Properties

Label 588.2.o.e.31.11
Level $588$
Weight $2$
Character 588.31
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(19,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,-12,4,0,8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.11
Character \(\chi\) \(=\) 588.31
Dual form 588.2.o.e.19.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36999 + 0.350876i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(1.75377 + 0.961396i) q^{4} +(-0.977624 + 0.564431i) q^{5} +(-0.988865 + 1.01101i) q^{6} +(2.06533 + 1.93246i) q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.53738 + 0.430244i) q^{10} +(1.16914 + 0.675002i) q^{11} +(-1.70948 + 1.03811i) q^{12} +5.58489i q^{13} -1.12886i q^{15} +(2.15144 + 3.37214i) q^{16} +(3.44113 + 1.98674i) q^{17} +(-0.381130 - 1.36189i) q^{18} +(-3.07204 - 5.32093i) q^{19} +(-2.25717 + 0.0500006i) q^{20} +(1.36487 + 1.33497i) q^{22} +(-5.72784 + 3.30697i) q^{23} +(-2.70623 + 0.822395i) q^{24} +(-1.86283 + 3.22652i) q^{25} +(-1.95960 + 7.65127i) q^{26} +1.00000 q^{27} +8.55270 q^{29} +(0.396091 - 1.54654i) q^{30} +(1.46111 - 2.53071i) q^{31} +(1.76425 + 5.37470i) q^{32} +(-1.16914 + 0.675002i) q^{33} +(4.01723 + 3.92923i) q^{34} +(-0.0442929 - 1.99951i) q^{36} +(-3.16249 - 5.47759i) q^{37} +(-2.34170 - 8.36756i) q^{38} +(-4.83666 - 2.79245i) q^{39} +(-3.10986 - 0.723486i) q^{40} +0.149223i q^{41} -10.6557i q^{43} +(1.40146 + 2.30780i) q^{44} +(0.977624 + 0.564431i) q^{45} +(-9.00745 + 2.52077i) q^{46} +(1.79746 + 3.11329i) q^{47} +(-3.99608 + 0.177128i) q^{48} +(-3.68418 + 3.76670i) q^{50} +(-3.44113 + 1.98674i) q^{51} +(-5.36929 + 9.79463i) q^{52} +(-0.366793 + 0.635305i) q^{53} +(1.36999 + 0.350876i) q^{54} -1.52397 q^{55} +6.14408 q^{57} +(11.7172 + 3.00093i) q^{58} +(7.20270 - 12.4754i) q^{59} +(1.08528 - 1.97977i) q^{60} +(7.89372 - 4.55744i) q^{61} +(2.88967 - 2.95439i) q^{62} +(0.531167 + 7.98235i) q^{64} +(-3.15229 - 5.45992i) q^{65} +(-1.83855 + 0.514527i) q^{66} +(-0.202730 - 0.117046i) q^{67} +(4.12492 + 6.79257i) q^{68} -6.61394i q^{69} +8.74104i q^{71} +(0.640898 - 2.75486i) q^{72} +(-1.52893 - 0.882729i) q^{73} +(-2.41064 - 8.61391i) q^{74} +(-1.86283 - 3.22652i) q^{75} +(-0.272139 - 12.2852i) q^{76} +(-5.64640 - 5.52270i) q^{78} +(7.28129 - 4.20385i) q^{79} +(-4.00664 - 2.08235i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-0.0523589 + 0.204435i) q^{82} +9.12928 q^{83} -4.48551 q^{85} +(3.73883 - 14.5983i) q^{86} +(-4.27635 + 7.40685i) q^{87} +(1.11024 + 3.65342i) q^{88} +(6.86538 - 3.96373i) q^{89} +(1.14129 + 1.11629i) q^{90} +(-13.2246 + 0.292951i) q^{92} +(1.46111 + 2.53071i) q^{93} +(1.37013 + 4.89588i) q^{94} +(6.00660 + 3.46791i) q^{95} +(-5.53675 - 1.15946i) q^{96} +6.23063i q^{97} -1.35000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} - 12 q^{3} + 4 q^{4} + 8 q^{6} + 8 q^{8} - 12 q^{9} + 4 q^{12} + 4 q^{16} - 4 q^{18} - 48 q^{20} - 4 q^{24} + 12 q^{25} - 24 q^{26} + 24 q^{27} + 64 q^{29} - 16 q^{31} - 4 q^{32} + 64 q^{34}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36999 + 0.350876i 0.968733 + 0.248107i
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 1.75377 + 0.961396i 0.876886 + 0.480698i
\(5\) −0.977624 + 0.564431i −0.437207 + 0.252421i −0.702412 0.711771i \(-0.747894\pi\)
0.265205 + 0.964192i \(0.414560\pi\)
\(6\) −0.988865 + 1.01101i −0.403702 + 0.412744i
\(7\) 0 0
\(8\) 2.06533 + 1.93246i 0.730204 + 0.683229i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.53738 + 0.430244i −0.486164 + 0.136055i
\(11\) 1.16914 + 0.675002i 0.352508 + 0.203521i 0.665789 0.746140i \(-0.268095\pi\)
−0.313281 + 0.949660i \(0.601428\pi\)
\(12\) −1.70948 + 1.03811i −0.493484 + 0.299678i
\(13\) 5.58489i 1.54897i 0.632592 + 0.774485i \(0.281991\pi\)
−0.632592 + 0.774485i \(0.718009\pi\)
\(14\) 0 0
\(15\) 1.12886i 0.291471i
\(16\) 2.15144 + 3.37214i 0.537859 + 0.843035i
\(17\) 3.44113 + 1.98674i 0.834597 + 0.481855i 0.855424 0.517929i \(-0.173297\pi\)
−0.0208273 + 0.999783i \(0.506630\pi\)
\(18\) −0.381130 1.36189i −0.0898332 0.321000i
\(19\) −3.07204 5.32093i −0.704775 1.22071i −0.966773 0.255637i \(-0.917715\pi\)
0.261998 0.965068i \(-0.415619\pi\)
\(20\) −2.25717 + 0.0500006i −0.504719 + 0.0111805i
\(21\) 0 0
\(22\) 1.36487 + 1.33497i 0.290991 + 0.284617i
\(23\) −5.72784 + 3.30697i −1.19434 + 0.689551i −0.959287 0.282432i \(-0.908859\pi\)
−0.235051 + 0.971983i \(0.575526\pi\)
\(24\) −2.70623 + 0.822395i −0.552406 + 0.167871i
\(25\) −1.86283 + 3.22652i −0.372567 + 0.645305i
\(26\) −1.95960 + 7.65127i −0.384310 + 1.50054i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 8.55270 1.58820 0.794098 0.607790i \(-0.207944\pi\)
0.794098 + 0.607790i \(0.207944\pi\)
\(30\) 0.396091 1.54654i 0.0723159 0.282358i
\(31\) 1.46111 2.53071i 0.262422 0.454529i −0.704463 0.709741i \(-0.748812\pi\)
0.966885 + 0.255212i \(0.0821453\pi\)
\(32\) 1.76425 + 5.37470i 0.311879 + 0.950122i
\(33\) −1.16914 + 0.675002i −0.203521 + 0.117503i
\(34\) 4.01723 + 3.92923i 0.688950 + 0.673857i
\(35\) 0 0
\(36\) −0.0442929 1.99951i −0.00738215 0.333252i
