0 0
\(113\) −9.16272 −0.861956 −0.430978 0.902362i \(-0.641831\pi\)
−0.430978 + 0.902362i \(0.641831\pi\)
\(114\) 6.58067 6.03744i 0.616336 0.565458i
\(115\) 0.422508 + 0.731806i 0.0393991 + 0.0682412i
\(116\) 0.486388 5.63843i 0.0451600 0.523515i
\(117\) 0.772196 + 0.445827i 0.0713895 + 0.0412168i
\(118\) 0.794327 + 0.249919i 0.0731237 + 0.0230069i
\(119\) 0 0
\(120\) −0.286663 + 0.220796i −0.0261686 + 0.0201559i
\(121\) 2.47821 4.29238i 0.225291 0.390216i
\(122\) −2.33022 + 0.518085i −0.210968 + 0.0469052i
\(123\) −2.81155 + 1.62325i −0.253509 + 0.146363i
\(124\) 15.3140 7.16373i 1.37524 0.643322i
\(125\) 1.27720i 0.114236i
\(126\) 0 0
\(127\) 14.0775i 1.24917i −0.780955 0.624587i \(-0.785267\pi\)
0.780955 0.624587i \(-0.214733\pi\)
\(128\) −5.26677 10.0130i −0.465521 0.885037i
\(129\) 0.763693 0.440918i 0.0672394 0.0388207i
\(130\) 0.0350112 + 0.157472i 0.00307069 + 0.0138112i
\(131\) 4.88483 8.46078i 0.426790 0.739222i −0.569796 0.821786i \(-0.692978\pi\)
0.996586 + 0.0825645i \(0.0263111\pi\)
\(132\) 4.57439 6.54985i 0.398150 0.570092i
\(133\) 0 0
\(134\) 2.69622 8.56948i 0.232918 0.740290i
\(135\) −0.110790 0.0639645i −0.00953527 0.00550519i
\(136\) 15.2419 + 6.28084i 1.30698 + 0.538577i
\(137\) 1.98426 + 3.43684i 0.169527 + 0.293629i 0.938254 0.345948i \(-0.112443\pi\)
−0.768727 + 0.639577i \(0.779109\pi\)
\(138\) −6.31513 6.88335i −0.537580 0.585949i
\(139\) −0.262023 −0.0222245 −0.0111122 0.999938i \(-0.503537\pi\)
−0.0111122 + 0.999938i \(0.503537\pi\)
\(140\) 0 0
\(141\) −10.0136 −0.843294
\(142\) 10.8853 + 11.8648i 0.913477 + 0.995669i
\(143\) −1.78088 3.08457i −0.148925 0.257945i
\(144\) 2.56369 3.07042i 0.213641 0.255869i
\(145\) 0.313500 + 0.180999i 0.0260348 + 0.0150312i
\(146\) 6.58476 20.9286i 0.544958 1.73206i
\(147\) 0 0
\(148\) −14.2311 9.93897i −1.16979 0.816979i
\(149\) −1.34774 + 2.33436i −0.110411 + 0.191238i −0.915936 0.401324i \(-0.868550\pi\)
0.805525 + 0.592562i \(0.201884\pi\)
\(150\) 1.52963 + 6.87993i 0.124894 + 0.561744i
\(151\) 3.73832 2.15832i 0.304220 0.175642i −0.340117 0.940383i \(-0.610467\pi\)
0.644337 + 0.764741i \(0.277133\pi\)
\(152\) −17.7041 + 2.36366i −1.43600 + 0.191719i
\(153\) 5.82842i 0.471200i
\(154\) 0 0
\(155\) 1.08143i 0.0868626i
\(156\) −0.755625 1.61531i −0.0604984 0.129328i
\(157\) −2.77661 + 1.60308i −0.221598 + 0.127940i −0.606690 0.794939i \(-0.707503\pi\)
0.385092 + 0.922878i \(0.374170\pi\)
\(158\) −13.5610 + 3.01506i −1.07886 + 0.239866i
\(159\) −3.76727 + 6.52510i −0.298764 + 0.517474i
\(160\) 0.722888 0.0337648i 0.0571493 0.00266934i
\(161\) 0 0
\(162\) 1.34902 + 0.424442i 0.105989 + 0.0333473i
\(163\) −20.1454 11.6309i −1.57791 0.911006i −0.995151 0.0983597i \(-0.968640\pi\)
−0.582757 0.812646i \(-0.698026\pi\)
\(164\) 6.46897 + 0.558033i 0.505142 + 0.0435751i
\(165\) 0.255509 + 0.442555i 0.0198914 + 0.0344529i
\(166\) −1.54251 + 1.41517i −0.119722 + 0.109839i
\(167\) 9.66864 0.748182 0.374091 0.927392i \(-0.377955\pi\)
0.374091 + 0.927392i \(0.377955\pi\)
\(168\) 0 0
\(169\) 12.2050 0.938842
\(170\) −0.777005 + 0.712864i −0.0595936 + 0.0546741i
\(171\) −3.15745 5.46886i −0.241456 0.418214i
\(172\) −1.75715 0.151577i −0.133981 0.0115576i
\(173\) −17.9324 10.3533i −1.36337 0.787145i −0.373303 0.927709i \(-0.621775\pi\)
−0.990071 + 0.140565i \(0.955108\pi\)
\(174\) −3.81729 1.20104i −0.289388 0.0910503i
\(175\) 0 0
\(176\) −15.0012 + 5.50137i −1.13076 + 0.414682i
\(177\) 0.294409 0.509932i 0.0221292 0.0383288i
\(178\) 0.621203 0.138114i 0.0465611 0.0103521i
\(179\) 1.27126 0.733963i 0.0950185 0.0548589i −0.451738 0.892151i \(-0.649196\pi\)
0.546756 + 0.837292i \(0.315862\pi\)
\(180\) 0.108412 + 0.231754i 0.00808057 + 0.0172740i
\(181\) 23.5472i 1.75025i −0.483898 0.875124i \(-0.660779\pi\)
0.483898 0.875124i \(-0.339221\pi\)
\(182\) 0 0
\(183\) 1.68795i 0.124777i
\(184\) 2.47238 + 18.5184i 0.182266 + 1.36520i
\(185\) 0.961558 0.555156i 0.0706951 0.0408159i
\(186\) −2.59460 11.6699i −0.190246 0.855679i
\(187\) 11.6410 20.1627i 0.851271 1.47444i
\(188\) 16.4192 + 11.4671i 1.19749 + 0.836326i
\(189\) 0 0
\(190\) 0.342889 1.08982i 0.0248758 0.0790635i
\(191\) −3.19674 1.84564i −0.231308 0.133546i 0.379867 0.925041i \(-0.375970\pi\)
−0.611175 + 0.791495i \(0.709303\pi\)
\(192\) −7.71980 + 2.09874i −0.557129 + 0.151463i
\(193\) 1.35837 + 2.35277i 0.0977777 + 0.169356i 0.910764 0.412926i \(-0.135493\pi\)
−0.812987 + 0.582282i \(0.802160\pi\)
\(194\) 15.4923 + 16.8862i 1.11228 + 1.21236i
\(195\) 0.114069 0.00816862
\(196\) 0 0
\(197\) 4.09843 0.292001 0.146001 0.989284i \(-0.453360\pi\)
0.146001 + 0.989284i \(0.453360\pi\)
\(198\) −3.81904 4.16266i −0.271407 0.295828i
\(199\) 0.104115 + 0.180332i 0.00738048 + 0.0127834i 0.869692 0.493595i \(-0.164317\pi\)
−0.862312 + 0.506378i \(0.830984\pi\)
\(200\) 5.37048 13.0327i 0.379750 0.921550i
\(201\) −5.50132 3.17619i −0.388033 0.224031i
\(202\) −5.12135 + 16.2774i −0.360337 + 1.14527i
\(203\) 0 0
\(204\) 6.67447 9.55685i 0.467306 0.669114i
\(205\) −0.207661 + 0.359679i −0.0145036 + 0.0251210i
\(206\) 1.00806 + 4.53400i 0.0702346 + 0.315899i
\(207\) −5.72040 + 3.30268i −0.397596 + 0.229552i
\(208\) −0.610790 + 3.51393i −0.0423507 + 0.243647i
\(209\) 25.2252i 1.74486i
\(210\) 0 0
\(211\) 16.5850i 1.14176i 0.821034 + 0.570880i \(0.193398\pi\)
−0.821034 + 0.570880i \(0.806602\pi\)
\(212\) 13.6495 6.38508i 0.937449 0.438529i
\(213\) 9.86020 5.69279i 0.675610 0.390064i
\(214\) 4.60458 1.02375i 0.314763 0.0699821i
\(215\) 0.0564062 0.0976985i 0.00384687 0.00666298i
\(216\) −1.72593 2.24080i −0.117435 0.152467i
\(217\) 0 0
\(218\) 6.01792 + 1.89342i 0.407585 + 0.128238i
\(219\) −13.4354 7.75696i −0.907883 0.524167i
\(220\) 0.0878379 1.01826i 0.00592203 0.0686508i
\(221\) −2.59847 4.50068i −0.174792 0.302749i
\(222\) −9.04439 + 8.29778i −0.607020 + 0.556911i
\(223\) −21.3432 −1.42925 −0.714624 0.699509i \(-0.753402\pi\)
−0.714624 + 0.699509i \(0.753402\pi\)
