Properties

Label 588.2.o.e.19.6
Level $588$
Weight $2$
Character 588.19
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(19,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,-12,4,0,8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.6
Character \(\chi\) \(=\) 588.19
Dual form 588.2.o.e.31.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.381130 - 1.36189i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-1.70948 + 1.03811i) q^{4} +(0.977624 + 0.564431i) q^{5} +(-0.988865 + 1.01101i) q^{6} +(2.06533 + 1.93246i) q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.396091 - 1.54654i) q^{10} +(-1.16914 + 0.675002i) q^{11} +(1.75377 + 0.961396i) q^{12} +5.58489i q^{13} -1.12886i q^{15} +(1.84464 - 3.54927i) q^{16} +(-3.44113 + 1.98674i) q^{17} +(1.36999 + 0.350876i) q^{18} +(-3.07204 + 5.32093i) q^{19} +(-2.25717 + 0.0500006i) q^{20} +(1.36487 + 1.33497i) q^{22} +(5.72784 + 3.30697i) q^{23} +(0.640898 - 2.75486i) q^{24} +(-1.86283 - 3.22652i) q^{25} +(7.60600 - 2.12857i) q^{26} +1.00000 q^{27} +8.55270 q^{29} +(-1.53738 + 0.430244i) q^{30} +(1.46111 + 2.53071i) q^{31} +(-5.53675 - 1.15946i) q^{32} +(1.16914 + 0.675002i) q^{33} +(4.01723 + 3.92923i) q^{34} +(-0.0442929 - 1.99951i) q^{36} +(-3.16249 + 5.47759i) q^{37} +(8.41736 + 2.15581i) q^{38} +(4.83666 - 2.79245i) q^{39} +(0.928372 + 3.05496i) q^{40} +0.149223i q^{41} -10.6557i q^{43} +(1.29789 - 2.36760i) q^{44} +(-0.977624 + 0.564431i) q^{45} +(2.32067 - 9.06107i) q^{46} +(1.79746 - 3.11329i) q^{47} +(-3.99608 + 0.177128i) q^{48} +(-3.68418 + 3.76670i) q^{50} +(3.44113 + 1.98674i) q^{51} +(-5.79775 - 9.54726i) q^{52} +(-0.366793 - 0.635305i) q^{53} +(-0.381130 - 1.36189i) q^{54} -1.52397 q^{55} +6.14408 q^{57} +(-3.25969 - 11.6478i) q^{58} +(7.20270 + 12.4754i) q^{59} +(1.17189 + 1.92977i) q^{60} +(-7.89372 - 4.55744i) q^{61} +(2.88967 - 2.95439i) q^{62} +(0.531167 + 7.98235i) q^{64} +(-3.15229 + 5.45992i) q^{65} +(0.473683 - 1.84950i) q^{66} +(0.202730 - 0.117046i) q^{67} +(3.82008 - 6.96857i) q^{68} -6.61394i q^{69} +8.74104i q^{71} +(-2.70623 + 0.822395i) q^{72} +(1.52893 - 0.882729i) q^{73} +(8.66518 + 2.21928i) q^{74} +(-1.86283 + 3.22652i) q^{75} +(-0.272139 - 12.2852i) q^{76} +(-5.64640 - 5.52270i) q^{78} +(-7.28129 - 4.20385i) q^{79} +(3.80668 - 2.42868i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.203226 - 0.0568736i) q^{82} +9.12928 q^{83} -4.48551 q^{85} +(-14.5119 + 4.06122i) q^{86} +(-4.27635 - 7.40685i) q^{87} +(-3.71907 - 0.865215i) q^{88} +(-6.86538 - 3.96373i) q^{89} +(1.14129 + 1.11629i) q^{90} +(-13.2246 + 0.292951i) q^{92} +(1.46111 - 2.53071i) q^{93} +(-4.92502 - 1.26137i) q^{94} +(-6.00660 + 3.46791i) q^{95} +(1.76425 + 5.37470i) q^{96} +6.23063i q^{97} -1.35000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} - 12 q^{3} + 4 q^{4} + 8 q^{6} + 8 q^{8} - 12 q^{9} + 4 q^{12} + 4 q^{16} - 4 q^{18} - 48 q^{20} - 4 q^{24} + 12 q^{25} - 24 q^{26} + 24 q^{27} + 64 q^{29} - 16 q^{31} - 4 q^{32} + 64 q^{34}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.381130 1.36189i −0.269500 0.963000i
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −1.70948 + 1.03811i −0.854740 + 0.519057i
\(5\) 0.977624 + 0.564431i 0.437207 + 0.252421i 0.702412 0.711771i \(-0.252106\pi\)
−0.265205 + 0.964192i \(0.585440\pi\)
\(6\) −0.988865 + 1.01101i −0.403702 + 0.412744i
\(7\) 0 0
\(8\) 2.06533 + 1.93246i 0.730204 + 0.683229i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0.396091 1.54654i 0.125255 0.489058i
\(11\) −1.16914 + 0.675002i −0.352508 + 0.203521i −0.665789 0.746140i \(-0.731905\pi\)
0.313281 + 0.949660i \(0.398572\pi\)
\(12\) 1.75377 + 0.961396i 0.506271 + 0.277531i
\(13\) 5.58489i 1.54897i 0.632592 + 0.774485i \(0.281991\pi\)
−0.632592 + 0.774485i \(0.718009\pi\)
\(14\) 0 0
\(15\) 1.12886i 0.291471i
\(16\) 1.84464 3.54927i 0.461160 0.887317i
\(17\) −3.44113 + 1.98674i −0.834597 + 0.481855i −0.855424 0.517929i \(-0.826703\pi\)
0.0208273 + 0.999783i \(0.493370\pi\)
\(18\) 1.36999 + 0.350876i 0.322911 + 0.0827022i
\(19\) −3.07204 + 5.32093i −0.704775 + 1.22071i 0.261998 + 0.965068i \(0.415619\pi\)
−0.966773 + 0.255637i \(0.917715\pi\)
\(20\) −2.25717 + 0.0500006i −0.504719 + 0.0111805i
\(21\) 0 0
\(22\) 1.36487 + 1.33497i 0.290991 + 0.284617i
\(23\) 5.72784 + 3.30697i 1.19434 + 0.689551i 0.959287 0.282432i \(-0.0911411\pi\)
0.235051 + 0.971983i \(0.424474\pi\)
\(24\) 0.640898 2.75486i 0.130823 0.562333i
\(25\) −1.86283 3.22652i −0.372567 0.645305i
\(26\) 7.60600 2.12857i 1.49166 0.417447i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.55270 1.58820 0.794098 0.607790i \(-0.207944\pi\)
0.794098 + 0.607790i \(0.207944\pi\)
\(30\) −1.53738 + 0.430244i −0.280687 + 0.0785514i
\(31\) 1.46111 + 2.53071i 0.262422 + 0.454529i 0.966885 0.255212i \(-0.0821453\pi\)
−0.704463 + 0.709741i \(0.748812\pi\)
\(32\) −5.53675 1.15946i −0.978769 0.204966i
\(33\) 1.16914 + 0.675002i 0.203521 + 0.117503i
\(34\) 4.01723 + 3.92923i 0.688950 + 0.673857i
\(35\) 0 0
\(36\) −0.0442929 1.99951i −0.00738215 0.333252i
\(37\) −3.16249 + 5.47759i −0.519910 + 0.900510i 0.479823 + 0.877366i \(0.340701\pi\)
−0.999732 + 0.0231442i \(0.992632\pi\)
\(38\) 8.41736 + 2.15581i 1.36548 + 0.349719i
\(39\) 4.83666 2.79245i 0.774485 0.447149i
\(40\) 0.928372 + 3.05496i 0.146788 + 0.483031i
\(41\) 0.149223i 0.0233048i 0.999932 + 0.0116524i \(0.00370916\pi\)
−0.999932 + 0.0116524i \(0.996291\pi\)
\(42\) 0 0
\(43\) 10.6557i 1.62498i −0.582974 0.812491i \(-0.698111\pi\)
0.582974 0.812491i \(-0.301889\pi\)
\(44\) 1.29789 2.36760i 0.195664 0.356929i
\(45\) −0.977624 + 0.564431i −0.145736 + 0.0841405i
\(46\) 2.32067 9.06107i 0.342164 1.33598i
\(47\) 1.79746 3.11329i 0.262186 0.454120i −0.704636 0.709569i \(-0.748890\pi\)
0.966823 + 0.255448i \(0.0822231\pi\)
\(48\) −3.99608 + 0.177128i −0.576784 + 0.0255663i
\(49\) 0 0
\(50\) −3.68418 + 3.76670i −0.521022 + 0.532692i
\(51\) 3.44113 + 1.98674i 0.481855 + 0.278199i
\(52\) −5.79775 9.54726i −0.804003 1.32397i
\(53\) −0.366793 0.635305i −0.0503830 0.0872658i 0.839734 0.542998i \(-0.182711\pi\)
−0.890117 + 0.455732i \(0.849378\pi\)
\(54\) −0.381130 1.36189i −0.0518653 0.185330i
\(55\) −1.52397 −0.205492
\(56\) 0 0
\(57\) 6.14408 0.813804
\(58\) −3.25969 11.6478i −0.428018 1.52943i
\(59\) 7.20270 + 12.4754i 0.937712 + 1.62416i 0.769726 + 0.638375i \(0.220393\pi\)
0.167986 + 0.985789i \(0.446274\pi\)
\(60\) 1.17189 + 1.92977i 0.151290 + 0.249132i
\(61\) −7.89372 4.55744i −1.01069 0.583520i −0.0992943 0.995058i \(-0.531659\pi\)
−0.911393 + 0.411538i \(0.864992\pi\)
\(62\) 2.88967 2.95439i 0.366989 0.375208i
\(63\) 0 0
\(64\) 0.531167 + 7.98235i 0.0663959 + 0.997793i
\(65\) −3.15229 + 5.45992i −0.390993 + 0.677220i
\(66\) 0.473683 1.84950i 0.0583064 0.227657i
\(67\) 0.202730 0.117046i 0.0247674 0.0142995i −0.487565 0.873087i \(-0.662115\pi\)
0.512333 + 0.858787i \(0.328782\pi\)
\(68\) 3.82008 6.96857i 0.463253 0.845063i
\(69\) 6.61394i 0.796225i
\(70\) 0 0
\(71\) 8.74104i 1.03737i 0.854965 + 0.518685i \(0.173578\pi\)
−0.854965 + 0.518685i \(0.826422\pi\)