\(37\) −3.16249 5.47759i −0.519910 0.900510i −0.999732 0.0231442i \(-0.992632\pi\)
0.479823 0.877366i \(-0.340701\pi\)
\(38\) −2.34170 8.36756i −0.379873 1.35740i
\(39\) −4.83666 2.79245i −0.774485 0.447149i
\(40\) −3.10986 0.723486i −0.491712 0.114393i
\(41\) 0.149223i 0.0233048i 0.999932 + 0.0116524i \(0.00370916\pi\)
−0.999932 + 0.0116524i \(0.996291\pi\)
\(42\) 0 0
\(43\) 10.6557i 1.62498i −0.582974 0.812491i \(-0.698111\pi\)
0.582974 0.812491i \(-0.301889\pi\)
\(44\) 1.40146 + 2.30780i 0.211278 + 0.347914i
\(45\) 0.977624 + 0.564431i 0.145736 + 0.0841405i
\(46\) −9.00745 + 2.52077i −1.32808 + 0.371668i
\(47\) 1.79746 + 3.11329i 0.262186 + 0.454120i 0.966823 0.255448i \(-0.0822231\pi\)
−0.704636 + 0.709569i \(0.748890\pi\)
\(48\) −3.99608 + 0.177128i −0.576784 + 0.0255663i
\(49\) 0 0
\(50\) −3.68418 + 3.76670i −0.521022 + 0.532692i
\(51\) −3.44113 + 1.98674i −0.481855 + 0.278199i
\(52\) −5.36929 + 9.79463i −0.744587 + 1.35827i
\(53\) −0.366793 + 0.635305i −0.0503830 + 0.0872658i −0.890117 0.455732i \(-0.849378\pi\)
0.839734 + 0.542998i \(0.182711\pi\)
\(54\) 1.36999 + 0.350876i 0.186433 + 0.0477481i
\(55\) −1.52397 −0.205492
\(56\) 0 0
\(57\) 6.14408 0.813804
\(58\) 11.7172 + 3.00093i 1.53854 + 0.394042i
\(59\) 7.20270 12.4754i 0.937712 1.62416i 0.167986 0.985789i \(-0.446274\pi\)
0.769726 0.638375i \(-0.220393\pi\)
\(60\) 1.08528 1.97977i 0.140110 0.255587i
\(61\) 7.89372 4.55744i 1.01069 0.583520i 0.0992943 0.995058i \(-0.468341\pi\)
0.911393 + 0.411538i \(0.135008\pi\)
\(62\) 2.88967 2.95439i 0.366989 0.375208i
\(63\) 0 0
\(64\) 0.531167 + 7.98235i 0.0663959 + 0.997793i
\(65\) −3.15229 5.45992i −0.390993 0.677220i
\(66\) −1.83855 + 0.514527i −0.226310 + 0.0633339i
\(67\) −0.202730 0.117046i −0.0247674 0.0142995i 0.487565 0.873087i \(-0.337885\pi\)
−0.512333 + 0.858787i \(0.671218\pi\)
\(68\) 4.12492 + 6.79257i 0.500220 + 0.823721i
\(69\) 6.61394i 0.796225i
\(70\) 0 0
\(71\) 8.74104i 1.03737i 0.854965 + 0.518685i \(0.173578\pi\)
−0.854965 + 0.518685i \(0.826422\pi\)
\(72\) 0.640898 2.75486i 0.0755306 0.324663i
\(73\) −1.52893 0.882729i −0.178948 0.103316i 0.407850 0.913049i \(-0.366279\pi\)
−0.586798 + 0.809733i \(0.699612\pi\)
\(74\) −2.41064 8.61391i −0.280231 1.00135i
\(75\) −1.86283 3.22652i −0.215102 0.372567i
\(76\) −0.272139 12.2852i −0.0312165 1.40920i
\(77\) 0 0
\(78\) −5.64640 5.52270i −0.639328 0.625323i
\(79\) 7.28129 4.20385i 0.819209 0.472971i −0.0309346 0.999521i \(-0.509848\pi\)
0.850144 + 0.526551i \(0.176515\pi\)
\(80\) −4.00664 2.08235i −0.447955 0.232813i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −0.0523589 + 0.204435i −0.00578207 + 0.0225761i
\(83\) 9.12928 1.00207 0.501035 0.865427i \(-0.332953\pi\)
0.501035 + 0.865427i \(0.332953\pi\)
\(84\) 0 0
\(85\) −4.48551 −0.486522
\(86\) 3.73883 14.5983i 0.403169 1.57417i
\(87\) −4.27635 + 7.40685i −0.458473 + 0.794098i
\(88\) 1.11024 + 3.65342i 0.118352 + 0.389455i
\(89\) 6.86538 3.96373i 0.727729 0.420155i −0.0898617 0.995954i \(-0.528642\pi\)
0.817591 + 0.575800i \(0.195309\pi\)
\(90\) 1.14129 + 1.11629i 0.120303 + 0.117668i
\(91\) 0 0
\(92\) −13.2246 + 0.292951i −1.37876 + 0.0305422i
\(93\) 1.46111 + 2.53071i 0.151510 + 0.262422i
\(94\) 1.37013 + 4.89588i 0.141318 + 0.504971i
\(95\) 6.00660 + 3.46791i 0.616264 + 0.355800i
\(96\) −5.53675 1.15946i −0.565093 0.118337i
\(97\) 6.23063i 0.632624i 0.948655 + 0.316312i \(0.102445\pi\)
−0.948655 + 0.316312i \(0.897555\pi\)
\(98\) 0 0
\(99\) 1.35000i 0.135680i
\(100\) −6.36896 + 3.86767i −0.636896 + 0.386767i
\(101\) 0.688456 + 0.397480i 0.0685040 + 0.0395508i 0.533861 0.845572i \(-0.320741\pi\)
−0.465357 + 0.885123i \(0.654074\pi\)
\(102\) −5.41143 + 1.51441i −0.535811 + 0.149949i
\(103\) −1.67738 2.90531i −0.165277 0.286268i 0.771477 0.636258i \(-0.219518\pi\)
−0.936754 + 0.349989i \(0.886185\pi\)
\(104\) −10.7926 + 11.5346i −1.05830 + 1.13106i
\(105\) 0 0
\(106\) −0.725418 + 0.741666i −0.0704589 + 0.0720369i
\(107\) −10.8695 + 6.27550i −1.05079 + 0.606675i −0.922871 0.385109i \(-0.874164\pi\)
−0.127921 + 0.991784i \(0.540831\pi\)
\(108\) 1.75377 + 0.961396i 0.168757 + 0.0925104i
\(109\) 7.62660 13.2097i 0.730496 1.26526i −0.226176 0.974086i \(-0.572622\pi\)
0.956672 0.291169i \(-0.0940442\pi\)
\(110\) −2.08783 0.534724i −0.199067 0.0509839i
\(111\) 6.32497 0.600340
\(112\) 0 0
\(113\) −11.7783 −1.10801 −0.554004 0.832514i \(-0.686901\pi\)
−0.554004 + 0.832514i \(0.686901\pi\)
\(114\) 8.41736 + 2.15581i 0.788358 + 0.201910i
\(115\) 3.73312 6.46595i 0.348115 0.602953i
\(116\) 14.9995 + 8.22253i 1.39267 + 0.763443i
\(117\) 4.83666 2.79245i 0.447149 0.258162i
\(118\) 14.2450 14.5640i 1.31136 1.34073i
\(119\) 0 0
\(120\) 2.18149 2.33147i 0.199142 0.212833i
\(121\) −4.58875 7.94794i −0.417159 0.722540i
\(122\) 12.4134 3.47396i 1.12386 0.314517i
\(123\) −0.129231 0.0746117i −0.0116524 0.00672751i
\(124\) 4.99546 3.03359i 0.448606 0.272424i
\(125\) 9.85008i 0.881018i
\(126\) 0 0
\(127\) 3.52444i 0.312743i −0.987698 0.156372i \(-0.950020\pi\)
0.987698 0.156372i \(-0.0499798\pi\)
\(128\) −2.07312 + 11.1221i −0.183239 + 0.983068i