\(224\) 0 0
\(225\) 4.98363 0.332242
\(226\) 9.54835 8.76014i 0.635147 0.582716i
\(227\) −13.4986 23.3803i −0.895935 1.55180i −0.832643 0.553810i \(-0.813173\pi\)
−0.0632918 0.997995i \(-0.520160\pi\)
\(228\) −1.08545 + 12.5831i −0.0718859 + 0.833334i
\(229\) −2.52614 1.45847i −0.166932 0.0963783i 0.414206 0.910183i \(-0.364059\pi\)
−0.581138 + 0.813805i \(0.697393\pi\)
\(230\) −1.13994 0.358660i −0.0751656 0.0236494i
\(231\) 0 0
\(232\) 4.88383 + 6.34074i 0.320639 + 0.416290i
\(233\) −10.1995 + 17.6660i −0.668189 + 1.15734i 0.310221 + 0.950665i \(0.399597\pi\)
−0.978410 + 0.206673i \(0.933736\pi\)
\(234\) −1.23093 + 0.273677i −0.0804686 + 0.0178908i
\(235\) −1.10940 + 0.640513i −0.0723693 + 0.0417824i
\(236\) −1.06670 + 0.498989i −0.0694360 + 0.0324814i
\(237\) 9.82324i 0.638088i
\(238\) 0 0
\(239\) 25.2554i 1.63364i 0.576895 + 0.816818i \(0.304264\pi\)
−0.576895 + 0.816818i \(0.695736\pi\)
\(240\) 0.0876323 0.504157i 0.00565664 0.0325432i
\(241\) −7.10954 + 4.10469i −0.457965 + 0.264406i −0.711188 0.703001i \(-0.751843\pi\)
0.253223 + 0.967408i \(0.418509\pi\)
\(242\) 1.52128 + 6.84235i 0.0977915 + 0.439843i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 1.93297 2.76773i 0.123746 0.177186i
\(245\) 0 0
\(246\) 1.37795 4.37958i 0.0878548 0.279232i
\(247\) 4.87634 + 2.81535i 0.310274 + 0.179137i
\(248\) −9.10954 + 22.1064i −0.578456 + 1.40376i
\(249\) 0.740105 + 1.28190i 0.0469023 + 0.0812371i
\(250\) 1.22108 + 1.33095i 0.0772279 + 0.0841766i
\(251\) −6.55180 −0.413546 −0.206773 0.978389i \(-0.566296\pi\)
−0.206773 + 0.978389i \(0.566296\pi\)
\(252\) 0 0
\(253\) 26.3854 1.65884
\(254\) 13.4590 + 14.6700i 0.844490 + 0.920475i
\(255\) 0.372812 + 0.645730i 0.0233464 + 0.0404372i
\(256\) 15.0615 + 5.39910i 0.941346 + 0.337444i
\(257\) 16.2399 + 9.37612i 1.01302 + 0.584866i 0.912074 0.410026i \(-0.134480\pi\)
0.100944 + 0.994892i \(0.467814\pi\)
\(258\) −0.374288 + 1.18961i −0.0233022 + 0.0740621i
\(259\) 0 0
\(260\) −0.187038 0.130627i −0.0115996 0.00810112i
\(261\) −1.41484 + 2.45058i −0.0875765 + 0.151687i
\(262\) 2.99862 + 13.4871i 0.185255 + 0.833234i
\(263\) −1.82321 + 1.05263i −0.112424 + 0.0649079i −0.555158 0.831745i \(-0.687342\pi\)
0.442734 + 0.896653i \(0.354009\pi\)
\(264\) 1.49516 + 11.1989i 0.0920207 + 0.689246i
\(265\) 0.963886i 0.0592111i
\(266\) 0 0
\(267\) 0.449983i 0.0275385i
\(268\) 5.38327 + 11.5079i 0.328835 + 0.702956i
\(269\) −10.2209 + 5.90104i −0.623180 + 0.359793i −0.778106 0.628133i \(-0.783819\pi\)
0.154926 + 0.987926i \(0.450486\pi\)
\(270\) 0.176607 0.0392655i 0.0107479 0.00238962i
\(271\) −5.66213 + 9.80709i −0.343950 + 0.595738i −0.985162 0.171625i \(-0.945098\pi\)
0.641213 + 0.767363i \(0.278432\pi\)
\(272\) −21.8882 + 8.02702i −1.32717 + 0.486710i
\(273\) 0 0
\(274\) −5.35361 1.68441i −0.323423 0.101759i
\(275\) −17.2403 9.95368i −1.03963 0.600230i
\(276\) 13.1618 + 1.13538i 0.792249 + 0.0683418i
\(277\) 5.88192 + 10.1878i 0.353410 + 0.612125i 0.986845 0.161672i \(-0.0516886\pi\)
−0.633434 + 0.773797i \(0.718355\pi\)
\(278\) 0.273050 0.250510i 0.0163765 0.0150246i
\(279\) −8.45337 −0.506090
\(280\) 0 0
\(281\) −9.80481 −0.584906 −0.292453 0.956280i \(-0.594471\pi\)
−0.292453 + 0.956280i \(0.594471\pi\)
\(282\) 10.4350 9.57360i 0.621395 0.570099i
\(283\) −12.3233 21.3445i −0.732542 1.26880i −0.955794 0.294039i \(-0.905001\pi\)
0.223252 0.974761i \(-0.428333\pi\)
\(284\) −22.6869 1.95704i −1.34622 0.116129i
\(285\) −0.699626 0.403929i −0.0414423 0.0239267i
\(286\) 4.80487 + 1.51176i 0.284118 + 0.0893922i
\(287\) 0 0
\(288\) 0.263934 + 5.65069i 0.0155524 + 0.332970i
\(289\) 8.48525 14.6969i 0.499132 0.864522i
\(290\) −0.499741 + 0.111109i −0.0293458 + 0.00652453i
\(291\) 14.0333 8.10212i 0.822645 0.474954i
\(292\) 13.1471 + 28.1048i 0.769377 + 1.64471i
\(293\) 2.41042i 0.140818i −0.997518 0.0704091i \(-0.977570\pi\)
0.997518 0.0704091i \(-0.0224305\pi\)
\(294\) 0 0
\(295\) 0.0753270i 0.00438571i
\(296\) 24.3324 3.24859i 1.41429 0.188821i
\(297\) −3.45938 + 1.99727i −0.200734 + 0.115894i
\(298\) −0.827330 3.72113i −0.0479259 0.215559i
\(299\) 2.94485 5.10062i 0.170305 0.294977i
\(300\) −8.17166 5.70705i −0.471791 0.329497i
\(301\) 0 0
\(302\) −1.83216 + 5.82323i −0.105429 + 0.335089i
\(303\) 10.4495 + 6.03304i 0.600310 + 0.346589i
\(304\) 16.1894 19.3894i 0.928527 1.11206i
\(305\) 0.107969 + 0.187007i 0.00618228 + 0.0107080i
\(306\) −5.57234 6.07372i −0.318549 0.347211i
\(307\) −24.4054 −1.39289 −0.696446 0.717609i \(-0.745236\pi\)
−0.696446 + 0.717609i \(0.745236\pi\)
\(308\) 0 0
\(309\) 3.28431 0.186838
\(310\) −1.03392 1.12694i −0.0587225 0.0640061i
\(311\) 15.5933 + 27.0084i 0.884215 + 1.53151i 0.846610 + 0.532213i \(0.178640\pi\)
0.0376050 + 0.999293i \(0.488027\pi\)
\(312\) 2.33176 + 0.960867i 0.132010 + 0.0543984i
\(313\) 2.19804 + 1.26904i 0.124240 + 0.0717302i 0.560832 0.827929i \(-0.310481\pi\)
−0.436592 + 0.899660i \(0.643815\pi\)
\(314\) 1.36083 4.32516i 0.0767959 0.244083i
\(315\) 0 0
\(316\) 11.2492 16.1072i 0.632816 0.906098i
\(317\) 9.12602 15.8067i 0.512568 0.887795i −0.487325 0.873221i \(-0.662027\pi\)
0.999894 0.0145742i \(-0.00463927\pi\)
\(318\) −2.31259 10.4015i −0.129684 0.583285i
\(319\) 9.78895 5.65165i 0.548076 0.316432i
\(320\) −0.721030 + 0.726312i −0.0403068 + 0.0406021i
\(321\) 3.33543i 0.186166i
\(322\) 0 0
\(323\) 36.8059i 2.04793i
\(324\) −1.81159 + 0.847441i −0.100644 + 0.0470800i
\(325\) −3.84834 + 2.22184i −0.213468 + 0.123246i
\(326\) 32.1131 7.13981i 1.77858 0.395437i
\(327\) 2.23048 3.86331i 0.123346 0.213641i
\(328\) −7.27474 + 5.60322i −0.401680 + 0.309386i
\(329\) 0 0
\(330\) −0.689373 0.216898i −0.0379487 0.0119398i
\(331\) −17.9504 10.3637i −0.986644 0.569639i −0.0823747 0.996601i \(-0.526250\pi\)
−0.904270 + 0.426962i \(0.859584\pi\)
\(332\) 0.254430 2.94947i 0.0139637 0.161873i
\(333\) 4.33956 + 7.51634i 0.237806 + 0.411893i