\(72\) −2.70623 + 0.822395i −0.318932 + 0.0969202i
\(73\) 1.52893 0.882729i 0.178948 0.103316i −0.407850 0.913049i \(-0.633721\pi\)
0.586798 + 0.809733i \(0.300388\pi\)
\(74\) 8.66518 + 2.21928i 1.00731 + 0.257986i
\(75\) −1.86283 + 3.22652i −0.215102 + 0.372567i
\(76\) −0.272139 12.2852i −0.0312165 1.40920i
\(77\) 0 0
\(78\) −5.64640 5.52270i −0.639328 0.625323i
\(79\) −7.28129 4.20385i −0.819209 0.472971i 0.0309346 0.999521i \(-0.490152\pi\)
−0.850144 + 0.526551i \(0.823485\pi\)
\(80\) 3.80668 2.42868i 0.425600 0.271534i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0.203226 0.0568736i 0.0224425 0.00628063i
\(83\) 9.12928 1.00207 0.501035 0.865427i \(-0.332953\pi\)
0.501035 + 0.865427i \(0.332953\pi\)
\(84\) 0 0
\(85\) −4.48551 −0.486522
\(86\) −14.5119 + 4.06122i −1.56486 + 0.437932i
\(87\) −4.27635 7.40685i −0.458473 0.794098i
\(88\) −3.71907 0.865215i −0.396454 0.0922322i
\(89\) −6.86538 3.96373i −0.727729 0.420155i 0.0898617 0.995954i \(-0.471358\pi\)
−0.817591 + 0.575800i \(0.804691\pi\)
\(90\) 1.14129 + 1.11629i 0.120303 + 0.117668i
\(91\) 0 0
\(92\) −13.2246 + 0.292951i −1.37876 + 0.0305422i
\(93\) 1.46111 2.53071i 0.151510 0.262422i
\(94\) −4.92502 1.26137i −0.507977 0.130100i
\(95\) −6.00660 + 3.46791i −0.616264 + 0.355800i
\(96\) 1.76425 + 5.37470i 0.180063 + 0.548553i
\(97\) 6.23063i 0.632624i 0.948655 + 0.316312i \(0.102445\pi\)
−0.948655 + 0.316312i \(0.897555\pi\)
\(98\) 0 0
\(99\) 1.35000i 0.135680i
\(100\) 6.53398 + 3.58184i 0.653398 + 0.358184i
\(101\) −0.688456 + 0.397480i −0.0685040 + 0.0395508i −0.533861 0.845572i \(-0.679259\pi\)
0.465357 + 0.885123i \(0.345926\pi\)
\(102\) 1.39420 5.44364i 0.138046 0.539001i
\(103\) −1.67738 + 2.90531i −0.165277 + 0.286268i −0.936754 0.349989i \(-0.886185\pi\)
0.771477 + 0.636258i \(0.219518\pi\)
\(104\) −10.7926 + 11.5346i −1.05830 + 1.13106i
\(105\) 0 0
\(106\) −0.725418 + 0.741666i −0.0704589 + 0.0720369i
\(107\) 10.8695 + 6.27550i 1.05079 + 0.606675i 0.922871 0.385109i \(-0.125836\pi\)
0.127921 + 0.991784i \(0.459169\pi\)
\(108\) −1.70948 + 1.03811i −0.164495 + 0.0998925i
\(109\) 7.62660 + 13.2097i 0.730496 + 1.26526i 0.956672 + 0.291169i \(0.0940442\pi\)
−0.226176 + 0.974086i \(0.572622\pi\)
\(110\) 0.580830 + 2.07547i 0.0553800 + 0.197889i
\(111\) 6.32497 0.600340
\(112\) 0 0
\(113\) −11.7783 −1.10801 −0.554004 0.832514i \(-0.686901\pi\)
−0.554004 + 0.832514i \(0.686901\pi\)
\(114\) −2.34170 8.36756i −0.219320 0.783693i
\(115\) 3.73312 + 6.46595i 0.348115 + 0.602953i
\(116\) −14.6207 + 8.87867i −1.35749 + 0.824364i
\(117\) −4.83666 2.79245i −0.447149 0.258162i
\(118\) 14.2450 14.5640i 1.31136 1.34073i
\(119\) 0 0
\(120\) 2.18149 2.33147i 0.199142 0.212833i
\(121\) −4.58875 + 7.94794i −0.417159 + 0.722540i
\(122\) −3.19819 + 12.4873i −0.289551 + 1.13055i
\(123\) 0.129231 0.0746117i 0.0116524 0.00672751i
\(124\) −5.12489 2.80940i −0.460229 0.252292i
\(125\) 9.85008i 0.881018i
\(126\) 0 0
\(127\) 3.52444i 0.312743i −0.987698 0.156372i \(-0.950020\pi\)
0.987698 0.156372i \(-0.0499798\pi\)
\(128\) 10.6686 3.76570i 0.942982 0.332844i
\(129\) −9.22813 + 5.32786i −0.812491 + 0.469092i
\(130\) 8.63724 + 2.21212i 0.757536 + 0.194016i
\(131\) 1.18600 2.05421i 0.103621 0.179477i −0.809553 0.587047i \(-0.800290\pi\)
0.913174 + 0.407570i \(0.133624\pi\)
\(132\) −2.69934 + 0.0597956i −0.234948 + 0.00520454i
\(133\) 0 0
\(134\) −0.236671 0.231486i −0.0204452 0.0199973i
\(135\) 0.977624 + 0.564431i 0.0841405 + 0.0485785i
\(136\) −10.9464 2.54659i −0.938643 0.218369i
\(137\) 3.58780 + 6.21426i 0.306527 + 0.530920i 0.977600 0.210471i \(-0.0674997\pi\)
−0.671073 + 0.741391i \(0.734166\pi\)
\(138\) −9.00745 + 2.52077i −0.766765 + 0.214583i
\(139\) −22.5888 −1.91595 −0.957977 0.286845i \(-0.907394\pi\)
−0.957977 + 0.286845i \(0.907394\pi\)
\(140\) 0 0
\(141\) −3.59492 −0.302747
\(142\) 11.9043 3.33147i 0.998988 0.279571i
\(143\) −3.76981 6.52950i −0.315247 0.546025i
\(144\) 2.15144 + 3.37214i 0.179286 + 0.281012i
\(145\) 8.36132 + 4.82741i 0.694370 + 0.400895i
\(146\) −1.78490 1.74580i −0.147719 0.144483i
\(147\) 0 0
\(148\) −0.280151 12.6468i −0.0230283 1.03956i
\(149\) 5.52532 9.57014i 0.452652 0.784016i −0.545898 0.837852i \(-0.683811\pi\)
0.998550 + 0.0538356i \(0.0171447\pi\)
\(150\) 5.10415 + 1.30725i 0.416752 + 0.106736i
\(151\) −1.33325 + 0.769750i −0.108498 + 0.0626413i −0.553267 0.833004i \(-0.686619\pi\)
0.444769 + 0.895645i \(0.353286\pi\)
\(152\) −16.6273 + 5.05287i −1.34865 + 0.409842i
\(153\) 3.97347i 0.321236i
\(154\) 0 0
\(155\) 3.29878i 0.264964i
\(156\) −5.36929 + 9.79463i −0.429887 + 0.784198i
\(157\) 7.41273 4.27974i 0.591600 0.341560i −0.174130 0.984723i \(-0.555711\pi\)
0.765730 + 0.643162i \(0.222378\pi\)
\(158\) −2.95006 + 11.5185i −0.234694 + 0.916364i
\(159\) −0.366793 + 0.635305i −0.0290886 + 0.0503830i
\(160\) −4.75843 4.25863i −0.376187 0.336675i
\(161\) 0 0
\(162\) −0.988865 + 1.01101i −0.0776926 + 0.0794327i
\(163\) 4.90167 + 2.82998i 0.383929 + 0.221661i 0.679526 0.733651i \(-0.262185\pi\)
−0.295598 + 0.955313i \(0.595519\pi\)
\(164\) −0.154911 0.255094i −0.0120965 0.0199195i
\(165\) 0.761984 + 1.31980i 0.0593204 + 0.102746i
\(166\) −3.47945 12.4331i −0.270057 0.964993i
\(167\) 4.84357 0.374807 0.187403 0.982283i \(-0.439993\pi\)
0.187403 + 0.982283i \(0.439993\pi\)
\(168\) 0 0
\(169\) −18.1910 −1.39931
\(170\) 1.70956 + 6.10876i 0.131117 + 0.468520i
\(171\) −3.07204 5.32093i −0.234925 0.406902i
\(172\) 11.0618 + 18.2157i 0.843458 + 1.38894i
\(173\) −1.82184 1.05184i −0.138512 0.0799701i 0.429143 0.903237i \(-0.358816\pi\)
−0.567655 + 0.823267i \(0.692149\pi\)
\(174\) −8.45746 + 8.64689i −0.641159 + 0.655519i
\(175\) 0 0
\(176\) 0.239124 + 5.39472i 0.0180246 + 0.406642i
\(177\) 7.20270 12.4754i 0.541388 0.937712i
\(178\) −2.78155 + 10.8606i −0.208486 + 0.814035i
\(179\) 3.47076 2.00384i 0.259417 0.149774i −0.364652 0.931144i \(-0.618812\pi\)
0.624068 + 0.781370i \(0.285479\pi\)
\(180\) 1.08528 1.97977i 0.0808923 0.147563i
\(181\) 5.89663i 0.438293i 0.975692 + 0.219146i \(0.0703272\pi\)
−0.975692 + 0.219146i \(0.929673\pi\)
\(182\) 0 0
\(183\) 9.11488i 0.673791i
\(184\) 5.43928 + 17.8988i 0.400989 + 1.31952i
\(185\) −6.18344 + 3.57001i −0.454616 + 0.262473i
\(186\) −4.00341 1.02533i −0.293545 0.0751811i
\(187\) 2.68210 4.64554i 0.196135 0.339715i
\(188\) 0.159229 + 7.18808i 0.0116130 + 0.524244i
\(189\) 0 0
\(190\) 7.01221 + 6.85859i 0.508719 + 0.497575i
\(191\) −21.9900 12.6959i −1.59114 0.918645i −0.993112 0.117170i \(-0.962618\pi\)
−0.598028 0.801475i \(-0.704049\pi\)
\(192\) 6.64733 4.45118i 0.479730 0.321236i
\(193\) −0.0366935 0.0635549i −0.00264125 0.00457478i 0.864702 0.502286i \(-0.167507\pi\)
−0.867343 + 0.497711i \(0.834174\pi\)
\(194\) 8.48542 2.37468i 0.609218 0.170492i
\(195\) 6.30457 0.451480
\(196\) 0 0
\(197\) 7.23506 0.515477 0.257739 0.966215i \(-0.417023\pi\)
0.257739 + 0.966215i \(0.417023\pi\)
\(198\) −1.83855 + 0.514527i −0.130660 + 0.0365658i
\(199\) −7.65598 13.2605i −0.542718 0.940015i −0.998747 0.0500500i \(-0.984062\pi\)