\(129\) 9.22813 + 5.32786i 0.812491 + 0.469092i
\(130\) −2.40286 8.58613i −0.210745 0.753053i
\(131\) 1.18600 + 2.05421i 0.103621 + 0.179477i 0.913174 0.407570i \(-0.133624\pi\)
−0.809553 + 0.587047i \(0.800290\pi\)
\(132\) −2.69934 + 0.0597956i −0.234948 + 0.00520454i
\(133\) 0 0
\(134\) −0.236671 0.231486i −0.0204452 0.0199973i
\(135\) −0.977624 + 0.564431i −0.0841405 + 0.0485785i
\(136\) 3.26777 + 10.7531i 0.280209 + 0.922073i
\(137\) 3.58780 6.21426i 0.306527 0.530920i −0.671073 0.741391i \(-0.734166\pi\)
0.977600 + 0.210471i \(0.0674997\pi\)
\(138\) 2.32067 9.06107i 0.197549 0.771330i
\(139\) −22.5888 −1.91595 −0.957977 0.286845i \(-0.907394\pi\)
−0.957977 + 0.286845i \(0.907394\pi\)
\(140\) 0 0
\(141\) −3.59492 −0.302747
\(142\) −3.06702 + 11.9752i −0.257378 + 1.00493i
\(143\) −3.76981 + 6.52950i −0.315247 + 0.546025i
\(144\) 1.84464 3.54927i 0.153720 0.295772i
\(145\) −8.36132 + 4.82741i −0.694370 + 0.400895i
\(146\) −1.78490 1.74580i −0.147719 0.144483i
\(147\) 0 0
\(148\) −0.280151 12.6468i −0.0230283 1.03956i
\(149\) 5.52532 + 9.57014i 0.452652 + 0.784016i 0.998550 0.0538356i \(-0.0171447\pi\)
−0.545898 + 0.837852i \(0.683811\pi\)
\(150\) −1.41996 5.07395i −0.115940 0.414286i
\(151\) 1.33325 + 0.769750i 0.108498 + 0.0626413i 0.553267 0.833004i \(-0.313381\pi\)
−0.444769 + 0.895645i \(0.646714\pi\)
\(152\) 3.93773 16.9261i 0.319392 1.37289i
\(153\) 3.97347i 0.321236i
\(154\) 0 0
\(155\) 3.29878i 0.264964i
\(156\) −5.79775 9.54726i −0.464192 0.764392i
\(157\) −7.41273 4.27974i −0.591600 0.341560i 0.174130 0.984723i \(-0.444289\pi\)
−0.765730 + 0.643162i \(0.777622\pi\)
\(158\) 11.4504 3.20443i 0.910942 0.254931i
\(159\) −0.366793 0.635305i −0.0290886 0.0503830i
\(160\) −4.75843 4.25863i −0.376187 0.336675i
\(161\) 0 0
\(162\) −0.988865 + 1.01101i −0.0776926 + 0.0794327i
\(163\) −4.90167 + 2.82998i −0.383929 + 0.221661i −0.679526 0.733651i \(-0.737815\pi\)
0.295598 + 0.955313i \(0.404481\pi\)
\(164\) −0.143463 + 0.261704i −0.0112026 + 0.0204356i
\(165\) 0.761984 1.31980i 0.0593204 0.102746i
\(166\) 12.5071 + 3.20324i 0.970737 + 0.248620i
\(167\) 4.84357 0.374807 0.187403 0.982283i \(-0.439993\pi\)
0.187403 + 0.982283i \(0.439993\pi\)
\(168\) 0 0
\(169\) −18.1910 −1.39931
\(170\) −6.14512 1.57386i −0.471309 0.120709i
\(171\) −3.07204 + 5.32093i −0.234925 + 0.406902i
\(172\) 10.2444 18.6877i 0.781126 1.42492i
\(173\) 1.82184 1.05184i 0.138512 0.0799701i −0.429143 0.903237i \(-0.641184\pi\)
0.567655 + 0.823267i \(0.307851\pi\)
\(174\) −8.45746 + 8.64689i −0.641159 + 0.655519i
\(175\) 0 0
\(176\) 0.239124 + 5.39472i 0.0180246 + 0.406642i
\(177\) 7.20270 + 12.4754i 0.541388 + 0.937712i
\(178\) 10.7963 3.02140i 0.809218 0.226463i
\(179\) −3.47076 2.00384i −0.259417 0.149774i 0.364652 0.931144i \(-0.381188\pi\)
−0.624068 + 0.781370i \(0.714521\pi\)
\(180\) 1.17189 + 1.92977i 0.0873473 + 0.143836i
\(181\) 5.89663i 0.438293i 0.975692 + 0.219146i \(0.0703272\pi\)
−0.975692 + 0.219146i \(0.929673\pi\)
\(182\) 0 0
\(183\) 9.11488i 0.673791i
\(184\) −18.2205 4.23887i −1.34323 0.312493i
\(185\) 6.18344 + 3.57001i 0.454616 + 0.262473i
\(186\) 1.11374 + 3.97973i 0.0816636 + 0.291808i
\(187\) 2.68210 + 4.64554i 0.196135 + 0.339715i
\(188\) 0.159229 + 7.18808i 0.0116130 + 0.524244i
\(189\) 0 0
\(190\) 7.01221 + 6.85859i 0.508719 + 0.497575i
\(191\) 21.9900 12.6959i 1.59114 0.918645i 0.598028 0.801475i \(-0.295951\pi\)
0.993112 0.117170i \(-0.0373823\pi\)
\(192\) −7.17850 3.53117i −0.518064 0.254840i
\(193\) −0.0366935 + 0.0635549i −0.00264125 + 0.00457478i −0.867343 0.497711i \(-0.834174\pi\)
0.864702 + 0.502286i \(0.167507\pi\)
\(194\) −2.18618 + 8.53593i −0.156958 + 0.612844i
\(195\) 6.30457 0.451480
\(196\) 0 0
\(197\) 7.23506 0.515477 0.257739 0.966215i \(-0.417023\pi\)
0.257739 + 0.966215i \(0.417023\pi\)
\(198\) 0.473683 1.84950i 0.0336632 0.131438i
\(199\) −7.65598 + 13.2605i −0.542718 + 0.940015i 0.456029 + 0.889965i \(0.349271\pi\)
−0.998747 + 0.0500500i \(0.984062\pi\)
\(200\) −10.0825 + 3.06397i −0.712941 + 0.216656i
\(201\) 0.202730 0.117046i 0.0142995 0.00825581i
\(202\) 0.803715 + 0.786109i 0.0565492 + 0.0553104i
\(203\) 0 0
\(204\) −7.94500 + 0.175997i −0.556261 + 0.0123222i
\(205\) −0.0842264 0.145884i −0.00588263 0.0101890i
\(206\) −1.27860 4.56881i −0.0890843 0.318324i
\(207\) 5.72784 + 3.30697i 0.398113 + 0.229850i
\(208\) −18.8330 + 12.0155i −1.30584 + 0.833127i
\(209\) 8.29453i 0.573745i
\(210\) 0 0
\(211\) 13.7540i 0.946861i −0.880831 0.473431i \(-0.843015\pi\)
0.880831 0.473431i \(-0.156985\pi\)
\(212\) −1.25405 + 0.761547i −0.0861286 + 0.0523032i
\(213\) −7.56996 4.37052i −0.518685 0.299463i
\(214\) −17.0931 + 4.78356i −1.16846 + 0.326998i
\(215\) 6.01442 + 10.4173i 0.410180 + 0.710453i
\(216\) 2.06533 + 1.93246i 0.140528 + 0.131488i
\(217\) 0 0
\(218\) 15.0833 15.4212i 1.02157 1.04445i
\(219\) 1.52893 0.882729i 0.103316 0.0596493i
\(220\) −2.67269 1.46514i −0.180193 0.0987795i
\(221\) −11.0957 + 19.2183i −0.746378 + 1.29277i
\(222\) 8.66518 + 2.21928i 0.581569 + 0.148948i