\(334\) −10.0756 + 9.24383i −0.551310 + 0.505800i
\(335\) −0.812654 −0.0444000
\(336\) 0 0
\(337\) −0.330532 −0.0180052 −0.00900261 0.999959i \(-0.502866\pi\)
−0.00900261 + 0.999959i \(0.502866\pi\)
\(338\) −12.7186 + 11.6687i −0.691801 + 0.634694i
\(339\) −4.58136 7.93515i −0.248825 0.430978i
\(340\) 0.128164 1.48573i 0.00695065 0.0805751i
\(341\) 29.2434 + 16.8837i 1.58362 + 0.914303i
\(342\) 8.51891 + 2.68031i 0.460650 + 0.144934i
\(343\) 0 0
\(344\) 1.97602 1.52199i 0.106540 0.0820600i
\(345\) −0.422508 + 0.731806i −0.0227471 + 0.0393991i
\(346\) 28.5855 6.35549i 1.53676 0.341673i
\(347\) −19.0483 + 10.9975i −1.02257 + 0.590378i −0.914846 0.403803i \(-0.867688\pi\)
−0.107719 + 0.994181i \(0.534355\pi\)
\(348\) 5.12621 2.39799i 0.274794 0.128546i
\(349\) 26.6709i 1.42766i 0.700318 + 0.713831i \(0.253041\pi\)
−0.700318 + 0.713831i \(0.746959\pi\)
\(350\) 0 0
\(351\) 0.891655i 0.0475930i
\(352\) 10.3729 20.0750i 0.552879 1.07000i
\(353\) −6.73045 + 3.88583i −0.358226 + 0.206822i −0.668302 0.743890i \(-0.732979\pi\)
0.310076 + 0.950712i \(0.399645\pi\)
\(354\) 0.180727 + 0.812867i 0.00960554 + 0.0432034i
\(355\) 0.728273 1.26141i 0.0386527 0.0669485i
\(356\) −0.515302 + 0.737836i −0.0273109 + 0.0391052i
\(357\) 0 0
\(358\) −0.623049 + 1.98026i −0.0329292 + 0.104660i
\(359\) 14.5380 + 8.39350i 0.767285 + 0.442992i 0.831905 0.554918i \(-0.187250\pi\)
−0.0646204 + 0.997910i \(0.520584\pi\)
\(360\) −0.334547 0.137859i −0.0176322 0.00726582i
\(361\) −10.4390 18.0808i −0.549419 0.951621i
\(362\) 22.5126 + 24.5382i 1.18324 + 1.28970i
\(363\) 4.95641 0.260144
\(364\) 0 0
\(365\) −1.98468 −0.103883
\(366\) −1.61379 1.75899i −0.0843539 0.0919438i
\(367\) 2.01820 + 3.49562i 0.105349 + 0.182470i 0.913881 0.405983i \(-0.133071\pi\)
−0.808532 + 0.588453i \(0.799737\pi\)
\(368\) −20.2812 16.9341i −1.05723 0.882749i
\(369\) −2.81155 1.62325i −0.146363 0.0845029i
\(370\) −0.471263 + 1.49783i −0.0244998 + 0.0778685i
\(371\) 0 0
\(372\) 13.8610 + 9.68045i 0.718658 + 0.501908i
\(373\) −10.3895 + 17.9951i −0.537948 + 0.931753i 0.461066 + 0.887366i \(0.347467\pi\)
−0.999014 + 0.0443876i \(0.985866\pi\)
\(374\) 7.14595 + 32.1408i 0.369508 + 1.66196i
\(375\) 1.10608 0.638598i 0.0571180 0.0329771i
\(376\) −28.0735 + 3.74808i −1.44778 + 0.193292i
\(377\) 2.52310i 0.129946i
\(378\) 0 0
\(379\) 10.7800i 0.553732i 0.960909 + 0.276866i \(0.0892958\pi\)
−0.960909 + 0.276866i \(0.910704\pi\)
\(380\) 0.684612 + 1.46351i 0.0351199 + 0.0750762i
\(381\) 12.1915 7.03874i 0.624587 0.360606i
\(382\) 5.09583 1.13297i 0.260725 0.0579678i
\(383\) 3.26491 5.65498i 0.166829 0.288956i −0.770474 0.637471i \(-0.779981\pi\)
0.937303 + 0.348515i \(0.113314\pi\)
\(384\) 6.03817 9.56768i 0.308134 0.488249i
\(385\) 0 0
\(386\) −3.66493 1.15310i −0.186540 0.0586912i
\(387\) 0.763693 + 0.440918i 0.0388207 + 0.0224131i
\(388\) −32.2886 2.78531i −1.63920 0.141403i
\(389\) −15.9348 27.5999i −0.807928 1.39937i −0.914296 0.405046i \(-0.867255\pi\)
0.106368 0.994327i \(-0.466078\pi\)
\(390\) −0.118869 + 0.109057i −0.00601918 + 0.00552230i
\(391\) 38.4988 1.94697
\(392\) 0 0
\(393\) 9.76967 0.492814
\(394\) −4.27092 + 3.91836i −0.215166 + 0.197404i
\(395\) 0.628339 + 1.08832i 0.0316152 + 0.0547591i
\(396\) 7.95954 + 0.686614i 0.399982 + 0.0345036i
\(397\) −13.3557 7.71089i −0.670301 0.386999i 0.125889 0.992044i \(-0.459822\pi\)
−0.796191 + 0.605046i \(0.793155\pi\)
\(398\) −0.280905 0.0883811i −0.0140805 0.00443015i
\(399\) 0 0
\(400\) 6.86357 + 18.7157i 0.343178 + 0.935785i
\(401\) −13.8479 + 23.9853i −0.691533 + 1.19777i 0.279803 + 0.960057i \(0.409731\pi\)
−0.971336 + 0.237712i \(0.923602\pi\)
\(402\) 8.76949 1.94975i 0.437383 0.0972445i
\(403\) 6.52765 3.76874i 0.325166 0.187734i
\(404\) −10.2253 21.8587i −0.508727 1.08751i
\(405\) 0.127929i 0.00635684i
\(406\) 0 0
\(407\) 34.6692i 1.71849i
\(408\) 2.18158 + 16.3403i 0.108004 + 0.808964i
\(409\) 21.5187 12.4238i 1.06403 0.614319i 0.137486 0.990504i \(-0.456098\pi\)
0.926545 + 0.376185i \(0.122764\pi\)
\(410\) −0.127475 0.573353i −0.00629555 0.0283159i
\(411\) −1.98426 + 3.43684i −0.0978764 + 0.169527i
\(412\) −5.38527 3.76105i −0.265313 0.185294i
\(413\) 0 0
\(414\) 2.80359 8.91074i 0.137789 0.437939i
\(415\) 0.163992 + 0.0946810i 0.00805006 + 0.00464771i
\(416\) −2.72304 4.24577i −0.133508 0.208166i
\(417\) −0.131011 0.226918i −0.00641566 0.0111122i
\(418\) −24.1168 26.2868i −1.17959 1.28573i
\(419\) −21.9087 −1.07031 −0.535155 0.844754i \(-0.679747\pi\)
−0.535155 + 0.844754i \(0.679747\pi\)
\(420\) 0 0
\(421\) −18.8226 −0.917357 −0.458679 0.888602i \(-0.651677\pi\)
−0.458679 + 0.888602i \(0.651677\pi\)
\(422\) −15.8563 17.2830i −0.771874 0.841324i
\(423\) −5.00678 8.67200i −0.243438 0.421647i
\(424\) −8.11939 + 19.7036i −0.394312 + 0.956889i
\(425\) −25.1552 14.5234i −1.22021 0.704486i
\(426\) −4.83252 + 15.3594i −0.234136 + 0.744163i
\(427\) 0 0
\(428\) −3.81960 + 5.46911i −0.184628 + 0.264359i
\(429\) 1.78088 3.08457i 0.0859816 0.148925i
\(430\) 0.0346257 + 0.155738i 0.00166980 + 0.00751036i
\(431\) 18.9190 10.9229i 0.911295 0.526137i 0.0304476 0.999536i \(-0.490307\pi\)
0.880848 + 0.473400i \(0.156973\pi\)
\(432\) 3.94091 + 0.685007i 0.189607 + 0.0329574i
\(433\) 23.7440i 1.14107i −0.821275 0.570533i \(-0.806737\pi\)
0.821275 0.570533i \(-0.193263\pi\)
\(434\) 0 0
\(435\) 0.361999i 0.0173565i
\(436\) −8.08141 + 3.78040i −0.387030 + 0.181048i
\(437\) −36.1238 + 20.8561i −1.72803 + 0.997681i
\(438\) 21.4170 4.76171i 1.02335 0.227523i
\(439\) −15.9429 + 27.6140i −0.760914 + 1.31794i 0.181466 + 0.983397i \(0.441916\pi\)
−0.942380 + 0.334545i \(0.891417\pi\)
\(440\) 0.881982 + 1.14509i 0.0420468 + 0.0545900i
\(441\) 0 0
\(442\) 7.01076 + 2.20580i 0.333468 + 0.104919i
\(443\) −13.5814 7.84122i −0.645272 0.372548i 0.141371 0.989957i \(-0.454849\pi\)
−0.786642 + 0.617409i \(0.788182\pi\)
\(444\) 1.49183 17.2940i 0.0707993 0.820738i
\(445\) −0.0287829 0.0498535i −0.00136444 0.00236328i