0.456029 0.889965i \(-0.349271\pi\)
\(200\) 2.38777 10.2637i 0.168841 0.725753i
\(201\) −0.202730 0.117046i −0.0142995 0.00825581i
\(202\) 0.803715 + 0.786109i 0.0565492 + 0.0553104i
\(203\) 0 0
\(204\) −7.94500 + 0.175997i −0.556261 + 0.0123222i
\(205\) −0.0842264 + 0.145884i −0.00588263 + 0.0101890i
\(206\) 4.59600 + 1.17710i 0.320219 + 0.0820127i
\(207\) −5.72784 + 3.30697i −0.398113 + 0.229850i
\(208\) 19.8223 + 10.3021i 1.37443 + 0.714323i
\(209\) 8.29453i 0.573745i
\(210\) 0 0
\(211\) 13.7540i 0.946861i −0.880831 0.473431i \(-0.843015\pi\)
0.880831 0.473431i \(-0.156985\pi\)
\(212\) 1.28654 + 0.705268i 0.0883602 + 0.0484380i
\(213\) 7.56996 4.37052i 0.518685 0.299463i
\(214\) 4.40384 17.1948i 0.301040 1.17541i
\(215\) 6.01442 10.4173i 0.410180 0.710453i
\(216\) 2.06533 + 1.93246i 0.140528 + 0.131488i
\(217\) 0 0
\(218\) 15.0833 15.4212i 1.02157 1.04445i
\(219\) −1.52893 0.882729i −0.103316 0.0596493i
\(220\) 2.60519 1.58205i 0.175642 0.106662i
\(221\) −11.0957 19.2183i −0.746378 1.29277i
\(222\) −2.41064 8.61391i −0.161791 0.578127i
\(223\) −16.4120 −1.09903 −0.549516 0.835483i \(-0.685188\pi\)
−0.549516 + 0.835483i \(0.685188\pi\)
\(224\) 0 0
\(225\) 3.72567 0.248378
\(226\) 4.48906 + 16.0407i 0.298608 + 1.06701i
\(227\) −8.06595 13.9706i −0.535356 0.927263i −0.999146 0.0413183i \(-0.986844\pi\)
0.463790 0.885945i \(-0.346489\pi\)
\(228\) −10.5032 + 6.37826i −0.695590 + 0.422410i
\(229\) 18.7652 + 10.8341i 1.24004 + 0.715937i 0.969102 0.246660i \(-0.0793331\pi\)
0.270937 + 0.962597i \(0.412666\pi\)
\(230\) 7.38310 7.54846i 0.486827 0.497731i
\(231\) 0 0
\(232\) 17.6641 + 16.5278i 1.15971 + 1.08510i
\(233\) 9.51561 16.4815i 0.623389 1.07974i −0.365461 0.930826i \(-0.619089\pi\)
0.988850 0.148914i \(-0.0475779\pi\)
\(234\) −1.95960 + 7.65127i −0.128103 + 0.500179i
\(235\) 3.51448 2.02909i 0.229259 0.132363i
\(236\) −25.2638 13.8493i −1.64453 0.901512i
\(237\) 8.40771i 0.546139i
\(238\) 0 0
\(239\) 15.6878i 1.01476i 0.861722 + 0.507381i \(0.169386\pi\)
−0.861722 + 0.507381i \(0.830614\pi\)
\(240\) −4.00664 2.08235i −0.258627 0.134415i
\(241\) 10.3066 5.95053i 0.663908 0.383307i −0.129857 0.991533i \(-0.541452\pi\)
0.793764 + 0.608225i \(0.208118\pi\)
\(242\) 12.5731 + 3.22016i 0.808231 + 0.207000i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 18.2253 0.403725i 1.16675 0.0258458i
\(245\) 0 0
\(246\) −0.150867 0.147562i −0.00961891 0.00940820i
\(247\) −29.7168 17.1570i −1.89084 1.09167i
\(248\) −1.87284 + 8.05028i −0.118925 + 0.511193i
\(249\) −4.56464 7.90619i −0.289272 0.501035i
\(250\) −13.4147 + 3.75416i −0.848421 + 0.237434i
\(251\) −1.68715 −0.106492 −0.0532459 0.998581i \(-0.516957\pi\)
−0.0532459 + 0.998581i \(0.516957\pi\)
\(252\) 0 0
\(253\) −8.92885 −0.561352
\(254\) −4.79989 + 1.34327i −0.301172 + 0.0842843i
\(255\) 2.24275 + 3.88456i 0.140447 + 0.243261i
\(256\) −9.19460 13.0942i −0.574663 0.818390i
\(257\) 18.4612 + 10.6586i 1.15158 + 0.664862i 0.949271 0.314460i \(-0.101824\pi\)
0.202305 + 0.979323i \(0.435157\pi\)
\(258\) 10.7731 + 10.5371i 0.670702 + 0.656009i
\(259\) 0 0
\(260\) −0.279248 12.6061i −0.0173182 0.781794i
\(261\) −4.27635 + 7.40685i −0.264699 + 0.458473i
\(262\) −3.24962 0.832274i −0.200762 0.0514181i
\(263\) 10.0326 5.79230i 0.618634 0.357169i −0.157703 0.987487i \(-0.550409\pi\)
0.776337 + 0.630318i \(0.217075\pi\)
\(264\) 1.11024 + 3.65342i 0.0683303 + 0.224852i
\(265\) 0.828119i 0.0508709i
\(266\) 0 0
\(267\) 7.92746i 0.485153i
\(268\) −0.225056 + 0.410545i −0.0137475 + 0.0250780i
\(269\) 6.28171 3.62675i 0.383003 0.221127i −0.296121 0.955150i \(-0.595693\pi\)
0.679124 + 0.734024i \(0.262360\pi\)
\(270\) 0.396091 1.54654i 0.0241053 0.0941192i
\(271\) 14.5072 25.1272i 0.881249 1.52637i 0.0312948 0.999510i \(-0.490037\pi\)
0.849954 0.526857i \(-0.176630\pi\)
\(272\) 0.703814 + 15.8783i 0.0426750 + 0.962764i
\(273\) 0 0
\(274\) 7.09571 7.25463i 0.428667 0.438268i
\(275\) 4.35582 + 2.51483i 0.262666 + 0.151650i
\(276\) 6.86603 + 11.3064i 0.413286 + 0.680565i
\(277\) 0.172570 + 0.298901i 0.0103688 + 0.0179592i 0.871163 0.490994i \(-0.163366\pi\)
−0.860794 + 0.508953i \(0.830033\pi\)
\(278\) 8.60926 + 30.7634i 0.516349 + 1.84506i
\(279\) −2.92221 −0.174948
\(280\) 0 0
\(281\) 6.62734 0.395354 0.197677 0.980267i \(-0.436660\pi\)
0.197677 + 0.980267i \(0.436660\pi\)
\(282\) 1.37013 + 4.89588i 0.0815902 + 0.291545i
\(283\) 13.8906 + 24.0593i 0.825713 + 1.43018i 0.901373 + 0.433044i \(0.142560\pi\)
−0.0756596 + 0.997134i \(0.524106\pi\)
\(284\) −9.07419 14.9426i −0.538454 0.886682i
\(285\) 6.00660 + 3.46791i 0.355800 + 0.205421i
\(286\) −7.45567 + 7.62265i −0.440863 + 0.450737i
\(287\) 0 0
\(288\) 3.77250 4.21524i 0.222297 0.248385i
\(289\) −0.605750 + 1.04919i −0.0356324 + 0.0617171i
\(290\) 3.38764 13.2271i 0.198929 0.776720i
\(291\) 5.39588 3.11531i 0.316312 0.182623i
\(292\) −1.69730 + 3.09621i −0.0993272 + 0.181192i
\(293\) 7.28491i 0.425589i −0.977097 0.212794i \(-0.931744\pi\)
0.977097 0.212794i \(-0.0682565\pi\)
\(294\) 0 0
\(295\) 16.2617i 0.946794i
\(296\) −17.1168 + 5.20163i −0.994894 + 0.302339i
\(297\) −1.16914 + 0.675002i −0.0678402 + 0.0391676i
\(298\) −15.1393 3.87740i −0.876997 0.224612i
\(299\) −18.4691 + 31.9894i −1.06809 + 1.84999i
\(300\) −0.165021 7.44951i −0.00952748 0.430098i
\(301\) 0 0
\(302\) 1.55645 + 1.52236i 0.0895638 + 0.0876018i
\(303\) 0.688456 + 0.397480i 0.0395508 + 0.0228347i
\(304\) 13.2186 + 20.7187i 0.758139 + 1.18830i
\(305\) −5.14472 8.91092i −0.294586 0.510238i
\(306\) −5.41143 + 1.51441i −0.309351 + 0.0865731i
\(307\) 27.1911 1.55188 0.775939 0.630808i \(-0.217276\pi\)
0.775939 + 0.630808i \(0.217276\pi\)
\(308\) 0 0
\(309\) 3.35476 0.190846
\(310\) 4.49256 1.25726i 0.255160 0.0714077i
\(311\) −10.4609 18.1188i −0.593182 1.02742i −0.993801 0.111177i \(-0.964538\pi\)
0.400618 0.916245i \(-0.368795\pi\)
\(312\) 15.3856 + 3.57935i 0.871037 + 0.202641i
\(313\) −2.26674 1.30871i −0.128124 0.0739724i 0.434568 0.900639i \(-0.356901\pi\)
−0.562692 + 0.826667i \(0.690234\pi\)
\(314\) −8.65374 8.46417i −0.488359 0.477661i
\(315\) 0 0
\(316\) 16.8113 0.372402i 0.945709 0.0209492i
\(317\) 6.47430 11.2138i 0.363633 0.629831i −0.624923 0.780687i \(-0.714870\pi\)
0.988556 + 0.150856i \(0.0482028\pi\)
\(318\) 1.00501 + 0.257398i 0.0563582 + 0.0144342i
\(319\) −9.99928 + 5.77309i −0.559852 + 0.323231i
\(320\) −3.98620 + 8.10354i −0.222836 + 0.453002i
\(321\) 12.5510i 0.700528i
\(322\) 0 0
\(323\) 24.4134i 1.35840i
\(324\) 1.75377 + 0.961396i 0.0974318 + 0.0534109i
\(325\) 18.0198 10.4037i 0.999558 0.577095i
\(326\) 1.98594 7.75412i 0.109991 0.429461i
\(327\) 7.62660 13.2097i 0.421752 0.730496i
\(328\) −0.288369 + 0.308195i −0.0159225 + 0.0170172i
\(329\) 0 0
\(330\) 1.50700 1.54075i 0.0829575 0.0848156i
\(331\) 4.53796 + 2.61999i 0.249429 + 0.144008i 0.619503 0.784994i \(-0.287334\pi\)
−0.370074 + 0.929002i \(0.620668\pi\)
\(332\) −15.6063 + 9.47723i −0.856508 + 0.520131i
\(333\) −3.16249 5.47759i −0.173303 0.300170i
\(334\) −1.84603 6.59640i −0.101010 0.360939i
\(335\) 0.264258 0.0144380