\(223\) −16.4120 −1.09903 −0.549516 0.835483i \(-0.685188\pi\)
−0.549516 + 0.835483i \(0.685188\pi\)
\(224\) 0 0
\(225\) 3.72567 0.248378
\(226\) −16.1362 4.13272i −1.07336 0.274904i
\(227\) −8.06595 + 13.9706i −0.535356 + 0.927263i 0.463790 + 0.885945i \(0.346489\pi\)
−0.999146 + 0.0413183i \(0.986844\pi\)
\(228\) 10.7753 + 5.90690i 0.713613 + 0.391194i
\(229\) −18.7652 + 10.8341i −1.24004 + 0.715937i −0.969102 0.246660i \(-0.920667\pi\)
−0.270937 + 0.962597i \(0.587334\pi\)
\(230\) 7.38310 7.54846i 0.486827 0.497731i
\(231\) 0 0
\(232\) 17.6641 + 16.5278i 1.15971 + 1.08510i
\(233\) 9.51561 + 16.4815i 0.623389 + 1.07974i 0.988850 + 0.148914i \(0.0475779\pi\)
−0.365461 + 0.930826i \(0.619089\pi\)
\(234\) 7.60600 2.12857i 0.497220 0.139149i
\(235\) −3.51448 2.02909i −0.229259 0.132363i
\(236\) 24.6257 14.9544i 1.60300 0.973451i
\(237\) 8.40771i 0.546139i
\(238\) 0 0
\(239\) 15.6878i 1.01476i 0.861722 + 0.507381i \(0.169386\pi\)
−0.861722 + 0.507381i \(0.830614\pi\)
\(240\) 3.80668 2.42868i 0.245720 0.156770i
\(241\) −10.3066 5.95053i −0.663908 0.383307i 0.129857 0.991533i \(-0.458548\pi\)
−0.793764 + 0.608225i \(0.791882\pi\)
\(242\) −3.49782 12.4987i −0.224848 0.803448i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) 18.2253 0.403725i 1.16675 0.0258458i
\(245\) 0 0
\(246\) −0.150867 0.147562i −0.00961891 0.00940820i
\(247\) 29.7168 17.1570i 1.89084 1.09167i
\(248\) 7.90817 2.40321i 0.502169 0.152604i
\(249\) −4.56464 + 7.90619i −0.289272 + 0.501035i
\(250\) 3.45615 13.4946i 0.218586 0.853471i
\(251\) −1.68715 −0.106492 −0.0532459 0.998581i \(-0.516957\pi\)
−0.0532459 + 0.998581i \(0.516957\pi\)
\(252\) 0 0
\(253\) −8.92885 −0.561352
\(254\) 1.23664 4.82846i 0.0775937 0.302965i
\(255\) 2.24275 3.88456i 0.140447 0.243261i
\(256\) −6.74265 + 14.5099i −0.421416 + 0.906868i
\(257\) −18.4612 + 10.6586i −1.15158 + 0.664862i −0.949271 0.314460i \(-0.898176\pi\)
−0.202305 + 0.979323i \(0.564843\pi\)
\(258\) 10.7731 + 10.5371i 0.670702 + 0.656009i
\(259\) 0 0
\(260\) −0.279248 12.6061i −0.0173182 0.781794i
\(261\) −4.27635 7.40685i −0.264699 0.458473i
\(262\) 0.904038 + 3.23039i 0.0558516 + 0.199574i
\(263\) −10.0326 5.79230i −0.618634 0.357169i 0.157703 0.987487i \(-0.449591\pi\)
−0.776337 + 0.630318i \(0.782925\pi\)
\(264\) −3.71907 0.865215i −0.228893 0.0532503i
\(265\) 0.828119i 0.0508709i
\(266\) 0 0
\(267\) 7.92746i 0.485153i
\(268\) −0.243015 0.400177i −0.0148445 0.0244447i
\(269\) −6.28171 3.62675i −0.383003 0.221127i 0.296121 0.955150i \(-0.404307\pi\)
−0.679124 + 0.734024i \(0.737640\pi\)
\(270\) −1.53738 + 0.430244i −0.0935623 + 0.0261838i
\(271\) 14.5072 + 25.1272i 0.881249 + 1.52637i 0.849954 + 0.526857i \(0.176630\pi\)
0.0312948 + 0.999510i \(0.490037\pi\)
\(272\) 0.703814 + 15.8783i 0.0426750 + 0.962764i
\(273\) 0 0
\(274\) 7.09571 7.25463i 0.428667 0.438268i
\(275\) −4.35582 + 2.51483i −0.262666 + 0.151650i
\(276\) 6.35862 11.5994i 0.382744 0.698199i
\(277\) 0.172570 0.298901i 0.0103688 0.0179592i −0.860794 0.508953i \(-0.830033\pi\)
0.871163 + 0.490994i \(0.163366\pi\)
\(278\) −30.9465 7.92585i −1.85605 0.475361i
\(279\) −2.92221 −0.174948
\(280\) 0 0
\(281\) 6.62734 0.395354 0.197677 0.980267i \(-0.436660\pi\)
0.197677 + 0.980267i \(0.436660\pi\)
\(282\) −4.92502 1.26137i −0.293281 0.0751135i
\(283\) 13.8906 24.0593i 0.825713 1.43018i −0.0756596 0.997134i \(-0.524106\pi\)
0.901373 0.433044i \(-0.142560\pi\)
\(284\) −8.40360 + 15.3298i −0.498662 + 0.909656i
\(285\) −6.00660 + 3.46791i −0.355800 + 0.205421i
\(286\) −7.45567 + 7.62265i −0.440863 + 0.450737i
\(287\) 0 0
\(288\) 3.77250 4.21524i 0.222297 0.248385i
\(289\) −0.605750 1.04919i −0.0356324 0.0617171i
\(290\) −13.1488 + 3.67974i −0.772123 + 0.216082i
\(291\) −5.39588 3.11531i −0.316312 0.182623i
\(292\) −1.83275 3.01801i −0.107253 0.176616i
\(293\) 7.28491i 0.425589i −0.977097 0.212794i \(-0.931744\pi\)
0.977097 0.212794i \(-0.0682565\pi\)
\(294\) 0 0
\(295\) 16.2617i 0.946794i
\(296\) 4.05366 17.4244i 0.235614 1.01277i
\(297\) 1.16914 + 0.675002i 0.0678402 + 0.0391676i
\(298\) 4.21173 + 15.0497i 0.243979 + 0.871808i
\(299\) −18.4691 31.9894i −1.06809 1.84999i
\(300\) −0.165021 7.44951i −0.00952748 0.430098i
\(301\) 0 0
\(302\) 1.55645 + 1.52236i 0.0895638 + 0.0876018i
\(303\) −0.688456 + 0.397480i −0.0395508 + 0.0228347i
\(304\) 11.3336 21.8070i 0.650028 1.25072i
\(305\) −5.14472 + 8.91092i −0.294586 + 0.510238i
\(306\) 1.39420 5.44364i 0.0797009 0.311192i
\(307\) 27.1911 1.55188 0.775939 0.630808i \(-0.217276\pi\)
0.775939 + 0.630808i \(0.217276\pi\)
\(308\) 0 0
\(309\) 3.35476 0.190846
\(310\) −1.15746 + 4.51931i −0.0657393 + 0.256679i
\(311\) −10.4609 + 18.1188i −0.593182 + 1.02742i 0.400618 + 0.916245i \(0.368795\pi\)
−0.993801 + 0.111177i \(0.964538\pi\)
\(312\) −4.59299 15.1140i −0.260027 0.855661i
\(313\) 2.26674 1.30871i 0.128124 0.0739724i −0.434568 0.900639i \(-0.643099\pi\)
0.562692 + 0.826667i \(0.309766\pi\)
\(314\) −8.65374 8.46417i −0.488359 0.477661i
\(315\) 0 0
\(316\) 16.8113 0.372402i 0.945709 0.0209492i
\(317\) 6.47430 + 11.2138i 0.363633 + 0.629831i 0.988556 0.150856i \(-0.0482028\pi\)