\(446\) 22.2415 20.4055i 1.05316 0.966226i
\(447\) −2.69549 −0.127492
\(448\) 0 0
\(449\) −9.72484 −0.458943 −0.229472 0.973315i \(-0.573700\pi\)
−0.229472 + 0.973315i \(0.573700\pi\)
\(450\) −5.19338 + 4.76467i −0.244818 + 0.224609i
\(451\) 6.48414 + 11.2309i 0.305326 + 0.528841i
\(452\) −1.57496 + 18.2576i −0.0740799 + 0.858767i
\(453\) 3.73832 + 2.15832i 0.175642 + 0.101407i
\(454\) 36.4198 + 11.4588i 1.70926 + 0.537786i
\(455\) 0 0
\(456\) −10.8991 14.1504i −0.510395 0.662653i
\(457\) 5.70383 9.87933i 0.266814 0.462135i −0.701223 0.712942i \(-0.747362\pi\)
0.968037 + 0.250806i \(0.0806957\pi\)
\(458\) 4.02684 0.895300i 0.188162 0.0418346i
\(459\) −5.04756 + 2.91421i −0.235600 + 0.136024i
\(460\) 1.53082 0.716101i 0.0713748 0.0333884i
\(461\) 19.6446i 0.914940i −0.889225 0.457470i \(-0.848756\pi\)
0.889225 0.457470i \(-0.151244\pi\)
\(462\) 0 0
\(463\) 6.73057i 0.312796i −0.987694 0.156398i \(-0.950012\pi\)
0.987694 0.156398i \(-0.0499883\pi\)
\(464\) −11.1515 1.93835i −0.517697 0.0899858i
\(465\) −0.936547 + 0.540715i −0.0434313 + 0.0250751i
\(466\) −6.26108 28.1608i −0.290039 1.30453i
\(467\) 11.0608 19.1579i 0.511833 0.886522i −0.488072 0.872803i \(-0.662300\pi\)
0.999906 0.0137185i \(-0.00436686\pi\)
\(468\) 1.02109 1.46204i 0.0471997 0.0675830i
\(469\) 0 0
\(470\) 0.543721 1.72813i 0.0250800 0.0797125i
\(471\) −2.77661 1.60308i −0.127940 0.0738660i
\(472\) 0.634524 1.53982i 0.0292064 0.0708759i
\(473\) −1.76127 3.05061i −0.0809832 0.140267i
\(474\) −9.39164 10.2367i −0.431372 0.470186i
\(475\) 31.4711 1.44399
\(476\) 0 0
\(477\) −7.53454 −0.344983
\(478\) −24.1458 26.3183i −1.10440 1.20377i
\(479\) 10.6325 + 18.4159i 0.485809 + 0.841446i 0.999867 0.0163095i \(-0.00519170\pi\)
−0.514058 + 0.857755i \(0.671858\pi\)
\(480\) 0.390685 + 0.609157i 0.0178322 + 0.0278041i
\(481\) −6.70198 3.86939i −0.305584 0.176429i
\(482\) 3.48441 11.0746i 0.158710 0.504434i
\(483\) 0 0
\(484\) −8.12702 5.67588i −0.369410 0.257995i
\(485\) 1.03650 1.79526i 0.0470648 0.0815187i
\(486\) 0.306932 + 1.38050i 0.0139227 + 0.0626210i
\(487\) −30.6868 + 17.7171i −1.39055 + 0.802836i −0.993376 0.114906i \(-0.963343\pi\)
−0.397177 + 0.917742i \(0.630010\pi\)
\(488\) 0.631799 + 4.73225i 0.0286002 + 0.214219i
\(489\) 23.2619i 1.05194i
\(490\) 0 0
\(491\) 15.1925i 0.685628i −0.939403 0.342814i \(-0.888620\pi\)
0.939403 0.342814i \(-0.111380\pi\)
\(492\) 2.75121 + 5.88131i 0.124034 + 0.265150i
\(493\) 14.2830 8.24629i 0.643274 0.371394i
\(494\) −7.77322 + 1.72824i −0.349734 + 0.0777573i
\(495\) −0.255509 + 0.442555i −0.0114843 + 0.0198914i
\(496\) −11.6422 31.7460i −0.522748 1.42544i
\(497\) 0 0
\(498\) −1.99683 0.628263i −0.0894801 0.0281532i
\(499\) 9.60373 + 5.54472i 0.429922 + 0.248216i 0.699313 0.714815i \(-0.253489\pi\)
−0.269391 + 0.963031i \(0.586822\pi\)
\(500\) −2.54494 0.219534i −0.113813 0.00981788i
\(501\) 4.83432 + 8.37329i 0.215982 + 0.374091i
\(502\) 6.82754 6.26393i 0.304728 0.279573i
\(503\) 5.67396 0.252989 0.126495 0.991967i \(-0.459627\pi\)
0.126495 + 0.991967i \(0.459627\pi\)
\(504\) 0 0
\(505\) 1.54360 0.0686894
\(506\) −27.4959 + 25.2261i −1.22234 + 1.12144i
\(507\) 6.10248 + 10.5698i 0.271020 + 0.469421i
\(508\) −28.0508 2.41975i −1.24455 0.107359i
\(509\) 11.0839 + 6.39931i 0.491286 + 0.283644i 0.725108 0.688635i \(-0.241790\pi\)
−0.233822 + 0.972279i \(0.575123\pi\)
\(510\) −1.00586 0.316474i −0.0445402 0.0140137i
\(511\) 0 0
\(512\) −20.8573 + 8.77344i −0.921771 + 0.387735i
\(513\) 3.15745 5.46886i 0.139405 0.241456i
\(514\) −25.8876 + 5.75566i −1.14185 + 0.253871i
\(515\) 0.363867 0.210079i 0.0160339 0.00925719i
\(516\) −0.747304 1.59752i −0.0328982 0.0703270i
\(517\) 39.9997i 1.75918i
\(518\) 0 0
\(519\) 20.7065i 0.908916i
\(520\) 0.319797 0.0426958i 0.0140240 0.00187234i
\(521\) 24.4767 14.1316i 1.07234 0.619117i 0.143521 0.989647i \(-0.454157\pi\)
0.928820 + 0.370531i \(0.120824\pi\)
\(522\) −0.868519 3.90639i −0.0380140 0.170978i
\(523\) 5.38111 9.32036i 0.235300 0.407551i −0.724060 0.689737i \(-0.757726\pi\)
0.959360 + 0.282186i \(0.0910595\pi\)
\(524\) −16.0193 11.1878i −0.699807 0.488742i
\(525\) 0 0
\(526\) 0.893560 2.84003i 0.0389611 0.123831i
\(527\) 42.6689 + 24.6349i 1.85869 + 1.07311i
\(528\) −12.2650 10.2408i −0.533764 0.445673i
\(529\) 10.3153 + 17.8667i 0.448493 + 0.776813i
\(530\) −0.921536 1.00445i −0.0400290 0.0436306i
\(531\) 0.588819 0.0255526
\(532\) 0 0
\(533\) 2.89475 0.125386
\(534\) 0.430212 + 0.468921i 0.0186171 + 0.0202922i
\(535\) −0.213349 0.369532i −0.00922390 0.0159763i
\(536\) −16.6121 6.84547i −0.717533 0.295679i
\(537\) 1.27126 + 0.733963i 0.0548589 + 0.0316728i
\(538\) 5.00930 15.9212i 0.215966 0.686413i
\(539\) 0 0
\(540\) −0.146499 + 0.209765i −0.00630432 + 0.00902685i
\(541\) 2.66295 4.61237i 0.114489 0.198301i −0.803086 0.595863i \(-0.796810\pi\)
0.917575 + 0.397562i \(0.130144\pi\)
\(542\) −3.47577 15.6332i −0.149297 0.671503i
\(543\) 20.3925 11.7736i 0.875124 0.505253i
\(544\) 15.1351 29.2914i 0.648912 1.25586i
\(545\) 0.570686i 0.0244455i
\(546\) 0 0
\(547\) 18.5001i 0.791007i −0.918465 0.395503i \(-0.870570\pi\)
0.918465 0.395503i \(-0.129430\pi\)
\(548\) 7.18932 3.36309i 0.307113 0.143664i
\(549\) −1.46181 + 0.843974i −0.0623884 + 0.0360199i
\(550\) 27.4822 6.11020i 1.17185 0.260540i
\(551\) −8.93458 + 15.4751i −0.380626 + 0.659263i
\(552\) −14.8013 + 11.4004i −0.629983 + 0.485232i
\(553\) 0 0
\(554\) −15.8696 4.99307i −0.674236 0.212135i
\(555\) 0.961558 + 0.555156i 0.0408159 + 0.0235650i
\(556\) −0.0450385 + 0.522107i −0.00191006 + 0.0221423i
\(557\) 14.9681 + 25.9255i 0.634219 + 1.09850i 0.986680 + 0.162673i \(0.0520116\pi\)
−0.352461 + 0.935827i \(0.614655\pi\)
\(558\) 8.80914 8.08195i 0.372920 0.342136i
\(559\) −0.786294 −0.0332567
\(560\) 0 0
\(561\) 23.2819 0.982963
\(562\) 10.2175 9.37401i 0.430997 0.395419i
\(563\) 6.18858 + 10.7189i 0.260818 + 0.451749i 0.966459 0.256819i \(-0.0826746\pi\)