\(336\) 0 0
\(337\) 21.6837 1.18119 0.590594 0.806969i \(-0.298894\pi\)
0.590594 + 0.806969i \(0.298894\pi\)
\(338\) 6.93314 + 24.7741i 0.377113 + 1.34753i
\(339\) 5.88914 + 10.2003i 0.319854 + 0.554004i
\(340\) 7.66788 4.65647i 0.415849 0.252532i
\(341\) −3.41647 1.97250i −0.185012 0.106817i
\(342\) −6.07567 + 6.21175i −0.328534 + 0.335893i
\(343\) 0 0
\(344\) 20.5918 22.0076i 1.11024 1.18657i
\(345\) 3.73312 6.46595i 0.200984 0.348115i
\(346\) −0.738131 + 2.88204i −0.0396822 + 0.154939i
\(347\) 0.567776 0.327806i 0.0304798 0.0175975i −0.484683 0.874690i \(-0.661065\pi\)
0.515162 + 0.857093i \(0.327732\pi\)
\(348\) 14.9995 + 8.22253i 0.804057 + 0.440774i
\(349\) 19.4157i 1.03930i 0.854380 + 0.519649i \(0.173937\pi\)
−0.854380 + 0.519649i \(0.826063\pi\)
\(350\) 0 0
\(351\) 5.58489i 0.298099i
\(352\) 7.25586 2.38175i 0.386739 0.126948i
\(353\) 25.8806 14.9422i 1.37749 0.795292i 0.385630 0.922653i \(-0.373984\pi\)
0.991856 + 0.127361i \(0.0406507\pi\)
\(354\) −19.7353 5.05450i −1.04892 0.268644i
\(355\) −4.93372 + 8.54545i −0.261854 + 0.453545i
\(356\) 15.8510 0.351130i 0.840103 0.0186099i
\(357\) 0 0
\(358\) −4.05182 3.96306i −0.214145 0.209454i
\(359\) −10.9061 6.29666i −0.575604 0.332325i 0.183781 0.982967i \(-0.441166\pi\)
−0.759384 + 0.650642i \(0.774500\pi\)
\(360\) −3.10986 0.723486i −0.163904 0.0381311i
\(361\) −9.37488 16.2378i −0.493415 0.854619i
\(362\) 8.03055 2.24738i 0.422076 0.118120i
\(363\) 9.17749 0.481693
\(364\) 0 0
\(365\) 1.99296 0.104316
\(366\) 12.4134 3.47396i 0.648861 0.181587i
\(367\) −2.73446 4.73623i −0.142738 0.247229i 0.785789 0.618495i \(-0.212257\pi\)
−0.928527 + 0.371266i \(0.878924\pi\)
\(368\) 22.3031 14.2295i 1.16263 0.741763i
\(369\) −0.129231 0.0746117i −0.00672751 0.00388413i
\(370\) 7.21866 + 7.06052i 0.375280 + 0.367059i
\(371\) 0 0
\(372\) 0.129433 + 5.84299i 0.00671080 + 0.302945i
\(373\) 7.42404 12.8588i 0.384402 0.665805i −0.607284 0.794485i \(-0.707741\pi\)
0.991686 + 0.128681i \(0.0410742\pi\)
\(374\) −7.34893 1.88217i −0.380004 0.0973246i
\(375\) −8.53042 + 4.92504i −0.440509 + 0.254328i
\(376\) 9.72867 2.95645i 0.501718 0.152467i
\(377\) 47.7659i 2.46007i
\(378\) 0 0
\(379\) 30.6135i 1.57251i 0.617901 + 0.786256i \(0.287983\pi\)
−0.617901 + 0.786256i \(0.712017\pi\)
\(380\) 6.66808 12.1639i 0.342065 0.623993i
\(381\) −3.05225 + 1.76222i −0.156372 + 0.0902812i
\(382\) −8.90939 + 34.7867i −0.455844 + 1.77984i
\(383\) 11.7392 20.3329i 0.599844 1.03896i −0.392999 0.919539i \(-0.628562\pi\)
0.992844 0.119422i \(-0.0381042\pi\)
\(384\) −8.59551 7.35644i −0.438638 0.375407i
\(385\) 0 0
\(386\) −0.0725697 + 0.0741951i −0.00369370 + 0.00377643i
\(387\) 9.22813 + 5.32786i 0.469092 + 0.270830i
\(388\) −6.46810 10.6511i −0.328368 0.540729i
\(389\) 18.0887 + 31.3306i 0.917134 + 1.58852i 0.803747 + 0.594972i \(0.202837\pi\)
0.113387 + 0.993551i \(0.463830\pi\)
\(390\) −2.40286 8.58613i −0.121674 0.434775i
\(391\) −26.2803 −1.32905
\(392\) 0 0
\(393\) −2.37199 −0.119651
\(394\) −2.75750 9.85335i −0.138921 0.496405i
\(395\) −4.74557 8.21958i −0.238776 0.413572i
\(396\) 1.40146 + 2.30780i 0.0704259 + 0.115971i
\(397\) −1.15332 0.665868i −0.0578833 0.0334189i 0.470779 0.882251i \(-0.343973\pi\)
−0.528662 + 0.848832i \(0.677306\pi\)
\(398\) −15.1415 + 15.4806i −0.758973 + 0.775971i
\(399\) 0 0
\(400\) −14.8881 + 0.659921i −0.744403 + 0.0329961i
\(401\) −13.0298 + 22.5683i −0.650677 + 1.12701i 0.332282 + 0.943180i \(0.392181\pi\)
−0.982959 + 0.183825i \(0.941152\pi\)
\(402\) −0.0821374 + 0.320706i −0.00409664 + 0.0159953i
\(403\) −14.1337 + 8.16012i −0.704051 + 0.406484i
\(404\) 0.764272 1.39418i 0.0380240 0.0693631i
\(405\) 1.12886i 0.0560936i
\(406\) 0 0
\(407\) 8.53873i 0.423249i
\(408\) 3.26777 + 10.7531i 0.161779 + 0.532359i
\(409\) −11.5362 + 6.66044i −0.570429 + 0.329337i −0.757321 0.653043i \(-0.773492\pi\)
0.186892 + 0.982381i \(0.440159\pi\)
\(410\) 0.230779 + 0.0591060i 0.0113974 + 0.00291904i
\(411\) 3.58780 6.21426i 0.176973 0.306527i
\(412\) −0.148592 6.70787i −0.00732060 0.330473i
\(413\) 0 0
\(414\) 6.68678 + 6.54030i 0.328637 + 0.321438i
\(415\) 8.92501 + 5.15285i 0.438111 + 0.252944i
\(416\) 6.47547 30.9222i 0.317486 1.51608i
\(417\) 11.2944 + 19.5624i 0.553088 + 0.957977i
\(418\) −11.2962 + 3.16130i −0.552517 + 0.154624i
\(419\) −7.54663 −0.368677 −0.184339 0.982863i \(-0.559014\pi\)
−0.184339 + 0.982863i \(0.559014\pi\)
\(420\) 0 0
\(421\) 2.67060 0.130157 0.0650785 0.997880i \(-0.479270\pi\)
0.0650785 + 0.997880i \(0.479270\pi\)
\(422\) −18.7313 + 5.24205i −0.911828 + 0.255179i
\(423\) 1.79746 + 3.11329i 0.0873955 + 0.151373i
\(424\) 0.470155 2.02093i 0.0228327 0.0981450i
\(425\) 12.8205 + 7.40193i 0.621886 + 0.359046i
\(426\) −8.83730 8.64371i −0.428169 0.418789i
\(427\) 0 0
\(428\) −25.0958 + 0.555920i −1.21305 + 0.0268714i
\(429\) −3.76981 + 6.52950i −0.182008 + 0.315247i
\(430\) −16.4795 4.22063i −0.794710 0.203537i
\(431\) 10.2938 5.94311i 0.495833 0.286269i −0.231158 0.972916i \(-0.574251\pi\)
0.726991 + 0.686647i \(0.240918\pi\)
\(432\) 1.84464 3.54927i 0.0887503 0.170764i
\(433\) 20.6667i 0.993177i −0.867986 0.496589i \(-0.834586\pi\)
0.867986 0.496589i \(-0.165414\pi\)
\(434\) 0 0
\(435\) 9.65482i 0.462913i
\(436\) −26.7506 14.6644i −1.28112 0.702296i
\(437\) −35.1924 + 20.3183i −1.68348 + 0.971957i
\(438\) −0.619456 + 2.41867i −0.0295988 + 0.115568i
\(439\) −2.71032 + 4.69441i −0.129356 + 0.224052i −0.923427 0.383773i \(-0.874624\pi\)
0.794071 + 0.607825i \(0.207958\pi\)
\(440\) −3.14750 2.94501i −0.150051 0.140398i
\(441\) 0 0
\(442\) −21.9443 + 22.4358i −1.04378 + 1.06716i
\(443\) 19.6620 + 11.3519i 0.934172 + 0.539344i 0.888129 0.459595i \(-0.152005\pi\)
0.0460432 + 0.998939i \(0.485339\pi\)
\(444\) −10.8124 + 6.56604i −0.513134 + 0.311610i
\(445\) −4.47451 7.75008i −0.212112 0.367389i
\(446\) 6.25512 + 22.3514i 0.296189 + 1.05837i
\(447\) −11.0506 −0.522677
\(448\) 0 0
\(449\) −15.6516 −0.738645 −0.369322 0.929301i \(-0.620410\pi\)
−0.369322 + 0.929301i \(0.620410\pi\)
\(450\) −1.41996 5.07395i −0.0669378 0.239188i
\(451\) −0.100726 0.174463i −0.00474301 0.00821513i
\(452\) 20.1347 12.2272i 0.947059 0.575119i
\(453\) 1.33325 + 0.769750i 0.0626413 + 0.0361660i
\(454\) −15.9523 + 16.3095i −0.748677 + 0.765445i
\(455\) 0 0
\(456\) 12.6896 + 11.8732i 0.594243 + 0.556014i
\(457\) 8.51329 14.7454i 0.398235 0.689763i −0.595274 0.803523i \(-0.702956\pi\)
0.993508 + 0.113760i \(0.0362896\pi\)
\(458\) 7.60284 29.6853i 0.355257 1.38710i
\(459\) −3.44113 + 1.98674i −0.160618 + 0.0927330i
\(460\) −13.0941 7.17801i −0.610514 0.334676i
\(461\) 38.1090i 1.77491i −0.460891 0.887457i \(-0.652470\pi\)
0.460891 0.887457i \(-0.347530\pi\)
\(462\) 0 0
\(463\) 1.38958i 0.0645794i −0.999479 0.0322897i \(-0.989720\pi\)
0.999479 0.0322897i \(-0.0102799\pi\)
\(464\) 15.7767 30.3558i 0.732413 1.40923i
\(465\) 2.85682 1.64939i 0.132482 0.0764885i
\(466\) −26.0727 6.67760i −1.20779 0.309334i
\(467\) 1.74691 3.02573i 0.0808372 0.140014i −0.822773 0.568371i \(-0.807574\pi\)
0.903610 + 0.428357i \(0.140907\pi\)