−0.624923 + 0.780687i \(0.714870\pi\)
\(318\) −0.279592 0.999063i −0.0156787 0.0560247i
\(319\) 9.99928 + 5.77309i 0.559852 + 0.323231i
\(320\) −5.02477 7.50392i −0.280893 0.419482i
\(321\) 12.5510i 0.700528i
\(322\) 0 0
\(323\) 24.4134i 1.35840i
\(324\) −1.70948 + 1.03811i −0.0949711 + 0.0576730i
\(325\) −18.0198 10.4037i −0.999558 0.577095i
\(326\) −7.70824 + 2.15718i −0.426920 + 0.119475i
\(327\) 7.62660 + 13.2097i 0.421752 + 0.730496i
\(328\) −0.288369 + 0.308195i −0.0159225 + 0.0170172i
\(329\) 0 0
\(330\) 1.50700 1.54075i 0.0829575 0.0848156i
\(331\) −4.53796 + 2.61999i −0.249429 + 0.144008i −0.619503 0.784994i \(-0.712666\pi\)
0.370074 + 0.929002i \(0.379332\pi\)
\(332\) 16.0107 + 8.77686i 0.878701 + 0.481693i
\(333\) −3.16249 + 5.47759i −0.173303 + 0.300170i
\(334\) 6.63566 + 1.69949i 0.363087 + 0.0929920i
\(335\) 0.264258 0.0144380
\(336\) 0 0
\(337\) 21.6837 1.18119 0.590594 0.806969i \(-0.298894\pi\)
0.590594 + 0.806969i \(0.298894\pi\)
\(338\) −24.9216 6.38278i −1.35556 0.347178i
\(339\) 5.88914 10.2003i 0.319854 0.554004i
\(340\) −7.86656 4.31235i −0.426624 0.233870i
\(341\) 3.41647 1.97250i 0.185012 0.106817i
\(342\) −6.07567 + 6.21175i −0.328534 + 0.335893i
\(343\) 0 0
\(344\) 20.5918 22.0076i 1.11024 1.18657i
\(345\) 3.73312 + 6.46595i 0.200984 + 0.348115i
\(346\) 2.86498 0.801777i 0.154022 0.0431038i
\(347\) −0.567776 0.327806i −0.0304798 0.0175975i 0.484683 0.874690i \(-0.338935\pi\)
−0.515162 + 0.857093i \(0.672268\pi\)
\(348\) −14.6207 + 8.87867i −0.783750 + 0.475947i
\(349\) 19.4157i 1.03930i 0.854380 + 0.519649i \(0.173937\pi\)
−0.854380 + 0.519649i \(0.826063\pi\)
\(350\) 0 0
\(351\) 5.58489i 0.298099i
\(352\) −1.56528 + 7.47464i −0.0834295 + 0.398400i
\(353\) −25.8806 14.9422i −1.37749 0.795292i −0.385630 0.922653i \(-0.626016\pi\)
−0.991856 + 0.127361i \(0.959349\pi\)
\(354\) 5.49033 + 19.6185i 0.291808 + 1.04271i
\(355\) −4.93372 8.54545i −0.261854 0.453545i
\(356\) 15.8510 0.351130i 0.840103 0.0186099i
\(357\) 0 0
\(358\) −4.05182 3.96306i −0.214145 0.209454i
\(359\) 10.9061 6.29666i 0.575604 0.332325i −0.183781 0.982967i \(-0.558834\pi\)
0.759384 + 0.650642i \(0.225500\pi\)
\(360\) 0.928372 + 3.05496i 0.0489295 + 0.161010i
\(361\) −9.37488 + 16.2378i −0.493415 + 0.854619i
\(362\) −2.06898 + 8.07835i −0.108743 + 0.424589i
\(363\) 9.17749 0.481693
\(364\) 0 0
\(365\) 1.99296 0.104316
\(366\) −3.19819 + 12.4873i −0.167172 + 0.652724i
\(367\) −2.73446 + 4.73623i −0.142738 + 0.247229i −0.928527 0.371266i \(-0.878924\pi\)
0.785789 + 0.618495i \(0.212257\pi\)
\(368\) −23.4747 12.2004i −1.22370 0.635987i
\(369\) 0.129231 0.0746117i 0.00672751 0.00388413i
\(370\) 7.21866 + 7.06052i 0.375280 + 0.367059i
\(371\) 0 0
\(372\) 0.129433 + 5.84299i 0.00671080 + 0.302945i
\(373\) 7.42404 + 12.8588i 0.384402 + 0.665805i 0.991686 0.128681i \(-0.0410742\pi\)
−0.607284 + 0.794485i \(0.707741\pi\)
\(374\) 2.04446 + 7.30545i 0.105717 + 0.377756i
\(375\) 8.53042 + 4.92504i 0.440509 + 0.254328i
\(376\) −2.30398 + 9.90350i −0.118819 + 0.510734i
\(377\) 47.7659i 2.46007i
\(378\) 0 0
\(379\) 30.6135i 1.57251i 0.617901 + 0.786256i \(0.287983\pi\)
−0.617901 + 0.786256i \(0.712017\pi\)
\(380\) 7.20018 + 11.8567i 0.369361 + 0.608233i
\(381\) 3.05225 + 1.76222i 0.156372 + 0.0902812i
\(382\) 34.5809 9.67760i 1.76931 0.495149i
\(383\) 11.7392 + 20.3329i 0.599844 + 1.03896i 0.992844 + 0.119422i \(0.0381042\pi\)
−0.392999 + 0.919539i \(0.628562\pi\)
\(384\) −8.59551 7.35644i −0.438638 0.375407i
\(385\) 0 0
\(386\) −0.0725697 + 0.0741951i −0.00369370 + 0.00377643i
\(387\) −9.22813 + 5.32786i −0.469092 + 0.270830i
\(388\) −5.99010 + 10.9271i −0.304101 + 0.554740i
\(389\) 18.0887 31.3306i 0.917134 1.58852i 0.113387 0.993551i \(-0.463830\pi\)
0.803747 0.594972i \(-0.202837\pi\)
\(390\) 8.63724 + 2.21212i 0.437363 + 0.112015i
\(391\) −26.2803 −1.32905
\(392\) 0 0
\(393\) −2.37199 −0.119651
\(394\) 9.91200 + 2.53861i 0.499359 + 0.127893i
\(395\) −4.74557 + 8.21958i −0.238776 + 0.413572i
\(396\) 1.29789 2.36760i 0.0652213 0.118976i
\(397\) 1.15332 0.665868i 0.0578833 0.0334189i −0.470779 0.882251i \(-0.656027\pi\)
0.528662 + 0.848832i \(0.322694\pi\)
\(398\) −15.1415 + 15.4806i −0.758973 + 0.775971i
\(399\) 0 0
\(400\) −14.8881 + 0.659921i −0.744403 + 0.0329961i
\(401\) −13.0298 22.5683i −0.650677 1.12701i −0.982959 0.183825i \(-0.941152\pi\)
0.332282 0.943180i \(-0.392181\pi\)
\(402\) 0.318808 0.0892198i 0.0159007 0.00444988i
\(403\) 14.1337 + 8.16012i 0.704051 + 0.406484i
\(404\) 0.825260 + 1.35897i 0.0410582 + 0.0676112i
\(405\) 1.12886i 0.0560936i
\(406\) 0 0
\(407\) 8.53873i 0.423249i
\(408\) −10.9464 2.54659i −0.541926 0.126075i
\(409\) 11.5362 + 6.66044i 0.570429 + 0.329337i 0.757321 0.653043i \(-0.226508\pi\)
−0.186892 + 0.982381i \(0.559841\pi\)
\(410\) −0.0642024 0.229414i −0.00317073 0.0113299i
\(411\) 3.58780 + 6.21426i 0.176973 + 0.306527i
\(412\) −0.148592 6.70787i −0.00732060 0.330473i
\(413\) 0 0
\(414\) 6.68678 + 6.54030i 0.328637 + 0.321438i
\(415\) −8.92501 + 5.15285i −0.438111 + 0.252944i