−0.705642 + 0.708569i \(0.749341\pi\)
\(564\) −1.72121 + 19.9530i −0.0724760 + 0.840174i
\(565\) −1.01514 0.586089i −0.0427071 0.0246570i
\(566\) 33.2486 + 10.4610i 1.39754 + 0.439709i
\(567\) 0 0
\(568\) 25.5128 19.6507i 1.07049 0.824525i
\(569\) 18.3617 31.8033i 0.769761 1.33327i −0.167931 0.985799i \(-0.553709\pi\)
0.937692 0.347467i \(-0.112958\pi\)
\(570\) 1.11525 0.247957i 0.0467128 0.0103858i
\(571\) 5.47430 3.16059i 0.229092 0.132267i −0.381061 0.924550i \(-0.624441\pi\)
0.610153 + 0.792283i \(0.291108\pi\)
\(572\) −6.45243 + 3.01838i −0.269790 + 0.126205i
\(573\) 3.69128i 0.154206i
\(574\) 0 0
\(575\) 32.9187i 1.37280i
\(576\) −5.67746 5.63617i −0.236561 0.234841i
\(577\) 4.40430 2.54283i 0.183354 0.105859i −0.405514 0.914089i \(-0.632907\pi\)
0.588867 + 0.808230i \(0.299574\pi\)
\(578\) 5.20878 + 23.4278i 0.216657 + 0.974470i
\(579\) −1.35837 + 2.35277i −0.0564520 + 0.0977777i
\(580\) 0.414546 0.593569i 0.0172131 0.0246466i
\(581\) 0 0
\(582\) −6.87775 + 21.8598i −0.285092 + 0.906118i
\(583\) 26.0648 + 15.0485i 1.07950 + 0.623247i
\(584\) −40.5704 16.7181i −1.67881 0.691802i
\(585\) 0.0570343 + 0.0987862i 0.00235808 + 0.00408431i
\(586\) 2.30451 + 2.51186i 0.0951985 + 0.103764i
\(587\) 30.0719 1.24120 0.620601 0.784127i \(-0.286889\pi\)
0.620601 + 0.784127i \(0.286889\pi\)
\(588\) 0 0
\(589\) −53.3821 −2.19957
\(590\) 0.0720174 + 0.0784973i 0.00296491 + 0.00323168i
\(591\) 2.04922 + 3.54935i 0.0842935 + 0.146001i
\(592\) −22.2506 + 26.6486i −0.914492 + 1.09525i
\(593\) 18.6666 + 10.7772i 0.766545 + 0.442565i 0.831641 0.555314i \(-0.187402\pi\)
−0.0650955 + 0.997879i \(0.520735\pi\)
\(594\) 1.69545 5.38872i 0.0695653 0.221102i
\(595\) 0 0
\(596\) 4.41978 + 3.08676i 0.181041 + 0.126439i
\(597\) −0.104115 + 0.180332i −0.00426112 + 0.00738048i
\(598\) 1.80773 + 8.13075i 0.0739237 + 0.332491i
\(599\) −15.8953 + 9.17715i −0.649464 + 0.374968i −0.788251 0.615354i \(-0.789013\pi\)
0.138787 + 0.990322i \(0.455680\pi\)
\(600\) 13.9719 1.86537i 0.570399 0.0761536i
\(601\) 12.2204i 0.498482i 0.968441 + 0.249241i \(0.0801812\pi\)
−0.968441 + 0.249241i \(0.919819\pi\)
\(602\) 0 0
\(603\) 6.35238i 0.258689i
\(604\) −3.65810 7.81997i −0.148846 0.318190i
\(605\) 0.549120 0.317034i 0.0223249 0.0128893i
\(606\) −16.6573 + 3.70346i −0.676656 + 0.150443i
\(607\) −13.2875 + 23.0146i −0.539322 + 0.934133i 0.459619 + 0.888116i \(0.347986\pi\)
−0.998941 + 0.0460167i \(0.985347\pi\)
\(608\) 1.66671 + 35.6835i 0.0675942 + 1.44716i
\(609\) 0 0
\(610\) −0.291304 0.0916530i −0.0117945 0.00371092i
\(611\) 7.73243 + 4.46432i 0.312821 + 0.180607i
\(612\) 11.6137 + 1.00183i 0.469456 + 0.0404968i
\(613\) 9.57949 + 16.5922i 0.386912 + 0.670151i 0.992032 0.125983i \(-0.0402084\pi\)
−0.605120 + 0.796134i \(0.706875\pi\)
\(614\) 25.4326 23.3331i 1.02638 0.941649i
\(615\) −0.415321 −0.0167474
\(616\) 0 0
\(617\) −14.7860 −0.595263 −0.297632 0.954681i \(-0.596197\pi\)
−0.297632 + 0.954681i \(0.596197\pi\)
\(618\) −3.42253 + 3.14000i −0.137674 + 0.126309i
\(619\) −12.6747 21.9532i −0.509439 0.882374i −0.999940 0.0109337i \(-0.996520\pi\)
0.490501 0.871440i \(-0.336814\pi\)
\(620\) 2.15486 + 0.185885i 0.0865412 + 0.00746531i
\(621\) −5.72040 3.30268i −0.229552 0.132532i
\(622\) −42.0713 13.2369i −1.68691 0.530751i
\(623\) 0 0
\(624\) −3.34855 + 1.22801i −0.134049 + 0.0491596i
\(625\) −12.3774 + 21.4383i −0.495096 + 0.857531i
\(626\) −3.50382 + 0.779015i −0.140041 + 0.0311357i
\(627\) −21.8456 + 12.6126i −0.872430 + 0.503698i
\(628\) 2.71703 + 5.80823i 0.108421 + 0.231774i
\(629\) 50.5856i 2.01698i
\(630\) 0 0
\(631\) 36.7075i 1.46130i −0.682752 0.730650i \(-0.739217\pi\)
0.682752 0.730650i \(-0.260783\pi\)
\(632\) 3.67684 + 27.5400i 0.146257 + 1.09548i
\(633\) −14.3630 + 8.29251i −0.570880 + 0.329598i
\(634\) 5.60213 + 25.1970i 0.222489 + 1.00070i
\(635\) 0.900459 1.55964i 0.0357336 0.0618925i
\(636\) 12.3544 + 8.62825i 0.489883 + 0.342132i
\(637\) 0 0
\(638\) −4.79760 + 15.2484i −0.189939 + 0.603688i
\(639\) 9.86020 + 5.69279i 0.390064 + 0.225203i
\(640\) 0.0569759 1.44623i 0.00225217 0.0571673i
\(641\) 3.64685 + 6.31654i 0.144042 + 0.249488i 0.929015 0.370042i \(-0.120657\pi\)
−0.784973 + 0.619530i \(0.787323\pi\)
\(642\) 3.18889 + 3.47581i 0.125855 + 0.137179i
\(643\) −20.6956 −0.816155 −0.408077 0.912947i \(-0.633801\pi\)
−0.408077 + 0.912947i \(0.633801\pi\)
\(644\) 0 0
\(645\) 0.112812 0.00444199
\(646\) −35.1887 38.3549i −1.38448 1.50905i
\(647\) −7.92738 13.7306i −0.311658 0.539807i 0.667064 0.745001i \(-0.267551\pi\)
−0.978721 + 0.205194i \(0.934218\pi\)
\(648\) 1.07762 2.61510i 0.0423330 0.102731i
\(649\) −2.03695 1.17603i −0.0799572 0.0461633i
\(650\) 1.88608 5.99461i 0.0739783 0.235128i
\(651\) 0 0
\(652\) −26.6386 + 38.1425i −1.04325 + 1.49377i
\(653\) 14.4081 24.9555i 0.563831 0.976584i −0.433326 0.901237i \(-0.642660\pi\)
0.997157 0.0753469i \(-0.0240064\pi\)
\(654\) 1.36921 + 6.15838i 0.0535403 + 0.240812i
\(655\) 1.08238 0.624912i 0.0422921 0.0244173i
\(656\) 2.22387 12.7941i 0.0868277 0.499528i
\(657\) 15.5139i 0.605256i
\(658\) 0 0
\(659\) 20.6316i 0.803693i 0.915707 + 0.401846i \(0.131631\pi\)
−0.915707 + 0.401846i \(0.868369\pi\)
\(660\) 0.925754 0.433058i 0.0360349 0.0168568i
\(661\) 20.7427 11.9758i 0.806799 0.465806i −0.0390440 0.999237i \(-0.512431\pi\)
0.845843 + 0.533432i \(0.179098\pi\)
\(662\) 28.6142 6.36188i 1.11212 0.247261i
\(663\) 2.59847 4.50068i 0.100916 0.174792i
\(664\) 2.55474 + 3.31685i 0.0991431 + 0.128719i
\(665\) 0 0
\(666\) −11.7083 3.68378i −0.453687 0.142744i
\(667\) 16.1869 + 9.34553i 0.626760 + 0.361860i
\(668\) 1.66192 19.2657i 0.0643017 0.745414i
\(669\) −10.6716 18.4838i −0.412588 0.714624i
\(670\) 0.846856 0.776948i 0.0327169 0.0300161i
\(671\) 6.74259 0.260295
\(672\) 0 0
\(673\) 3.43936 0.132577 0.0662887 0.997800i \(-0.478884\pi\)
0.0662887 + 0.997800i \(0.478884\pi\)