\(468\) 11.1670 0.247371i 0.516197 0.0114347i
\(469\) 0 0
\(470\) −4.10286 4.01298i −0.189251 0.185105i
\(471\) −7.41273 4.27974i −0.341560 0.197200i
\(472\) −9.23240 + 39.6848i −0.424955 + 1.82664i
\(473\) 7.19263 + 12.4580i 0.330717 + 0.572819i
\(474\) 11.4504 3.20443i 0.525932 0.147184i
\(475\) 22.8908 1.05030
\(476\) 0 0
\(477\) 0.733587 0.0335886
\(478\) 21.3651 5.97911i 0.977216 0.273478i
\(479\) −6.86079 11.8832i −0.313478 0.542959i 0.665635 0.746277i \(-0.268161\pi\)
−0.979113 + 0.203318i \(0.934827\pi\)
\(480\) −1.30887 + 6.25024i −0.0597416 + 0.285283i
\(481\) −30.5917 17.6621i −1.39486 0.805324i
\(482\) −12.0321 11.7685i −0.548048 0.536042i
\(483\) 0 0
\(484\) −0.406498 18.3505i −0.0184772 0.834113i
\(485\) −3.51676 + 6.09121i −0.159688 + 0.276588i
\(486\) 1.36999 + 0.350876i 0.0621442 + 0.0159160i
\(487\) 3.25655 1.88017i 0.147569 0.0851987i −0.424398 0.905476i \(-0.639514\pi\)
0.571966 + 0.820277i \(0.306181\pi\)
\(488\) −7.49604 24.6669i −0.339330 1.11662i
\(489\) 5.65996i 0.255952i
\(490\) 0 0
\(491\) 8.60497i 0.388337i −0.980968 0.194168i \(-0.937799\pi\)
0.980968 0.194168i \(-0.0622008\pi\)
\(492\) −0.143463 + 0.261704i −0.00646780 + 0.0117985i
\(493\) −29.4309 + 16.9920i −1.32550 + 0.765280i
\(494\) −12.0400 + 47.0101i −0.541704 + 2.11508i
\(495\) 0.761984 1.31980i 0.0342486 0.0593204i
\(496\) 11.6774 0.517606i 0.524330 0.0232412i
\(497\) 0 0
\(498\) −9.02763 + 9.22982i −0.404538 + 0.413598i
\(499\) 16.0929 + 9.29123i 0.720416 + 0.415933i 0.814906 0.579593i \(-0.196789\pi\)
−0.0944896 + 0.995526i \(0.530122\pi\)
\(500\) 10.2255 + 16.8385i 0.457298 + 0.753041i
\(501\) −2.42178 4.19465i −0.108197 0.187403i
\(502\) 0.643022 + 2.29771i 0.0286995 + 0.102552i
\(503\) −33.4544 −1.49166 −0.745828 0.666139i \(-0.767946\pi\)
−0.745828 + 0.666139i \(0.767946\pi\)
\(504\) 0 0
\(505\) −0.897402 −0.0399338
\(506\) 3.40305 + 12.1601i 0.151284 + 0.540582i
\(507\) 9.09550 + 15.7539i 0.403946 + 0.699654i
\(508\) 3.65877 + 6.02496i 0.162332 + 0.267314i
\(509\) −20.7781 11.9963i −0.920974 0.531725i −0.0370283 0.999314i \(-0.511789\pi\)
−0.883946 + 0.467590i \(0.845122\pi\)
\(510\) 4.43556 4.53490i 0.196410 0.200809i
\(511\) 0 0
\(512\) −14.3286 + 17.5126i −0.633239 + 0.773956i
\(513\) −3.07204 + 5.32093i −0.135634 + 0.234925i
\(514\) 7.47966 29.2043i 0.329913 1.28815i
\(515\) −3.27969 + 1.89353i −0.144520 + 0.0834389i
\(516\) 10.2444 18.6877i 0.450983 0.822681i
\(517\) 4.85315i 0.213441i
\(518\) 0 0
\(519\) 2.10368i 0.0923415i
\(520\) −17.0616 + 5.18485i −0.748201 + 0.227371i
\(521\) 12.1946 7.04055i 0.534255 0.308452i −0.208493 0.978024i \(-0.566856\pi\)
0.742747 + 0.669572i \(0.233522\pi\)
\(522\) 11.7172 + 3.00093i 0.512846 + 0.131347i
\(523\) −17.5726 + 30.4366i −0.768396 + 1.33090i 0.170037 + 0.985438i \(0.445611\pi\)
−0.938432 + 0.345463i \(0.887722\pi\)
\(524\) 0.105062 + 4.74282i 0.00458967 + 0.207191i
\(525\) 0 0
\(526\) −11.7122 11.4556i −0.510675 0.499488i
\(527\) −10.0557 5.80567i −0.438034 0.252899i
\(528\) 4.55240 2.90445i 0.198118 0.126400i
\(529\) 10.3721 + 17.9651i 0.450962 + 0.781089i
\(530\) −1.12781 + 0.315621i −0.0489887 + 0.0137097i
\(531\) −14.4054 −0.625141
\(532\) 0 0
\(533\) −0.833397 −0.0360984
\(534\) 10.7963 3.02140i 0.467202 0.130749i
\(535\) 7.08418 + 12.2702i 0.306276 + 0.530485i
\(536\) 0.644892 + 0.150030i 0.0278551 + 0.00648029i
\(537\) −3.47076 2.00384i −0.149774 0.0864722i
\(538\) −7.33338 7.17273i −0.316164 0.309238i
\(539\) 0 0
\(540\) −2.25717 + 0.0500006i −0.0971332 + 0.00215168i
\(541\) −6.35759 + 11.0117i −0.273334 + 0.473429i −0.969714 0.244245i \(-0.921460\pi\)
0.696379 + 0.717674i \(0.254793\pi\)
\(542\) −39.7495 10.1804i −1.70739 0.437287i
\(543\) 5.10663 2.94831i 0.219146 0.126524i
\(544\) 21.3562 7.01022i 0.915641 0.300561i
\(545\) 17.2188i 0.737571i
\(546\) 0 0
\(547\) 42.0999i 1.80006i −0.435828 0.900030i \(-0.643544\pi\)
0.435828 0.900030i \(-0.356456\pi\)
\(548\) −12.5844 6.89860i −0.537578 0.294694i
\(549\) 7.89372 4.55744i 0.336896 0.194507i
\(550\) 1.76479 6.89062i 0.0752508 0.293817i
\(551\) −26.2742 + 45.5083i −1.11932 + 1.93872i
\(552\) 12.7812 13.6600i 0.544004 0.581407i
\(553\) 0 0
\(554\) 0.341298 0.348942i 0.0145003 0.0148251i
\(555\) 6.18344 + 3.57001i 0.262473 + 0.151539i
\(556\) 38.6150 23.4497i 1.63764 0.994489i
\(557\) −7.94263 13.7570i −0.336540 0.582905i 0.647239 0.762287i \(-0.275923\pi\)
−0.983779 + 0.179382i \(0.942590\pi\)
\(558\) 1.11374 + 3.97973i 0.0471485 + 0.168475i
\(559\) 59.5110 2.51705
\(560\) 0 0
\(561\) −5.36420 −0.226477
\(562\) −2.52588 9.02569i −0.106548 0.380726i
\(563\) 16.4594 + 28.5085i 0.693681 + 1.20149i 0.970623 + 0.240604i \(0.0773454\pi\)
−0.276943 + 0.960886i \(0.589321\pi\)
\(564\) 6.14544 3.73194i 0.258770 0.157143i
\(565\) −11.5147 6.64803i −0.484428 0.279685i
\(566\) 27.4719 28.0872i 1.15473 1.18059i
\(567\) 0 0
\(568\) −16.8917 + 18.0531i −0.708762 + 0.757492i
\(569\) −17.4920 + 30.2971i −0.733304 + 1.27012i 0.222159 + 0.975010i \(0.428690\pi\)
−0.955463 + 0.295110i \(0.904644\pi\)
\(570\) 2.43361 9.50205i 0.101933 0.397997i
\(571\) 5.63066 3.25087i 0.235636 0.136044i −0.377533 0.925996i \(-0.623228\pi\)
0.613169 + 0.789951i \(0.289894\pi\)
\(572\) 13.2228 + 7.24856i 0.552872 + 0.303078i
\(573\) 25.3919i 1.06076i
\(574\) 0 0
\(575\) 24.6414i 1.02762i
\(576\) −7.17850 3.53117i −0.299104 0.147132i
\(577\) −32.2277 + 18.6067i −1.34166 + 0.774606i −0.987051 0.160409i \(-0.948719\pi\)
−0.354607 + 0.935016i \(0.615385\pi\)
\(578\) 1.65975 + 0.425086i 0.0690365 + 0.0176812i
\(579\) −0.0366935 + 0.0635549i −0.00152493 + 0.00264125i
\(580\) −19.3049 + 0.427640i −0.801593 + 0.0177568i
\(581\) 0 0
\(582\) −6.29924 6.16125i −0.261112 0.255392i
\(583\) 0.857664 + 0.495172i 0.0355208 + 0.0205079i
\(584\) 4.86359 + 1.13148i 0.201257 + 0.0468209i
\(585\) −3.15229 5.45992i −0.130331 0.225740i
\(586\) −9.92123 + 2.77650i −0.409842 + 0.114696i
\(587\) 24.7914 1.02325 0.511625 0.859209i \(-0.329044\pi\)
0.511625 + 0.859209i \(0.329044\pi\)
\(588\) 0 0
\(589\) −17.9543 −0.739794
\(590\) 22.1466 6.19783i 0.911763 0.255161i
\(591\) −3.61753 6.26575i −0.148805 0.257739i
\(592\) 13.6078 + 21.3287i 0.559276 + 0.876604i
\(593\) −26.8491 15.5014i −1.10256 0.636565i −0.165670 0.986181i \(-0.552979\pi\)
−0.936893 + 0.349617i \(0.886312\pi\)
\(594\) 1.36487 + 1.33497i 0.0560013 + 0.0547745i
\(595\) 0 0
\(596\) 0.489465 + 22.0959i 0.0200493 + 0.905082i
\(597\) −7.65598 + 13.2605i −0.313338 + 0.542718i
\(598\) 50.6051 + 12.9607i 2.06940 + 0.530003i
\(599\) 7.12727 4.11493i 0.291212 0.168131i −0.347276 0.937763i \(-0.612893\pi\)
0.638488 + 0.769631i \(0.279560\pi\)
\(600\) −10.0825 + 3.06397i −0.411617 + 0.125086i
\(601\) 47.6805i 1.94493i −0.233053 0.972464i \(-0.574872\pi\)
0.233053 0.972464i \(-0.425128\pi\)
\(602\) 0 0
\(603\) 0.234093i 0.00953299i
\(604\) 1.48007 2.69993i 0.0602231 0.109859i
\(605\) −8.97213 + 5.18006i −0.364769 + 0.210600i
\(606\) 0.278932 1.08909i 0.0113309 0.0442413i
\(607\) 6.32713 10.9589i 0.256810 0.444808i −0.708575 0.705635i \(-0.750662\pi\)