\(416\) −30.0171 + 9.85317i −1.47171 + 0.483091i
\(417\) 11.2944 19.5624i 0.553088 0.957977i
\(418\) 2.91035 11.3635i 0.142350 0.555805i
\(419\) −7.54663 −0.368677 −0.184339 0.982863i \(-0.559014\pi\)
−0.184339 + 0.982863i \(0.559014\pi\)
\(420\) 0 0
\(421\) 2.67060 0.130157 0.0650785 0.997880i \(-0.479270\pi\)
0.0650785 + 0.997880i \(0.479270\pi\)
\(422\) 4.82593 18.8428i 0.234922 0.917255i
\(423\) 1.79746 3.11329i 0.0873955 0.151373i
\(424\) −1.98525 + 0.603299i −0.0964124 + 0.0292988i
\(425\) −12.8205 + 7.40193i −0.621886 + 0.359046i
\(426\) −8.83730 8.64371i −0.428169 0.418789i
\(427\) 0 0
\(428\) −25.0958 + 0.555920i −1.21305 + 0.0268714i
\(429\) −3.76981 6.52950i −0.182008 0.315247i
\(430\) 4.58456 + 16.3819i 0.221087 + 0.790008i
\(431\) −10.2938 5.94311i −0.495833 0.286269i 0.231158 0.972916i \(-0.425749\pi\)
−0.726991 + 0.686647i \(0.759082\pi\)
\(432\) 2.15144 + 3.37214i 0.103511 + 0.162242i
\(433\) 20.6667i 0.993177i −0.867986 0.496589i \(-0.834586\pi\)
0.867986 0.496589i \(-0.165414\pi\)
\(434\) 0 0
\(435\) 9.65482i 0.462913i
\(436\) 26.0750 15.8345i 1.24877 0.758337i
\(437\) 35.1924 + 20.3183i 1.68348 + 0.971957i
\(438\) 2.40436 0.672869i 0.114885 0.0321509i
\(439\) −2.71032 4.69441i −0.129356 0.224052i 0.794071 0.607825i \(-0.207958\pi\)
−0.923427 + 0.383773i \(0.874624\pi\)
\(440\) −3.14750 2.94501i −0.150051 0.140398i
\(441\) 0 0
\(442\) −21.9443 + 22.4358i −1.04378 + 1.06716i
\(443\) −19.6620 + 11.3519i −0.934172 + 0.539344i −0.888129 0.459595i \(-0.847995\pi\)
−0.0460432 + 0.998939i \(0.514661\pi\)
\(444\) 11.0926 + 6.08080i 0.526430 + 0.288582i
\(445\) −4.47451 + 7.75008i −0.212112 + 0.367389i
\(446\) −22.4844 5.75858i −1.06467 0.272677i
\(447\) −11.0506 −0.522677
\(448\) 0 0
\(449\) −15.6516 −0.738645 −0.369322 0.929301i \(-0.620410\pi\)
−0.369322 + 0.929301i \(0.620410\pi\)
\(450\) 5.10415 + 1.30725i 0.240612 + 0.0616242i
\(451\) −0.100726 + 0.174463i −0.00474301 + 0.00821513i
\(452\) −20.6564 11.3236i −0.971597 0.532617i
\(453\) −1.33325 + 0.769750i −0.0626413 + 0.0361660i
\(454\) −15.9523 + 16.3095i −0.748677 + 0.765445i
\(455\) 0 0
\(456\) 12.6896 + 11.8732i 0.594243 + 0.556014i
\(457\) 8.51329 + 14.7454i 0.398235 + 0.689763i 0.993508 0.113760i \(-0.0362896\pi\)
−0.595274 + 0.803523i \(0.702956\pi\)
\(458\) −29.5096 + 8.25840i −1.37890 + 0.385890i
\(459\) 3.44113 + 1.98674i 0.160618 + 0.0927330i
\(460\) 12.7634 7.75080i 0.595095 0.361383i
\(461\) 38.1090i 1.77491i −0.460891 0.887457i \(-0.652470\pi\)
0.460891 0.887457i \(-0.347530\pi\)
\(462\) 0 0
\(463\) 1.38958i 0.0645794i −0.999479 0.0322897i \(-0.989720\pi\)
0.999479 0.0322897i \(-0.0102799\pi\)
\(464\) 18.4006 + 28.8409i 0.854225 + 1.33890i
\(465\) −2.85682 1.64939i −0.132482 0.0764885i
\(466\) 7.25338 + 25.9184i 0.336006 + 1.20065i
\(467\) 1.74691 + 3.02573i 0.0808372 + 0.140014i 0.903610 0.428357i \(-0.140907\pi\)
−0.822773 + 0.568371i \(0.807574\pi\)
\(468\) 11.1670 0.247371i 0.516197 0.0114347i
\(469\) 0 0
\(470\) −4.10286 4.01298i −0.189251 0.185105i
\(471\) 7.41273 4.27974i 0.341560 0.197200i
\(472\) 38.9843 11.8469i 1.79440 0.545299i
\(473\) 7.19263 12.4580i 0.330717 0.572819i
\(474\) −2.95006 + 11.5185i −0.135501 + 0.529063i
\(475\) 22.8908 1.05030
\(476\) 0 0
\(477\) 0.733587 0.0335886
\(478\) −5.50448 + 21.4923i −0.251769 + 0.983033i
\(479\) −6.86079 + 11.8832i −0.313478 + 0.542959i −0.979113 0.203318i \(-0.934827\pi\)
0.665635 + 0.746277i \(0.268161\pi\)
\(480\) 6.06730 1.99160i 0.276933 0.0909037i
\(481\) 30.5917 17.6621i 1.39486 0.805324i
\(482\) −12.0321 11.7685i −0.548048 0.536042i
\(483\) 0 0
\(484\) −0.406498 18.3505i −0.0184772 0.834113i
\(485\) −3.51676 6.09121i −0.159688 0.276588i
\(486\) −0.381130 1.36189i −0.0172884 0.0617765i
\(487\) −3.25655 1.88017i −0.147569 0.0851987i 0.424398 0.905476i \(-0.360486\pi\)
−0.571966 + 0.820277i \(0.693819\pi\)
\(488\) 25.1102 + 5.84171i 1.13669 + 0.264442i
\(489\) 5.65996i 0.255952i
\(490\) 0 0
\(491\) 8.60497i 0.388337i −0.980968 0.194168i \(-0.937799\pi\)
0.980968 0.194168i \(-0.0622008\pi\)
\(492\) −0.154911 0.255094i −0.00698392 0.0115005i
\(493\) 29.4309 + 16.9920i 1.32550 + 0.765280i
\(494\) 46.7319 13.0781i 2.10257 0.588412i
\(495\) 0.761984 + 1.31980i 0.0342486 + 0.0593204i
\(496\) 11.6774 0.517606i 0.524330 0.0232412i
\(497\) 0 0
\(498\) −9.02763 + 9.22982i −0.404538 + 0.413598i
\(499\) −16.0929 + 9.29123i −0.720416 + 0.415933i −0.814906 0.579593i \(-0.803211\pi\)
0.0944896 + 0.995526i \(0.469878\pi\)
\(500\) 9.46983 17.2748i 0.423504 0.772553i
\(501\) −2.42178 + 4.19465i −0.108197 + 0.187403i
\(502\) −2.31138 0.591979i −0.103162 0.0264213i
\(503\) −33.4544 −1.49166 −0.745828 0.666139i \(-0.767946\pi\)
−0.745828 + 0.666139i \(0.767946\pi\)
\(504\) 0 0
\(505\) −0.897402 −0.0399338
\(506\) −12.2325 3.13292i −0.543800 0.139275i
\(507\) 9.09550 15.7539i 0.403946 0.699654i
\(508\) 3.38838 6.18106i 0.150335 0.274240i
\(509\) 20.7781 11.9963i 0.920974 0.531725i 0.0370283 0.999314i \(-0.488211\pi\)
0.883946 + 0.467590i \(0.154878\pi\)
\(510\) 4.43556 4.53490i 0.196410 0.200809i
\(511\) 0 0