\(674\) 0.344443 0.316009i 0.0132674 0.0121722i
\(675\) 2.49182 + 4.31595i 0.0959101 + 0.166121i
\(676\) 2.09788 24.3196i 0.0806878 0.935369i
\(677\) −28.7477 16.5975i −1.10486 0.637893i −0.167369 0.985894i \(-0.553527\pi\)
−0.937494 + 0.348002i \(0.886860\pi\)
\(678\) 12.3607 + 3.88904i 0.474709 + 0.149358i
\(679\) 0 0
\(680\) 1.28689 + 1.67079i 0.0493501 + 0.0640720i
\(681\) 13.4986 23.3803i 0.517268 0.895935i
\(682\) −46.6160 + 10.3643i −1.78502 + 0.396868i
\(683\) −7.39676 + 4.27052i −0.283029 + 0.163407i −0.634794 0.772682i \(-0.718915\pi\)
0.351765 + 0.936088i \(0.385582\pi\)
\(684\) −11.4400 + 5.35150i −0.437419 + 0.204620i
\(685\) 0.507689i 0.0193978i
\(686\) 0 0
\(687\) 2.91694i 0.111288i
\(688\) −0.604064 + 3.47524i −0.0230297 + 0.132492i
\(689\) 5.81814 3.35910i 0.221653 0.127972i
\(690\) −0.259362 1.16655i −0.00987375 0.0444098i
\(691\) 1.22924 2.12910i 0.0467625 0.0809950i −0.841697 0.539950i \(-0.818443\pi\)
0.888459 + 0.458956i \(0.151776\pi\)
\(692\) −23.7123 + 33.9525i −0.901406 + 1.29068i
\(693\) 0 0
\(694\) 9.33563 29.6717i 0.354375 1.12632i
\(695\) −0.0290295 0.0167602i −0.00110115 0.000635749i
\(696\) −3.04933 + 7.39989i −0.115585 + 0.280492i
\(697\) 9.46098 + 16.3869i 0.358360 + 0.620698i
\(698\) −25.4991 27.7934i −0.965154 1.05200i
\(699\) −20.3989 −0.771559
\(700\) 0 0
\(701\) 43.1693 1.63048 0.815241 0.579123i \(-0.196605\pi\)
0.815241 + 0.579123i \(0.196605\pi\)
\(702\) −0.852478 0.929181i −0.0321747 0.0350697i
\(703\) 27.4039 + 47.4649i 1.03356 + 1.79017i
\(704\) 8.38351 + 30.8371i 0.315965 + 1.16222i
\(705\) −1.10940 0.640513i −0.0417824 0.0241231i
\(706\) 3.29861 10.4841i 0.124145 0.394574i
\(707\) 0 0
\(708\) −0.965485 0.674291i −0.0362852 0.0253414i
\(709\) −13.0399 + 22.5857i −0.489723 + 0.848226i −0.999930 0.0118261i \(-0.996236\pi\)
0.510207 + 0.860052i \(0.329569\pi\)
\(710\) 0.447060 + 2.01077i 0.0167779 + 0.0754628i
\(711\) −8.50718 + 4.91162i −0.319044 + 0.184200i
\(712\) −0.168428 1.26155i −0.00631212 0.0472786i
\(713\) 55.8375i 2.09113i
\(714\) 0 0
\(715\) 0.455652i 0.0170404i
\(716\) −1.24398 2.65927i −0.0464897 0.0993817i
\(717\) −21.8718 + 12.6277i −0.816818 + 0.471590i
\(718\) −23.1745 + 5.15246i −0.864866 + 0.192288i
\(719\) −19.0610 + 33.0146i −0.710854 + 1.23124i 0.253683 + 0.967287i \(0.418358\pi\)
−0.964537 + 0.263948i \(0.914975\pi\)
\(720\) 0.480429 0.176187i 0.0179045 0.00656608i
\(721\) 0 0
\(722\) 28.1647 + 8.86146i 1.04818 + 0.329789i
\(723\) −7.10954 4.10469i −0.264406 0.152655i
\(724\) −46.9201 4.04747i −1.74377 0.150423i
\(725\) −7.05105 12.2128i −0.261870 0.453571i
\(726\) −5.16501 + 4.73864i −0.191691 + 0.175867i
\(727\) 30.8059 1.14253 0.571264 0.820766i \(-0.306453\pi\)
0.571264 + 0.820766i \(0.306453\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 2.06821 1.89748i 0.0765478 0.0702288i
\(731\) −2.56986 4.45112i −0.0950496 0.164631i
\(732\) 3.36341 + 0.290138i 0.124315 + 0.0107238i
\(733\) 35.6019 + 20.5548i 1.31499 + 0.759207i 0.982917 0.184048i \(-0.0589203\pi\)
0.332068 + 0.943255i \(0.392254\pi\)
\(734\) −5.44517 1.71322i −0.200985 0.0632360i
\(735\) 0 0
\(736\) 37.3248 1.74337i 1.37581 0.0642617i
\(737\) −12.6874 + 21.9753i −0.467348 + 0.809471i
\(738\) 4.48180 0.996452i 0.164977 0.0366799i
\(739\) 24.9833 14.4241i 0.919027 0.530600i 0.0357022 0.999362i \(-0.488633\pi\)
0.883324 + 0.468762i \(0.155300\pi\)
\(740\) −0.940923 2.01142i −0.0345890 0.0739414i
\(741\) 5.63071i 0.206849i
\(742\) 0 0
\(743\) 0.365822i 0.0134207i 0.999977 + 0.00671036i \(0.00213599\pi\)
−0.999977 + 0.00671036i \(0.997864\pi\)
\(744\) −23.6994 + 3.16409i −0.868864 + 0.116001i
\(745\) −0.298632 + 0.172415i −0.0109410 + 0.00631681i
\(746\) −6.37773 28.6855i −0.233505 1.05025i
\(747\) −0.740105 + 1.28190i −0.0270790 + 0.0469023i
\(748\) −38.1753 26.6615i −1.39583 0.974841i
\(749\) 0 0
\(750\) −0.542096 + 1.72296i −0.0197945 + 0.0629136i
\(751\) 17.2878 + 9.98114i 0.630842 + 0.364217i 0.781078 0.624433i \(-0.214670\pi\)
−0.150236 + 0.988650i \(0.548003\pi\)
\(752\) 25.6717 30.7459i 0.936149 1.12119i
\(753\) −3.27590 5.67402i −0.119380 0.206773i
\(754\) 2.41224 + 2.62929i 0.0878487 + 0.0957530i
\(755\) 0.552224 0.0200975
\(756\) 0 0
\(757\) −3.04476 −0.110664 −0.0553319 0.998468i \(-0.517622\pi\)
−0.0553319 + 0.998468i \(0.517622\pi\)
\(758\) −10.3064 11.2337i −0.374344 0.408026i
\(759\) 13.1927 + 22.8504i 0.478865 + 0.829418i
\(760\) −2.11263 0.870566i −0.0766331 0.0315788i
\(761\) −6.51310 3.76034i −0.236100 0.136312i 0.377283 0.926098i \(-0.376858\pi\)
−0.613383 + 0.789786i \(0.710192\pi\)
\(762\) −5.97507 + 18.9908i −0.216454 + 0.687963i
\(763\) 0 0
\(764\) −4.22711 + 6.05259i −0.152931 + 0.218975i
\(765\) −0.372812 + 0.645730i −0.0134791 + 0.0233464i
\(766\) 2.00421 + 9.01444i 0.0724149 + 0.325705i
\(767\) −0.454683 + 0.262512i −0.0164177 + 0.00947874i
\(768\) 2.85501 + 15.7432i 0.103021 + 0.568084i
\(769\) 42.4363i 1.53029i 0.643857 + 0.765146i \(0.277333\pi\)
−0.643857 + 0.765146i \(0.722667\pi\)
\(770\) 0 0
\(771\) 18.7522i 0.675346i
\(772\) 4.92161 2.30228i 0.177133 0.0828608i
\(773\) −20.5807 + 11.8823i −0.740237 + 0.427376i −0.822155 0.569263i \(-0.807229\pi\)
0.0819185 + 0.996639i \(0.473895\pi\)
\(774\) −1.21738 + 0.270663i −0.0437578 + 0.00972879i
\(775\) 21.0642 36.4843i 0.756650 1.31056i
\(776\) 36.3104 27.9673i 1.30347 1.00397i
\(777\) 0 0
\(778\) 42.9928 + 13.5268i 1.54137 + 0.484960i
\(779\) −17.7546 10.2506i −0.636126 0.367267i
\(780\) 0.0196070 0.227293i 0.000702043 0.00813839i
\(781\) −22.7401 39.3871i −0.813706 1.40938i
\(782\) −40.1190 + 36.8073i −1.43465 + 1.31622i
\(783\) −2.82968 −0.101125
\(784\) 0 0
\(785\) −0.410160 −0.0146393
\(786\) −10.1808 + 9.34042i −0.363138 + 0.333162i
\(787\) −9.97597 17.2789i −0.355605 0.615926i 0.631616 0.775281i \(-0.282392\pi\)
−0.987221 + 0.159355i \(0.949058\pi\)
\(788\) 0.704471 8.16654i 0.0250957 0.290921i
\(789\) −1.82321 1.05263i −0.0649079 0.0374746i