0.965386 + 0.260827i \(0.0839951\pi\)
\(608\) 23.1786 25.8988i 0.940015 1.05033i
\(609\) 0 0
\(610\) −10.1749 + 10.4028i −0.411969 + 0.421196i
\(611\) 17.3874 + 10.0386i 0.703419 + 0.406119i
\(612\) 4.12492 + 6.79257i 0.166740 + 0.274574i
\(613\) −0.226457 0.392236i −0.00914652 0.0158422i 0.861416 0.507900i \(-0.169578\pi\)
−0.870562 + 0.492058i \(0.836245\pi\)
\(614\) −10.3633 37.0312i −0.418231 1.49446i
\(615\) 0.168453 0.00679267
\(616\) 0 0
\(617\) −0.575345 −0.0231625 −0.0115813 0.999933i \(-0.503687\pi\)
−0.0115813 + 0.999933i \(0.503687\pi\)
\(618\) −1.27860 4.56881i −0.0514328 0.183784i
\(619\) −1.02161 1.76949i −0.0410622 0.0711218i 0.844764 0.535139i \(-0.179741\pi\)
−0.885826 + 0.464017i \(0.846408\pi\)
\(620\) −3.42450 5.63919i −0.137531 0.226475i
\(621\) 5.72784 + 3.30697i 0.229850 + 0.132704i
\(622\) −20.6888 + 21.1522i −0.829545 + 0.848125i
\(623\) 0 0
\(624\) −0.989242 22.3177i −0.0396014 0.893421i
\(625\) −3.75448 + 6.50295i −0.150179 + 0.260118i
\(626\) −0.918386 + 3.58584i −0.0367061 + 0.143319i
\(627\) −7.18328 + 4.14727i −0.286872 + 0.165626i
\(628\) −8.22905 + 15.0114i −0.328375 + 0.599019i
\(629\) 25.1321i 1.00208i
\(630\) 0 0
\(631\) 38.8983i 1.54852i 0.632870 + 0.774258i \(0.281877\pi\)
−0.632870 + 0.774258i \(0.718123\pi\)
\(632\) −6.91446 22.7532i −0.275043 0.905073i
\(633\) −11.9113 + 6.87698i −0.473431 + 0.273335i
\(634\) −17.7395 4.54335i −0.704527 0.180440i
\(635\) 1.98930 3.44558i 0.0789431 0.136733i
\(636\) −0.0324927 1.46681i −0.00128842 0.0581630i
\(637\) 0 0
\(638\) 11.6733 + 11.4176i 0.462151 + 0.452027i
\(639\) −7.56996 4.37052i −0.299463 0.172895i
\(640\) 12.5554 + 2.34026i 0.496295 + 0.0925070i
\(641\) 1.03036 + 1.78464i 0.0406969 + 0.0704891i 0.885656 0.464341i \(-0.153709\pi\)
−0.844959 + 0.534830i \(0.820376\pi\)
\(642\) −17.0931 + 4.78356i −0.674609 + 0.188792i
\(643\) −2.86029 −0.112799 −0.0563994 0.998408i \(-0.517962\pi\)
−0.0563994 + 0.998408i \(0.517962\pi\)
\(644\) 0 0
\(645\) −12.0288 −0.473635
\(646\) −33.2483 + 9.30467i −1.30814 + 0.366087i
\(647\) 9.70418 + 16.8081i 0.381511 + 0.660796i 0.991278 0.131784i \(-0.0420706\pi\)
−0.609768 + 0.792580i \(0.708737\pi\)
\(648\) 0.640898 2.75486i 0.0251769 0.108221i
\(649\) −16.8419 9.72367i −0.661102 0.381687i
\(650\) −21.0366 20.5758i −0.825123 0.807048i
\(651\) 0 0
\(652\) −11.3171 + 0.250696i −0.443214 + 0.00981802i
\(653\) 0.364864 0.631964i 0.0142783 0.0247307i −0.858798 0.512314i \(-0.828788\pi\)
0.873076 + 0.487584i \(0.162122\pi\)
\(654\) −20.8968 5.35198i −0.817130 0.209279i
\(655\) 2.31892 1.33883i 0.0906075 0.0523123i
\(656\) 0.529634 + 0.275264i 0.0206787 + 0.0107472i
\(657\) 1.76546i 0.0688771i
\(658\) 0 0
\(659\) 19.6921i 0.767097i −0.923521 0.383548i \(-0.874702\pi\)
0.923521 0.383548i \(-0.125298\pi\)
\(660\) −2.67269 1.46514i −0.104034 0.0570304i
\(661\) 8.14536 4.70273i 0.316818 0.182915i −0.333156 0.942872i \(-0.608113\pi\)
0.649973 + 0.759957i \(0.274780\pi\)
\(662\) 1.83858 7.17876i 0.0714586 0.279010i
\(663\) −11.0957 + 19.2183i −0.430922 + 0.746378i
\(664\) 18.8550 + 17.6420i 0.731715 + 0.684643i
\(665\) 0 0
\(666\) −6.25454 + 6.39463i −0.242359 + 0.247787i
\(667\) 48.9885 + 28.2835i 1.89684 + 1.09514i
\(668\) −8.27998 + 5.02817i −0.320362 + 0.194546i
\(669\) 8.20602 + 14.2132i 0.317263 + 0.549516i
\(670\) −0.100717 0.359890i −0.00389103 0.0139038i
\(671\) 12.3051 0.475034
\(672\) 0 0
\(673\) 30.0031 1.15653 0.578266 0.815848i \(-0.303729\pi\)
0.578266 + 0.815848i \(0.303729\pi\)
\(674\) −8.26432 29.5308i −0.318330 1.13748i
\(675\) −1.86283 3.22652i −0.0717005 0.124189i
\(676\) 31.0972 18.8843i 1.19604 0.726320i
\(677\) 26.6823 + 15.4050i 1.02548 + 0.592063i 0.915687 0.401891i \(-0.131647\pi\)
0.109796 + 0.993954i \(0.464980\pi\)
\(678\) 11.6471 11.9080i 0.447305 0.457324i
\(679\) 0 0
\(680\) −9.26405 8.66808i −0.355260 0.332406i
\(681\) −8.06595 + 13.9706i −0.309088 + 0.535356i
\(682\) −1.38420 + 5.40462i −0.0530039 + 0.206954i
\(683\) 36.0508 20.8140i 1.37945 0.796424i 0.387354 0.921931i \(-0.373389\pi\)
0.992093 + 0.125507i \(0.0400558\pi\)
\(684\) 10.7753 + 5.90690i 0.412005 + 0.225856i
\(685\) 8.10028i 0.309496i
\(686\) 0 0
\(687\) 21.6682i 0.826693i
\(688\) −37.8200 19.6560i −1.44187 0.749377i
\(689\) 3.54811 2.04850i 0.135172 0.0780417i
\(690\) −10.2287 2.61972i −0.389400 0.0997311i
\(691\) 4.39414 7.61087i 0.167161 0.289531i −0.770260 0.637730i \(-0.779873\pi\)
0.937421 + 0.348199i \(0.113207\pi\)
\(692\) 4.20634 0.0931783i 0.159901 0.00354211i
\(693\) 0 0
\(694\) −0.662831 0.648311i −0.0251607 0.0246095i
\(695\) −22.0833 12.7498i −0.837668 0.483628i
\(696\) 5.48141 23.5615i 0.207772 0.893096i
\(697\) −0.296468 0.513497i −0.0112295 0.0194501i
\(698\) 26.4420 7.39990i 1.00084 0.280090i
\(699\) −19.0312 −0.719827
\(700\) 0 0
\(701\) −0.0621184 −0.00234618 −0.00117309 0.999999i \(-0.500373\pi\)
−0.00117309 + 0.999999i \(0.500373\pi\)
\(702\) 7.60600 2.12857i 0.287070 0.0803377i
\(703\) −19.4306 33.6547i −0.732838 1.26931i
\(704\) −6.00911 8.97392i −0.226477 0.338217i
\(705\) −3.51448 2.02909i −0.132363 0.0764198i
\(706\) −30.2135 29.5516i −1.13710 1.11219i
\(707\) 0 0
\(708\) 0.638057 + 28.8037i 0.0239797 + 1.08251i
\(709\) −16.6018 + 28.7551i −0.623492 + 1.07992i 0.365338 + 0.930875i \(0.380953\pi\)
−0.988830 + 0.149045i \(0.952380\pi\)
\(710\) 13.5183 + 3.46224i 0.507334 + 0.129936i
\(711\) 7.28129 4.20385i 0.273070 0.157657i
\(712\) −6.51951 21.4535i −0.244329 0.804004i
\(713\) 19.3273i 0.723815i
\(714\) 0 0
\(715\) 8.51120i 0.318301i
\(716\) −3.85297 + 7.02857i −0.143992 + 0.262670i
\(717\) 13.5861 7.84392i 0.507381 0.292937i
\(718\) −4.41869 + 17.2528i −0.164904 + 0.643868i
\(719\) 15.9535 27.6323i 0.594966 1.03051i −0.398586 0.917131i \(-0.630499\pi\)
0.993552 0.113380i \(-0.0361677\pi\)
\(720\) 0.199953 + 4.51102i 0.00745182 + 0.168116i
\(721\) 0 0
\(722\) −18.5410 + 18.9562i −0.690024 + 0.705478i
\(723\) −10.3066 5.95053i −0.383307 0.221303i
\(724\) −6.12137 10.0802i −0.227499 0.374626i
\(725\) −15.9323 27.5955i −0.591709 1.02487i
\(726\) −3.49782 12.4987i −0.129816 0.463871i
\(727\) −11.8242 −0.438535 −0.219268 0.975665i \(-0.570367\pi\)
−0.219268 + 0.975665i \(0.570367\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −0.759577 2.71419i −0.0281132 0.100457i
\(731\) 21.1701 + 36.6677i 0.783005 + 1.35620i
\(732\) −9.46228 15.5817i −0.349736 0.575916i
\(733\) 10.2349 + 5.90910i 0.378033 + 0.218258i 0.676962 0.736018i \(-0.263296\pi\)
−0.298929 + 0.954275i \(0.596629\pi\)
\(734\) −5.40803 + 5.52915i −0.199614 + 0.204085i
\(735\) 0 0
\(736\) −27.8794 24.9511i −1.02765 0.919710i
\(737\) −0.158013 + 0.273686i −0.00582048 + 0.0100814i
\(738\) −0.0523589 + 0.204435i −0.00192736 + 0.00752537i
\(739\) 23.0318 13.2974i 0.847237 0.489153i −0.0124806 0.999922i \(-0.503973\pi\)
0.859718 + 0.510770i \(0.170639\pi\)
\(740\) 6.86439 12.5220i 0.252340 0.460317i
\(741\) 34.3140i 1.26056i
\(742\) 0 0
\(743\) 34.9119i 1.28079i 0.768045 + 0.640396i \(0.221230\pi\)
−0.768045 + 0.640396i \(0.778770\pi\)
\(744\) 7.90817 2.40321i 0.289927 0.0881061i