\(512\) −14.3286 + 17.5126i −0.633239 + 0.773956i
\(513\) −3.07204 5.32093i −0.135634 0.234925i
\(514\) −29.0315 + 8.12459i −1.28053 + 0.358360i
\(515\) 3.27969 + 1.89353i 0.144520 + 0.0834389i
\(516\) 11.0618 + 18.2157i 0.486971 + 0.801903i
\(517\) 4.85315i 0.213441i
\(518\) 0 0
\(519\) 2.10368i 0.0923415i
\(520\) 4.04059 17.3682i 0.177192 0.761647i
\(521\) −12.1946 7.04055i −0.534255 0.308452i 0.208493 0.978024i \(-0.433144\pi\)
−0.742747 + 0.669572i \(0.766478\pi\)
\(522\) −3.25969 11.6478i −0.142673 0.509811i
\(523\) −17.5726 30.4366i −0.768396 1.33090i −0.938432 0.345463i \(-0.887722\pi\)
0.170037 0.985438i \(-0.445611\pi\)
\(524\) 0.105062 + 4.74282i 0.00458967 + 0.207191i
\(525\) 0 0
\(526\) −11.7122 11.4556i −0.510675 0.499488i
\(527\) 10.0557 5.80567i 0.438034 0.252899i
\(528\) −4.79152 2.49027i −0.208524 0.108375i
\(529\) 10.3721 17.9651i 0.450962 0.781089i
\(530\) 0.290567 1.13452i 0.0126214 0.0492803i
\(531\) −14.4054 −0.625141
\(532\) 0 0
\(533\) −0.833397 −0.0360984
\(534\) −2.78155 + 10.8606i −0.120370 + 0.469983i
\(535\) 7.08418 12.2702i 0.306276 0.530485i
\(536\) −0.192517 0.633508i −0.00831545 0.0273634i
\(537\) 3.47076 2.00384i 0.149774 0.0864722i
\(538\) −7.33338 7.17273i −0.316164 0.309238i
\(539\) 0 0
\(540\) −2.25717 + 0.0500006i −0.0971332 + 0.00215168i
\(541\) −6.35759 11.0117i −0.273334 0.473429i 0.696379 0.717674i \(-0.254793\pi\)
−0.969714 + 0.244245i \(0.921460\pi\)
\(542\) 11.0583 + 39.5143i 0.474993 + 1.69729i
\(543\) −5.10663 2.94831i −0.219146 0.126524i
\(544\) −4.60709 + 22.0002i −0.197527 + 0.943249i
\(545\) 17.2188i 0.737571i
\(546\) 0 0
\(547\) 42.0999i 1.80006i −0.435828 0.900030i \(-0.643544\pi\)
0.435828 0.900030i \(-0.356456\pi\)
\(548\) 12.2666 7.44910i 0.524001 0.318210i
\(549\) −7.89372 4.55744i −0.336896 0.194507i
\(550\) −6.84984 + 1.91696i −0.292078 + 0.0817393i
\(551\) −26.2742 45.5083i −1.11932 1.93872i
\(552\) 12.7812 13.6600i 0.544004 0.581407i
\(553\) 0 0
\(554\) 0.341298 0.348942i 0.0145003 0.0148251i
\(555\) −6.18344 + 3.57001i −0.262473 + 0.151539i
\(556\) −39.6156 21.7167i −1.68007 0.920995i
\(557\) −7.94263 + 13.7570i −0.336540 + 0.582905i −0.983779 0.179382i \(-0.942590\pi\)
0.647239 + 0.762287i \(0.275923\pi\)
\(558\) −4.00341 1.02533i −0.169478 0.0434058i
\(559\) 59.5110 2.51705
\(560\) 0 0
\(561\) −5.36420 −0.226477
\(562\) 9.07942 + 2.32537i 0.382992 + 0.0980899i
\(563\) 16.4594 28.5085i 0.693681 1.20149i −0.276943 0.960886i \(-0.589321\pi\)
0.970623 0.240604i \(-0.0773454\pi\)
\(564\) −6.30467 3.45614i −0.265475 0.145530i
\(565\) 11.5147 6.64803i 0.484428 0.279685i
\(566\) 27.4719 28.0872i 1.15473 1.18059i
\(567\) 0 0
\(568\) −16.8917 + 18.0531i −0.708762 + 0.757492i
\(569\) −17.4920 30.2971i −0.733304 1.27012i −0.955463 0.295110i \(-0.904644\pi\)
0.222159 0.975010i \(-0.428690\pi\)
\(570\) −9.44582 + 2.64345i −0.395642 + 0.110722i
\(571\) −5.63066 3.25087i −0.235636 0.136044i 0.377533 0.925996i \(-0.376772\pi\)
−0.613169 + 0.789951i \(0.710106\pi\)
\(572\) −12.8888 + 7.82698i −0.538909 + 0.327263i
\(573\) 25.3919i 1.06076i
\(574\) 0 0
\(575\) 24.6414i 1.02762i
\(576\) 6.64733 4.45118i 0.276972 0.185466i
\(577\) 32.2277 + 18.6067i 1.34166 + 0.774606i 0.987051 0.160409i \(-0.0512814\pi\)
0.354607 + 0.935016i \(0.384615\pi\)
\(578\) −0.461739 1.64993i −0.0192058 0.0686280i
\(579\) −0.0366935 0.0635549i −0.00152493 0.00264125i
\(580\) −19.3049 + 0.427640i −0.801593 + 0.0177568i
\(581\) 0 0
\(582\) −6.29924 6.16125i −0.261112 0.255392i
\(583\) −0.857664 + 0.495172i −0.0355208 + 0.0205079i
\(584\) −1.45190 4.77773i −0.0600802 0.197704i
\(585\) −3.15229 + 5.45992i −0.130331 + 0.225740i
\(586\) 2.55610 9.98029i 0.105591 0.412282i
\(587\) 24.7914 1.02325 0.511625 0.859209i \(-0.329044\pi\)
0.511625 + 0.859209i \(0.329044\pi\)
\(588\) 0 0
\(589\) −17.9543 −0.739794
\(590\) −5.70584 + 22.2785i −0.234906 + 0.917190i
\(591\) −3.61753 + 6.26575i −0.148805 + 0.257739i
\(592\) 11.6673 22.4490i 0.479523 0.922649i
\(593\) 26.8491 15.5014i 1.10256 0.636565i 0.165670 0.986181i \(-0.447021\pi\)
0.936893 + 0.349617i \(0.113688\pi\)
\(594\) 1.36487 + 1.33497i 0.0560013 + 0.0547745i
\(595\) 0 0
\(596\) 0.489465 + 22.0959i 0.0200493 + 0.905082i
\(597\) −7.65598 13.2605i −0.313338 0.542718i
\(598\) −14.0782 50.3056i −0.575702 2.05715i
\(599\) −7.12727 4.11493i −0.291212 0.168131i 0.347276 0.937763i \(-0.387107\pi\)
−0.638488 + 0.769631i \(0.720440\pi\)
\(600\) 2.38777 10.2637i 0.0974805 0.419014i
\(601\) 47.6805i 1.94493i −0.233053 0.972464i \(-0.574872\pi\)
0.233053 0.972464i \(-0.425128\pi\)
\(602\) 0 0
\(603\) 0.234093i 0.00953299i
\(604\) 1.59817 + 2.63174i 0.0650288 + 0.107084i
\(605\) 8.97213 + 5.18006i 0.364769 + 0.210600i
\(606\) −1.08265 + 0.302984i −0.0439796 + 0.0123079i
\(607\) 6.32713 + 10.9589i 0.256810 + 0.444808i 0.965386 0.260827i \(-0.0839951\pi\)
−0.708575 + 0.705635i \(0.750662\pi\)
\(608\) 23.1786 25.8988i 0.940015 1.05033i
\(609\) 0 0
\(610\) −10.1749 + 10.4028i −0.411969 + 0.421196i
\(611\) −17.3874 + 10.0386i −0.703419 + 0.406119i
\(612\) 3.82008 6.96857i 0.154418 0.281688i