\(790\) −1.69528 0.533387i −0.0603154 0.0189770i
\(791\) 0 0
\(792\) −8.95097 + 6.89430i −0.318059 + 0.244978i
\(793\) 0.752534 1.30343i 0.0267233 0.0462860i
\(794\) 21.2898 4.73343i 0.755548 0.167983i
\(795\) −0.834750 + 0.481943i −0.0296055 + 0.0170928i
\(796\) 0.377225 0.176462i 0.0133704 0.00625452i
\(797\) 27.9236i 0.989106i −0.869147 0.494553i \(-0.835332\pi\)
0.869147 0.494553i \(-0.164668\pi\)
\(798\) 0 0
\(799\) 58.3633i 2.06474i
\(800\) −25.0458 12.9414i −0.885503 0.457547i
\(801\) 0.389696 0.224991i 0.0137692 0.00794968i
\(802\) −8.50073 38.2343i −0.300171 1.35010i
\(803\) −30.9855 + 53.6685i −1.09346 + 1.89392i
\(804\) −7.27449 + 10.4160i −0.256551 + 0.367344i
\(805\) 0 0
\(806\) −3.19922 + 10.1682i −0.112688 + 0.358160i
\(807\) −10.2209 5.90104i −0.359793 0.207727i
\(808\) 31.5540 + 13.0027i 1.11006 + 0.457433i
\(809\) 10.8699 + 18.8273i 0.382166 + 0.661932i 0.991372 0.131081i \(-0.0418448\pi\)
−0.609205 + 0.793013i \(0.708511\pi\)
\(810\) 0.122308 + 0.133313i 0.00429747 + 0.00468414i
\(811\) −21.4122 −0.751885 −0.375942 0.926643i \(-0.622681\pi\)
−0.375942 + 0.926643i \(0.622681\pi\)
\(812\) 0 0
\(813\) −11.3243 −0.397159
\(814\) 33.1459 + 36.1283i 1.16176 + 1.26629i
\(815\) −1.48794 2.57718i −0.0521201 0.0902747i
\(816\) −17.8957 14.9423i −0.626476 0.523084i
\(817\) 4.82264 + 2.78435i 0.168723 + 0.0974122i
\(818\) −10.5464 + 33.5199i −0.368746 + 1.17200i
\(819\) 0 0
\(820\) 0.681001 + 0.475609i 0.0237816 + 0.0166090i
\(821\) 13.3550 23.1315i 0.466092 0.807294i −0.533158 0.846015i \(-0.678995\pi\)
0.999250 + 0.0387210i \(0.0123284\pi\)
\(822\) −1.21807 5.47857i −0.0424849 0.191087i
\(823\) 20.9990 12.1238i 0.731979 0.422608i −0.0871667 0.996194i \(-0.527781\pi\)
0.819146 + 0.573585i \(0.194448\pi\)
\(824\) 9.20772 1.22931i 0.320766 0.0428252i
\(825\) 19.9074i 0.693085i
\(826\) 0 0
\(827\) 34.2930i 1.19248i −0.802805 0.596242i \(-0.796660\pi\)
0.802805 0.596242i \(-0.203340\pi\)
\(828\) 5.59765 + 11.9662i 0.194532 + 0.415853i
\(829\) −0.699010 + 0.403574i −0.0242776 + 0.0140167i −0.512090 0.858932i \(-0.671128\pi\)
0.487812 + 0.872949i \(0.337795\pi\)
\(830\) −0.261415 + 0.0581211i −0.00907385 + 0.00201741i
\(831\) −5.88192 + 10.1878i −0.204042 + 0.353410i
\(832\) 6.89687 + 1.82106i 0.239106 + 0.0631340i
\(833\) 0 0
\(834\) 0.353473 + 0.111213i 0.0122398 + 0.00385101i
\(835\) 1.07119 + 0.618450i 0.0370699 + 0.0214023i
\(836\) 50.2636 + 4.33590i 1.73840 + 0.149960i
\(837\) −4.22668 7.32083i −0.146096 0.253045i
\(838\) 22.8307 20.9461i 0.788675 0.723570i
\(839\) −27.7282 −0.957284 −0.478642 0.878010i \(-0.658871\pi\)
−0.478642 + 0.878010i \(0.658871\pi\)
\(840\) 0 0
\(841\) −20.9929 −0.723893
\(842\) 19.6148 17.9956i 0.675969 0.620169i
\(843\) −4.90240 8.49121i −0.168848 0.292453i
\(844\) 33.0473 + 2.85076i 1.13754 + 0.0981273i
\(845\) 1.35218 + 0.780684i 0.0465165 + 0.0268563i
\(846\) 13.5085 + 4.25018i 0.464431 + 0.146124i
\(847\) 0 0
\(848\) −10.3767 28.2954i −0.356338 0.971670i
\(849\) 12.3233 21.3445i 0.422933 0.732542i
\(850\) 40.0991 8.91535i 1.37539 0.305794i
\(851\) 49.6481 28.6643i 1.70191 0.982600i
\(852\) −9.64861 20.6260i −0.330556 0.706634i
\(853\) 16.3380i 0.559402i 0.960087 + 0.279701i \(0.0902354\pi\)
−0.960087 + 0.279701i \(0.909765\pi\)
\(854\) 0 0
\(855\) 0.807859i 0.0276282i
\(856\) −1.24845 9.35106i −0.0426712 0.319613i
\(857\) 25.5734 14.7648i 0.873569 0.504355i 0.00503640 0.999987i \(-0.498397\pi\)
0.868533 + 0.495632i \(0.165064\pi\)
\(858\) 1.09322 + 4.91702i 0.0373218 + 0.167864i
\(859\) 7.56296 13.0994i 0.258045 0.446947i −0.707673 0.706540i \(-0.750255\pi\)
0.965718 + 0.259593i \(0.0835884\pi\)
\(860\) −0.184978 0.129188i −0.00630771 0.00440528i
\(861\) 0 0
\(862\) −9.27225 + 29.4703i −0.315814 + 1.00376i
\(863\) −14.0116 8.08962i −0.476962 0.275374i 0.242188 0.970229i \(-0.422135\pi\)
−0.719149 + 0.694856i \(0.755468\pi\)
\(864\) −4.76168 + 3.05392i −0.161996 + 0.103896i
\(865\) −1.32448 2.29407i −0.0450338 0.0780008i
\(866\) 22.7008 + 24.7433i 0.771404 + 0.840813i
\(867\) 16.9705 0.576348
\(868\) 0 0
\(869\) 39.2394 1.33111
\(870\) −0.346093 0.377234i −0.0117337 0.0127894i
\(871\) 2.83207 + 4.90528i 0.0959609 + 0.166209i
\(872\) 4.80723 11.6658i 0.162793 0.395055i
\(873\) 14.0333 + 8.10212i 0.474954 + 0.274215i
\(874\) 17.7044 56.2704i 0.598859 1.90337i
\(875\) 0 0
\(876\) −17.7659 + 25.4381i −0.600254 + 0.859475i
\(877\) −19.8411 + 34.3658i −0.669987 + 1.16045i 0.307921 + 0.951412i \(0.400367\pi\)
−0.977907 + 0.209039i \(0.932967\pi\)
\(878\) −9.78677 44.0186i −0.330288 1.48555i
\(879\) 2.08748 1.20521i 0.0704091 0.0406507i
\(880\) −2.01388 0.350051i −0.0678878 0.0118002i
\(881\) 27.4290i 0.924106i −0.886852 0.462053i \(-0.847113\pi\)
0.886852 0.462053i \(-0.152887\pi\)
\(882\) 0 0
\(883\) 37.1425i 1.24994i 0.780647 + 0.624972i \(0.214890\pi\)
−0.780647 + 0.624972i \(0.785110\pi\)
\(884\) −9.41470 + 4.40410i −0.316651 + 0.148126i
\(885\) 0.0652351 0.0376635i 0.00219285 0.00126605i
\(886\) 21.6497 4.81344i 0.727335 0.161711i
\(887\) 13.8563 23.9998i 0.465248 0.805834i −0.533964 0.845507i \(-0.679298\pi\)
0.999213 + 0.0396732i \(0.0126317\pi\)
\(888\) 14.9795 + 19.4481i 0.502681 + 0.652637i
\(889\) 0 0
\(890\) 0.0776574 + 0.0244334i 0.00260308 + 0.000819008i
\(891\) −3.45938 1.99727i −0.115894 0.0669112i
\(892\) −3.66864 + 42.5285i −0.122835 + 1.42396i
\(893\) −31.6173 54.7628i −1.05803 1.83257i
\(894\) 2.80893 2.57705i 0.0939446 0.0861896i
\(895\) 0.187790 0.00627714
\(896\) 0 0
\(897\) 5.88969 0.196651
\(898\) 10.1341 9.29756i 0.338180 0.310263i
\(899\) 11.9602 + 20.7156i 0.398894 + 0.690905i
\(900\) 0.856626 9.93039i 0.0285542 0.331013i
\(901\) 38.0311 + 21.9572i 1.26700 + 0.731502i
\(902\) −17.4944 5.50428i −0.582501 0.183273i
\(903\) 0 0
\(904\) −15.8142 20.5318i −0.525973 0.682877i
\(905\) 1.50618 2.60879i 0.0500673 0.0867190i
\(906\) −5.95915 + 1.32491i −0.197979 + 0.0440173i