\(745\) 10.8034 6.23733i 0.395805 0.228518i
\(746\) −20.3418 5.20983i −0.744766 0.190746i
\(747\) −4.56464 + 7.90619i −0.167012 + 0.289272i
\(748\) 0.237596 + 10.7258i 0.00868738 + 0.392173i
\(749\) 0 0
\(750\) 9.95856 + 9.74040i 0.363635 + 0.355669i
\(751\) −1.48965 0.860048i −0.0543580 0.0313836i 0.472575 0.881291i \(-0.343325\pi\)
−0.526933 + 0.849907i \(0.676658\pi\)
\(752\) −7.73424 12.1226i −0.282039 0.442065i
\(753\) 0.843573 + 1.46111i 0.0307415 + 0.0532459i
\(754\) 65.0518 18.2050i 2.36905 0.662988i
\(755\) −1.73788 −0.0632480
\(756\) 0 0
\(757\) 33.2057 1.20688 0.603440 0.797408i \(-0.293796\pi\)
0.603440 + 0.797408i \(0.293796\pi\)
\(758\) 41.6922 11.6677i 1.51433 0.423792i
\(759\) 4.46442 + 7.73261i 0.162048 + 0.280676i
\(760\) −19.1072 4.44516i −0.693092 0.161243i
\(761\) −23.5363 13.5887i −0.853191 0.492590i 0.00853557 0.999964i \(-0.497283\pi\)
−0.861726 + 0.507374i \(0.830616\pi\)
\(762\) 3.56325 + 3.48519i 0.129083 + 0.126255i
\(763\) 0 0
\(764\) 50.7713 1.12468i 1.83684 0.0406895i
\(765\) 2.24275 3.88456i 0.0810869 0.140447i
\(766\) −32.1653 8.23799i −1.16218 0.297651i
\(767\) −69.6740 + 40.2263i −2.51578 + 1.45249i
\(768\) −6.74265 + 14.5099i −0.243304 + 0.523580i
\(769\) 7.13960i 0.257460i −0.991680 0.128730i \(-0.958910\pi\)
0.991680 0.128730i \(-0.0410901\pi\)
\(770\) 0 0
\(771\) 21.3171i 0.767717i
\(772\) 0.128704 + 0.0705539i 0.00463216 + 0.00253929i
\(773\) −22.9995 + 13.2788i −0.827234 + 0.477604i −0.852905 0.522067i \(-0.825161\pi\)
0.0256709 + 0.999670i \(0.491828\pi\)
\(774\) 3.73883 14.5983i 0.134390 0.524725i
\(775\) 5.44360 9.42858i 0.195540 0.338685i
\(776\) −12.0405 + 12.8683i −0.432227 + 0.461945i
\(777\) 0 0
\(778\) 35.7746 36.5758i 1.28258 1.31131i
\(779\) −0.794008 0.458421i −0.0284483 0.0164246i
\(780\) −10.7775 + 6.54486i −0.385898 + 0.234344i
\(781\) −5.90022 10.2195i −0.211126 0.365682i
\(782\) 10.0162 + 35.7909i 0.358180 + 1.27988i
\(783\) 8.55270 0.305648
\(784\) 0 0
\(785\) 9.66247 0.344869
\(786\) 0.904038 + 3.23039i 0.0322460 + 0.115224i
\(787\) −12.2335 21.1890i −0.436077 0.755307i 0.561306 0.827608i \(-0.310299\pi\)
−0.997383 + 0.0723013i \(0.976966\pi\)
\(788\) −12.3682 + 7.51082i −0.440599 + 0.267562i
\(789\) −10.0326 5.79230i −0.357169 0.206211i
\(790\) −9.38546 + 9.59567i −0.333920 + 0.341399i
\(791\) 0 0
\(792\) 2.60883 2.78820i 0.0927008 0.0990744i
\(793\) 25.4528 44.0856i 0.903856 1.56552i
\(794\) −0.467274 + 1.82447i −0.0165829 + 0.0647481i
\(795\) −0.717172 + 0.414059i −0.0254355 + 0.0146852i
\(796\) 26.8537 + 14.7209i 0.951804 + 0.521767i
\(797\) 26.0084i 0.921265i 0.887591 + 0.460632i \(0.152377\pi\)
−0.887591 + 0.460632i \(0.847623\pi\)
\(798\) 0 0
\(799\) 14.2843i 0.505343i
\(800\) 6.57303 + 20.0244i 0.232392 + 0.707968i
\(801\) 6.86538 3.96373i 0.242576 0.140052i
\(802\) 35.7015 + 9.14368i 1.26066 + 0.322875i
\(803\) −1.19169 + 2.06406i −0.0420537 + 0.0728392i
\(804\) 0.468070 0.0103686i 0.0165076 0.000365674i
\(805\) 0 0
\(806\) 16.5000 + 16.1385i 0.581186 + 0.568454i
\(807\) −6.28171 3.62675i −0.221127 0.127668i
\(808\) −2.19001 0.509489i −0.0770441 0.0179238i
\(809\) 6.59877 + 11.4294i 0.232000 + 0.401836i 0.958397 0.285440i \(-0.0921396\pi\)
−0.726396 + 0.687276i \(0.758806\pi\)
\(810\) −1.53738 + 0.430244i −0.0540182 + 0.0151172i
\(811\) 4.87597 0.171219 0.0856093 0.996329i \(-0.472716\pi\)
0.0856093 + 0.996329i \(0.472716\pi\)
\(812\) 0 0
\(813\) −29.0144 −1.01758
\(814\) −11.6288 + 3.25437i −0.407589 + 0.114066i
\(815\) 3.19466 + 5.53331i 0.111904 + 0.193824i
\(816\) 13.3991 8.54867i 0.469063 0.299263i
\(817\) 56.6984 + 32.7348i 1.98362 + 1.14525i
\(818\) 13.4676 + 13.1725i 0.470883 + 0.460567i
\(819\) 0 0
\(820\) −0.00746126 0.336823i −0.000260559 0.0117624i
\(821\) −3.53291 + 6.11917i −0.123299 + 0.213561i −0.921067 0.389404i \(-0.872681\pi\)
0.797768 + 0.602965i \(0.206014\pi\)
\(822\) −9.83055 2.51775i −0.342880 0.0878165i
\(823\) 19.0192 10.9807i 0.662966 0.382764i −0.130440 0.991456i \(-0.541639\pi\)
0.793406 + 0.608692i \(0.208306\pi\)
\(824\) −9.07874 + 2.75894i −0.316273 + 0.0961121i
\(825\) 5.02967i 0.175110i
\(826\) 0 0
\(827\) 17.4897i 0.608175i 0.952644 + 0.304088i \(0.0983515\pi\)
−0.952644 + 0.304088i \(0.901648\pi\)
\(828\) 6.35862 11.5994i 0.220977 0.403105i
\(829\) −22.1721 + 12.8011i −0.770069 + 0.444599i −0.832899 0.553425i \(-0.813321\pi\)
0.0628304 + 0.998024i \(0.479987\pi\)
\(830\) 3.61602 14.1188i 0.125514 0.490070i
\(831\) 0.172570 0.298901i 0.00598640 0.0103688i
\(832\) −44.5805 + 2.96651i −1.54555 + 0.102845i
\(833\) 0 0
\(834\) 22.3372 22.8375i 0.773475 0.790799i
\(835\) 4.73519 + 2.73386i 0.163868 + 0.0946092i
\(836\) 8.61067 + 14.1793i 0.297806 + 0.490403i
\(837\) 1.46111 + 2.53071i 0.0505032 + 0.0874741i
\(838\) 2.87625 + 10.2777i 0.0993584 + 0.355036i
\(839\) −9.04513 −0.312273 −0.156136 0.987736i \(-0.549904\pi\)
−0.156136 + 0.987736i \(0.549904\pi\)
\(840\) 0 0
\(841\) 44.1486 1.52237
\(842\) −1.01785 3.63705i −0.0350773 0.125341i
\(843\) −3.31367 5.73944i −0.114129 0.197677i
\(844\) 14.2782 + 23.5121i 0.491475 + 0.809320i
\(845\) −17.7840 10.2676i −0.611787 0.353215i
\(846\) 3.55489 3.63451i 0.122220 0.124957i
\(847\) 0 0
\(848\) −2.93147 + 0.129939i −0.100667 + 0.00446212i
\(849\) 13.8906 24.0593i 0.476726 0.825713i
\(850\) 5.19431 20.2812i 0.178163 0.695639i
\(851\) −36.2285 + 20.9165i −1.24190 + 0.717009i
\(852\) −8.40360 + 15.3298i −0.287903 + 0.525190i
\(853\) 28.8642i 0.988292i −0.869379 0.494146i \(-0.835481\pi\)
0.869379 0.494146i \(-0.164519\pi\)
\(854\) 0 0
\(855\) 6.93583i 0.237200i
\(856\) 10.3219 + 33.9659i 0.352795 + 1.16093i
\(857\) 41.9058 24.1943i 1.43148 0.826463i 0.434242 0.900796i \(-0.357016\pi\)
0.997233 + 0.0743338i \(0.0236830\pi\)
\(858\) 10.3292 + 2.64547i 0.352635 + 0.0903149i
\(859\) −9.91892 + 17.1801i −0.338429 + 0.586176i −0.984137 0.177408i \(-0.943229\pi\)
0.645708 + 0.763584i \(0.276562\pi\)
\(860\) 0.532793 + 24.0518i 0.0181681 + 0.820159i
\(861\) 0 0
\(862\) −12.0171 11.7539i −0.409304 0.400338i
\(863\) 33.6011 + 19.3996i 1.14379 + 0.660370i 0.947367 0.320148i \(-0.103733\pi\)
0.196427 + 0.980518i \(0.437066\pi\)
\(864\) −5.53675 1.15946i −0.188364 0.0394457i
\(865\) −1.18738 2.05661i −0.0403723 0.0699269i
\(866\) −28.1457 + 7.87669i −0.956430 + 0.267661i
\(867\) 1.21150 0.0411447
\(868\) 0 0
\(869\) 11.3504 0.385037
\(870\) −13.1488 + 3.67974i −0.445786 + 0.124755i
\(871\) 0.653691 + 1.13223i 0.0221495 + 0.0383640i
\(872\) −9.77575 + 42.0204i −0.331049 + 1.42299i
\(873\) −5.39588 3.11531i −0.182623 0.105437i
\(874\) 41.0841 + 40.1841i 1.38969 + 1.35925i
\(875\) 0 0
\(876\) 3.53005 0.0781973i 0.119269 0.00264204i
\(877\) 7.48487 12.9642i 0.252746 0.437769i −0.711535 0.702651i \(-0.752000\pi\)
0.964281 + 0.264882i \(0.0853330\pi\)
\(878\) 7.42625 + 1.90197i 0.250624 + 0.0641884i
\(879\) −6.30891 + 3.64245i −0.212794 + 0.122857i
\(880\) −2.81117 + 5.40897i −0.0947647 + 0.182336i
\(881\) 44.9991i 1.51606i 0.652221 + 0.758029i \(0.273837\pi\)
−0.652221 + 0.758029i \(0.726163\pi\)
\(882\) 0 0