\(907\) −34.6185 + 19.9870i −1.14949 + 0.663658i −0.948763 0.315989i \(-0.897664\pi\)
−0.200727 + 0.979647i \(0.564330\pi\)
\(908\) −48.9078 + 22.8786i −1.62306 + 0.759252i
\(909\) 12.0661i 0.400207i
\(910\) 0 0
\(911\) 35.0711i 1.16196i 0.813918 + 0.580979i \(0.197330\pi\)
−0.813918 + 0.580979i \(0.802670\pi\)
\(912\) 24.8864 + 4.32575i 0.824072 + 0.143240i
\(913\) 5.12061 2.95639i 0.169467 0.0978421i
\(914\) 3.50137 + 15.7483i 0.115815 + 0.520909i
\(915\) −0.107969 + 0.187007i −0.00356934 + 0.00618228i
\(916\) −3.34036 + 4.78290i −0.110369 + 0.158031i
\(917\) 0 0
\(918\) 2.47383 7.86264i 0.0816484 0.259506i
\(919\) 0.286521 + 0.165423i 0.00945146 + 0.00545681i 0.504718 0.863284i \(-0.331596\pi\)
−0.495267 + 0.868741i \(0.664930\pi\)
\(920\) −0.910609 + 2.20980i −0.0300219 + 0.0728549i
\(921\) −12.2027 21.1357i −0.402093 0.696446i
\(922\) 18.7815 + 20.4714i 0.618535 + 0.674189i
\(923\) −10.1520 −0.334157
\(924\) 0 0
\(925\) −43.2536 −1.42217
\(926\) 6.43485 + 7.01384i 0.211462 + 0.230489i
\(927\) 1.64215 + 2.84429i 0.0539354 + 0.0934188i
\(928\) 13.4740 8.64163i 0.442307 0.283675i
\(929\) −24.6448 14.2287i −0.808571 0.466829i 0.0378883 0.999282i \(-0.487937\pi\)
−0.846459 + 0.532453i \(0.821270\pi\)
\(930\) 0.459004 1.45887i 0.0150513 0.0478382i
\(931\) 0 0
\(932\) 33.4481 + 23.3600i 1.09563 + 0.765183i
\(933\) −15.5933 + 27.0084i −0.510502 + 0.884215i
\(934\) 6.78983 + 30.5390i 0.222170 + 0.999267i
\(935\) 2.57940 1.48922i 0.0843553 0.0487026i
\(936\) 0.333746 + 2.49980i 0.0109088 + 0.0817085i
\(937\) 11.8966i 0.388645i −0.980938 0.194323i \(-0.937749\pi\)
0.980938 0.194323i \(-0.0622509\pi\)
\(938\) 0 0
\(939\) 2.53807i 0.0828269i
\(940\) 1.08559 + 2.32069i 0.0354081 + 0.0756925i
\(941\) 14.5463 8.39834i 0.474197 0.273778i −0.243798 0.969826i \(-0.578393\pi\)
0.717995 + 0.696048i \(0.245060\pi\)
\(942\) 4.42611 0.984071i 0.144211 0.0320628i
\(943\) −10.7221 + 18.5713i −0.349161 + 0.604764i
\(944\) 0.810934 + 2.21127i 0.0263936 + 0.0719707i
\(945\) 0 0
\(946\) 4.75197 + 1.49511i 0.154500 + 0.0486103i
\(947\) −17.8680 10.3161i −0.580631 0.335227i 0.180753 0.983528i \(-0.442146\pi\)
−0.761384 + 0.648301i \(0.775480\pi\)
\(948\) 19.5738 + 1.68850i 0.635727 + 0.0548398i
\(949\) 6.91653 + 11.9798i 0.224520 + 0.388880i
\(950\) −32.7956 + 30.0884i −1.06403 + 0.976196i
\(951\) 18.2520 0.591863
\(952\) 0 0
\(953\) 21.9025 0.709492 0.354746 0.934963i \(-0.384567\pi\)
0.354746 + 0.934963i \(0.384567\pi\)
\(954\) 7.85164 7.20349i 0.254206 0.233222i
\(955\) −0.236111 0.408956i −0.00764037 0.0132335i
\(956\) 50.3239 + 4.34110i 1.62759 + 0.140401i
\(957\) 9.78895 + 5.65165i 0.316432 + 0.182692i
\(958\) −28.6867 9.02571i −0.926826 0.291608i
\(959\) 0 0
\(960\) −0.989520 0.261274i −0.0319366 0.00843260i
\(961\) −20.2297 + 35.0389i −0.652571 + 1.13029i
\(962\) 10.6834 2.37528i 0.344447 0.0765819i
\(963\) 2.88857 1.66772i 0.0930829 0.0537414i
\(964\) 6.95697 + 14.8720i 0.224069 + 0.478995i
\(965\) 0.347550i 0.0111880i
\(966\) 0 0
\(967\) 0.651178i 0.0209405i −0.999945 0.0104702i \(-0.996667\pi\)
0.999945 0.0104702i \(-0.00333284\pi\)
\(968\) 13.8956 1.85518i 0.446620 0.0596279i
\(969\) −31.8748 + 18.4029i −1.02397 + 0.591188i
\(970\) 0.636266 + 2.86177i 0.0204293 + 0.0918860i
\(971\) 29.7321 51.4974i 0.954147 1.65263i 0.217839 0.975985i \(-0.430099\pi\)
0.736308 0.676646i \(-0.236567\pi\)
\(972\) −1.63970 1.14516i −0.0525933 0.0367310i
\(973\) 0 0
\(974\) 15.0397 47.8012i 0.481904 1.53165i
\(975\) −3.84834 2.22184i −0.123246 0.0711558i
\(976\) −5.18272 4.32737i −0.165895 0.138516i
\(977\) 11.1218 + 19.2636i 0.355819 + 0.616297i 0.987258 0.159129i \(-0.0508685\pi\)
−0.631438 + 0.775426i \(0.717535\pi\)
\(978\) 22.2398 + 24.2409i 0.711151 + 0.775138i
\(979\) −1.79748 −0.0574476
\(980\) 0 0
\(981\) 4.46096 0.142428
\(982\) 14.5250 + 15.8319i 0.463511 + 0.505216i
\(983\) −9.54779 16.5373i −0.304527 0.527457i 0.672629 0.739980i \(-0.265165\pi\)
−0.977156 + 0.212523i \(0.931832\pi\)
\(984\) −8.48990 3.49850i −0.270648 0.111528i
\(985\) 0.454065 + 0.262154i 0.0144677 + 0.00835293i
\(986\) −7.00014 + 22.2488i −0.222930 + 0.708546i
\(987\) 0 0
\(988\) 6.44806 9.23266i 0.205140 0.293730i
\(989\) 2.91242 5.04446i 0.0926096 0.160404i
\(990\) −0.156848 0.705464i −0.00498495 0.0224211i
\(991\) 23.6878 13.6762i 0.752468 0.434438i −0.0741168 0.997250i \(-0.523614\pi\)
0.826585 + 0.562812i \(0.190280\pi\)
\(992\) 42.4833 + 21.9515i 1.34885 + 0.696960i
\(993\) 20.7274i 0.657763i
\(994\) 0 0
\(995\) 0.0266385i 0.000844499i
\(996\) 2.68153 1.25439i 0.0849675 0.0397469i
\(997\) 28.3135 16.3468i 0.896697 0.517708i 0.0205701 0.999788i \(-0.493452\pi\)
0.876127 + 0.482080i \(0.160119\pi\)
\(998\) −15.3090 + 3.40370i −0.484599 + 0.107742i
\(999\) −4.33956 + 7.51634i −0.137298 + 0.237806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.o.f.19.4 24
4.3 odd 2 588.2.o.e.19.7 24
7.2 even 3 588.2.b.c.391.12 yes 12
7.3 odd 6 588.2.o.e.31.7 24
7.4 even 3 inner 588.2.o.f.31.7 24
7.5 odd 6 588.2.b.d.391.12 yes 12
7.6 odd 2 588.2.o.e.19.4 24
21.2 odd 6 1764.2.b.l.1567.1 12
21.5 even 6 1764.2.b.m.1567.1 12
28.3 even 6 inner 588.2.o.f.31.4 24
28.11 odd 6 588.2.o.e.31.4 24
28.19 even 6 588.2.b.c.391.11 12
28.23 odd 6 588.2.b.d.391.11 yes 12
28.27 even 2 inner 588.2.o.f.19.7 24
84.23 even 6 1764.2.b.m.1567.2 12
84.47 odd 6 1764.2.b.l.1567.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.11 12 28.19 even 6
588.2.b.c.391.12 yes 12 7.2 even 3
588.2.b.d.391.11 yes 12 28.23 odd 6
588.2.b.d.391.12 yes 12 7.5 odd 6
588.2.o.e.19.4 24 7.6 odd 2
588.2.o.e.19.7 24 4.3 odd 2
588.2.o.e.31.4 24 28.11 odd 6
588.2.o.e.31.7 24 7.3 odd 6
588.2.o.f.19.4 24 1.1 even 1 trivial
588.2.o.f.19.7 24 28.27 even 2 inner
588.2.o.f.31.4 24 28.3 even 6 inner
588.2.o.f.31.7 24 7.4 even 3 inner
1764.2.b.l.1567.1 12 21.2 odd 6
1764.2.b.l.1567.2 12 84.47 odd 6
1764.2.b.m.1567.1 12 21.5 even 6
1764.2.b.m.1567.2 12 84.23 even 6