\(883\) 20.0940i 0.676217i 0.941107 + 0.338109i \(0.109787\pi\)
−0.941107 + 0.338109i \(0.890213\pi\)
\(884\) 38.9187 + 21.3347i 1.30898 + 0.717565i
\(885\) 14.0831 8.13086i 0.473397 0.273316i
\(886\) 7.96620 31.1040i 0.267630 1.04496i
\(887\) 7.60734 13.1763i 0.255430 0.442417i −0.709583 0.704622i \(-0.751116\pi\)
0.965012 + 0.262205i \(0.0844498\pi\)
\(888\) 13.0631 + 12.2228i 0.438371 + 0.410170i
\(889\) 0 0
\(890\) −8.84937 + 9.04757i −0.296631 + 0.303275i
\(891\) 1.16914 + 0.675002i 0.0391676 + 0.0226134i
\(892\) 28.0560 17.0376i 0.939386 0.570460i
\(893\) 11.0437 + 19.1283i 0.369565 + 0.640105i
\(894\) 4.21173 + 15.0497i 0.140861 + 0.503339i
\(895\) 4.52413 0.151225
\(896\) 0 0
\(897\) 36.9382 1.23333
\(898\) 5.96530 + 21.3157i 0.199065 + 0.711315i
\(899\) 12.4964 + 21.6444i 0.416778 + 0.721881i
\(900\) −6.36896 + 3.86767i −0.212299 + 0.128922i
\(901\) 2.52437 + 1.45744i 0.0840989 + 0.0485545i
\(902\) −0.199209 + 0.203671i −0.00663293 + 0.00678149i
\(903\) 0 0
\(904\) −24.3260 22.7611i −0.809072 0.757023i
\(905\) −3.32824 + 5.76468i −0.110634 + 0.191625i
\(906\) 0.540173 2.10911i 0.0179460 0.0700704i
\(907\) 12.2298 7.06089i 0.406084 0.234453i −0.283022 0.959114i \(-0.591337\pi\)
0.689106 + 0.724661i \(0.258003\pi\)
\(908\) 28.2917 + 15.5091i 0.938892 + 0.514689i
\(909\) 0.794961i 0.0263672i
\(910\) 0 0
\(911\) 12.5510i 0.415832i 0.978147 + 0.207916i \(0.0666681\pi\)
−0.978147 + 0.207916i \(0.933332\pi\)
\(912\) 11.3336 21.8070i 0.375294 0.722102i
\(913\) −10.6734 + 6.16228i −0.353238 + 0.203942i
\(914\) −23.3263 5.97421i −0.771566 0.197609i
\(915\) −5.14472 + 8.91092i −0.170079 + 0.294586i
\(916\) −43.3257 + 0.959747i −1.43152 + 0.0317109i
\(917\) 0 0
\(918\) 4.01723 + 3.92923i 0.132588 + 0.129684i
\(919\) 30.7045 + 17.7272i 1.01285 + 0.584768i 0.912024 0.410136i \(-0.134519\pi\)
0.100824 + 0.994904i \(0.467852\pi\)
\(920\) −4.78510 + 20.5684i −0.157760 + 0.678121i
\(921\) −13.5955 23.5482i −0.447989 0.775939i
\(922\) −51.9002 + 14.5245i −1.70924 + 0.478339i
\(923\) −48.8178 −1.60686
\(924\) 0 0
\(925\) 23.5648 0.774804
\(926\) −1.89246 + 0.529612i −0.0621899 + 0.0174041i
\(927\) −1.67738 2.90531i −0.0550924 0.0954228i
\(928\) −47.3542 9.91652i −1.55448 0.325526i
\(929\) 48.0685 + 27.7524i 1.57708 + 0.910526i 0.995264 + 0.0972040i \(0.0309899\pi\)
0.581813 + 0.813322i \(0.302343\pi\)
\(930\) −3.33510 3.26204i −0.109362 0.106967i
\(931\) 0 0
\(932\) 0.842949 + 38.0531i 0.0276117 + 1.24647i
\(933\) −10.4609 + 18.1188i −0.342474 + 0.593182i
\(934\) −4.78650 1.22589i −0.156619 0.0401125i
\(935\) 5.24417 3.02772i 0.171503 0.0990172i
\(936\) −4.59299 15.1140i −0.150127 0.494016i
\(937\) 18.8683i 0.616400i 0.951322 + 0.308200i \(0.0997265\pi\)
−0.951322 + 0.308200i \(0.900273\pi\)
\(938\) 0 0
\(939\) 2.61741i 0.0854160i
\(940\) −3.90151 + 7.11711i −0.127253 + 0.232134i
\(941\) 34.8394 20.1145i 1.13573 0.655715i 0.190361 0.981714i \(-0.439034\pi\)
0.945370 + 0.325999i \(0.105701\pi\)
\(942\) −3.00331 + 11.7264i −0.0978532 + 0.382068i
\(943\) −0.493478 + 0.854729i −0.0160698 + 0.0278338i
\(944\) 57.5651 2.55160i 1.87358 0.0830476i
\(945\) 0 0
\(946\) 14.2251 14.5437i 0.462497 0.472856i
\(947\) −42.9382 24.7904i −1.39530 0.805579i −0.401408 0.915899i \(-0.631479\pi\)
−0.993896 + 0.110320i \(0.964812\pi\)
\(948\) −8.72816 14.3728i −0.283477 0.466807i
\(949\) 4.92995 + 8.53892i 0.160033 + 0.277185i
\(950\) −8.72438 31.1747i −0.283056 1.01144i
\(951\) −12.9486 −0.419887
\(952\) 0 0
\(953\) −35.9273 −1.16380 −0.581900 0.813260i \(-0.697691\pi\)
−0.581900 + 0.813260i \(0.697691\pi\)
\(954\) −0.279592 0.999063i −0.00905213 0.0323459i
\(955\) −14.3320 24.8237i −0.463771 0.803275i
\(956\) −16.2858 26.8180i −0.526719 0.867358i
\(957\) 9.99928 + 5.77309i 0.323231 + 0.186617i
\(958\) −13.5688 + 13.8727i −0.438388 + 0.448206i
\(959\) 0 0
\(960\) 9.01097 0.599615i 0.290828 0.0193525i
\(961\) 11.2303 19.4515i 0.362269 0.627468i
\(962\) −12.3944 + 48.3941i −0.399613 + 1.56029i
\(963\) −10.8695 + 6.27550i −0.350264 + 0.202225i
\(964\) −11.4416 + 20.8717i −0.368510 + 0.672234i
\(965\) 0.0828437i 0.00266683i
\(966\) 0 0
\(967\) 33.5277i 1.07818i −0.842249 0.539089i \(-0.818769\pi\)
0.842249 0.539089i \(-0.181231\pi\)
\(968\) −24.8364 + 7.54753i −0.798271 + 0.242587i
\(969\) −21.1426 + 12.2067i −0.679198 + 0.392135i
\(970\) 9.63589 + 2.46789i 0.309390 + 0.0792393i
\(971\) 7.35991 12.7477i 0.236191 0.409094i −0.723427 0.690401i \(-0.757434\pi\)
0.959618 + 0.281306i \(0.0907677\pi\)
\(972\) −0.0442929 1.99951i −0.00142070 0.0641343i
\(973\) 0 0
\(974\) −3.80175 3.71847i −0.121816 0.119148i
\(975\) −18.0198 10.4037i −0.577095 0.333186i
\(976\) −30.7366 + 19.6101i −0.983856 + 0.627703i
\(977\) 4.48644 + 7.77075i 0.143534 + 0.248608i 0.928825 0.370519i \(-0.120820\pi\)
−0.785291 + 0.619127i \(0.787487\pi\)
\(978\) −7.70824 + 2.15718i −0.246482 + 0.0689791i
\(979\) 10.7021 0.342041
\(980\) 0 0
\(981\) −15.2532 −0.486997
\(982\) −11.7190 + 3.27961i −0.373968 + 0.104657i
\(983\) 0.933162 + 1.61628i 0.0297633 + 0.0515515i 0.880523 0.474003i \(-0.157191\pi\)
−0.850760 + 0.525554i \(0.823858\pi\)
\(984\) 0.411090 + 0.0956370i 0.0131051 + 0.00304880i
\(985\) 7.07317 + 4.08370i 0.225370 + 0.130117i
\(986\) 34.3582 + 33.6055i 1.09419 + 1.07022i
\(987\) 0 0
\(988\) 68.6112 1.51987i 2.18281 0.0483535i
\(989\) 35.2382 61.0343i 1.12051 1.94078i
\(990\) −2.08783 0.534724i −0.0663556 0.0169946i
\(991\) −5.62256 + 3.24619i −0.178607 + 0.103119i −0.586638 0.809849i \(-0.699549\pi\)
0.408031 + 0.912968i \(0.366215\pi\)
\(992\) −5.15552 15.7060i −0.163688 0.498666i
\(993\) 5.23999i 0.166286i
\(994\) 0 0
\(995\) 17.2851i 0.547974i
\(996\) 16.0107 + 8.77686i 0.507318 + 0.278105i
\(997\) 10.6805 6.16637i 0.338254 0.195291i −0.321246 0.946996i \(-0.604102\pi\)
0.659500 + 0.751705i \(0.270768\pi\)
\(998\) 6.52013 25.4579i 0.206391 0.805855i
\(999\) −3.16249 + 5.47759i −0.100057 + 0.173303i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.o.e.19.6 24
4.3 odd 2 588.2.o.f.19.11 24
7.2 even 3 588.2.b.d.391.2 yes 12
7.3 odd 6 588.2.o.f.31.11 24
7.4 even 3 inner 588.2.o.e.31.11 24
7.5 odd 6 588.2.b.c.391.2 yes 12
7.6 odd 2 588.2.o.f.19.6 24
21.2 odd 6 1764.2.b.m.1567.11 12
21.5 even 6 1764.2.b.l.1567.11 12
28.3 even 6 inner 588.2.o.e.31.6 24
28.11 odd 6 588.2.o.f.31.6 24
28.19 even 6 588.2.b.d.391.1 yes 12
28.23 odd 6 588.2.b.c.391.1 12
28.27 even 2 inner 588.2.o.e.19.11 24
84.23 even 6 1764.2.b.l.1567.12 12
84.47 odd 6 1764.2.b.m.1567.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.1 12 28.23 odd 6
588.2.b.c.391.2 yes 12 7.5 odd 6
588.2.b.d.391.1 yes 12 28.19 even 6
588.2.b.d.391.2 yes 12 7.2 even 3
588.2.o.e.19.6 24 1.1 even 1 trivial
588.2.o.e.19.11 24 28.27 even 2 inner
588.2.o.e.31.6 24 28.3 even 6 inner
588.2.o.e.31.11 24 7.4 even 3 inner
588.2.o.f.19.6 24 7.6 odd 2
588.2.o.f.19.11 24 4.3 odd 2
588.2.o.f.31.6 24 28.11 odd 6
588.2.o.f.31.11 24 7.3 odd 6
1764.2.b.l.1567.11 12 21.5 even 6
1764.2.b.l.1567.12 12 84.23 even 6
1764.2.b.m.1567.11 12 21.2 odd 6
1764.2.b.m.1567.12 12 84.47 odd 6