\(613\) −0.226457 + 0.392236i −0.00914652 + 0.0158422i −0.870562 0.492058i \(-0.836245\pi\)
0.861416 + 0.507900i \(0.169578\pi\)
\(614\) 37.2517 + 9.54070i 1.50335 + 0.385031i
\(615\) 0.168453 0.00679267
\(616\) 0 0
\(617\) −0.575345 −0.0231625 −0.0115813 0.999933i \(-0.503687\pi\)
−0.0115813 + 0.999933i \(0.503687\pi\)
\(618\) 4.59600 + 1.17710i 0.184878 + 0.0473500i
\(619\) −1.02161 + 1.76949i −0.0410622 + 0.0711218i −0.885826 0.464017i \(-0.846408\pi\)
0.844764 + 0.535139i \(0.179741\pi\)
\(620\) −3.17143 + 5.78530i −0.127368 + 0.232343i
\(621\) −5.72784 + 3.30697i −0.229850 + 0.132704i
\(622\) −20.6888 + 21.1522i −0.829545 + 0.848125i
\(623\) 0 0
\(624\) −0.989242 22.3177i −0.0396014 0.893421i
\(625\) −3.75448 6.50295i −0.150179 0.260118i
\(626\) 3.56462 0.997574i 0.142471 0.0398711i
\(627\) 7.18328 + 4.14727i 0.286872 + 0.165626i
\(628\) −8.88571 14.6323i −0.354578 0.583890i
\(629\) 25.1321i 1.00208i
\(630\) 0 0
\(631\) 38.8983i 1.54852i 0.632870 + 0.774258i \(0.281877\pi\)
−0.632870 + 0.774258i \(0.718123\pi\)
\(632\) 23.1621 + 5.38849i 0.921337 + 0.214342i
\(633\) 11.9113 + 6.87698i 0.473431 + 0.273335i
\(634\) 4.93511 + 17.6346i 0.195998 + 0.700358i
\(635\) 1.98930 + 3.44558i 0.0789431 + 0.136733i
\(636\) −0.0324927 1.46681i −0.00128842 0.0581630i
\(637\) 0 0
\(638\) 11.6733 + 11.4176i 0.462151 + 0.452027i
\(639\) 7.56996 4.37052i 0.299463 0.172895i
\(640\) −4.25096 12.0434i −0.168034 0.476057i
\(641\) 1.03036 1.78464i 0.0406969 0.0704891i −0.844959 0.534830i \(-0.820376\pi\)
0.885656 + 0.464341i \(0.153709\pi\)
\(642\) 4.40384 17.1948i 0.173806 0.678625i
\(643\) −2.86029 −0.112799 −0.0563994 0.998408i \(-0.517962\pi\)
−0.0563994 + 0.998408i \(0.517962\pi\)
\(644\) 0 0
\(645\) −12.0288 −0.473635
\(646\) 8.56605 33.4462i 0.337027 1.31592i
\(647\) 9.70418 16.8081i 0.381511 0.660796i −0.609768 0.792580i \(-0.708737\pi\)
0.991278 + 0.131784i \(0.0420706\pi\)
\(648\) −2.70623 + 0.822395i −0.106311 + 0.0323067i
\(649\) 16.8419 9.72367i 0.661102 0.381687i
\(650\) −21.0366 20.5758i −0.825123 0.807048i
\(651\) 0 0
\(652\) −11.3171 + 0.250696i −0.443214 + 0.00981802i
\(653\) 0.364864 + 0.631964i 0.0142783 + 0.0247307i 0.873076 0.487584i \(-0.162122\pi\)
−0.858798 + 0.512314i \(0.828788\pi\)
\(654\) 5.81345 + 20.7732i 0.227324 + 0.812294i
\(655\) −2.31892 1.33883i −0.0906075 0.0523123i
\(656\) −0.503202 + 0.321045i −0.0196467 + 0.0125347i
\(657\) 1.76546i 0.0688771i
\(658\) 0 0
\(659\) 19.6921i 0.767097i −0.923521 0.383548i \(-0.874702\pi\)
0.923521 0.383548i \(-0.125298\pi\)
\(660\) 2.60519 1.58205i 0.101407 0.0615813i
\(661\) −8.14536 4.70273i −0.316818 0.182915i 0.333156 0.942872i \(-0.391887\pi\)
−0.649973 + 0.759957i \(0.725220\pi\)
\(662\) −7.13628 + 1.99712i −0.277359 + 0.0776202i
\(663\) −11.0957 19.2183i −0.430922 0.746378i
\(664\) 18.8550 + 17.6420i 0.731715 + 0.684643i
\(665\) 0 0
\(666\) −6.25454 + 6.39463i −0.242359 + 0.247787i
\(667\) −48.9885 + 28.2835i −1.89684 + 1.09514i
\(668\) 8.49452 + 4.65659i 0.328663 + 0.180169i
\(669\) 8.20602 14.2132i 0.317263 0.549516i
\(670\) 0.362033 + 0.0927219i 0.0139865 + 0.00358216i
\(671\) 12.3051 0.475034
\(672\) 0 0
\(673\) 30.0031 1.15653 0.578266 0.815848i \(-0.303729\pi\)
0.578266 + 0.815848i \(0.303729\pi\)
\(674\) 29.7066 + 7.60829i 1.14426 + 0.293060i
\(675\) −1.86283 + 3.22652i −0.0717005 + 0.124189i
\(676\) −31.9029 17.4888i −1.22703 0.672645i
\(677\) −26.6823 + 15.4050i −1.02548 + 0.592063i −0.915687 0.401891i \(-0.868353\pi\)
−0.109796 + 0.993954i \(0.535020\pi\)
\(678\) 11.6471 11.9080i 0.447305 0.457324i
\(679\) 0 0
\(680\) −9.26405 8.66808i −0.355260 0.332406i
\(681\) −8.06595 13.9706i −0.309088 0.535356i
\(682\) 5.37264 1.50356i 0.205729 0.0575742i
\(683\) −36.0508 20.8140i −1.37945 0.796424i −0.387354 0.921931i \(-0.626611\pi\)
−0.992093 + 0.125507i \(0.959944\pi\)
\(684\) −10.5032 + 6.37826i −0.401599 + 0.243879i
\(685\) 8.10028i 0.309496i
\(686\) 0 0
\(687\) 21.6682i 0.826693i
\(688\) 35.9326 22.9251i 1.36992 0.874011i
\(689\) −3.54811 2.04850i −0.135172 0.0780417i
\(690\) 2.84561 + 10.1682i 0.108330 + 0.387096i
\(691\) 4.39414 + 7.61087i 0.167161 + 0.289531i 0.937421 0.348199i \(-0.113207\pi\)
−0.770260 + 0.637730i \(0.779873\pi\)
\(692\) 4.20634 0.0931783i 0.159901 0.00354211i
\(693\) 0 0
\(694\) −0.662831 0.648311i −0.0251607 0.0246095i
\(695\) 22.0833 12.7498i 0.837668 0.483628i
\(696\) −23.1455 + 7.03370i −0.877330 + 0.266612i
\(697\) −0.296468 + 0.513497i −0.0112295 + 0.0194501i
\(698\) −6.81249 + 26.5994i −0.257856 + 1.00680i
\(699\) −19.0312 −0.719827
\(700\) 0 0
\(701\) −0.0621184 −0.00234618 −0.00117309 0.999999i \(-0.500373\pi\)
−0.00117309 + 0.999999i \(0.500373\pi\)
\(702\) −1.95960 + 7.65127i −0.0739604 + 0.288779i
\(703\) −19.4306 + 33.6547i −0.732838 + 1.26931i
\(704\) −4.76709 + 9.69100i −0.179666 + 0.365243i
\(705\) 3.51448 2.02909i 0.132363 0.0764198i
\(706\) −30.2135 29.5516i −1.13710 1.11219i
\(707\) 0 0
\(708\) 0.638057 + 28.8037i 0.0239797 + 1.08251i
\(709\) −16.6018 28.7551i −0.623492 1.07992i −0.988830 0.149045i \(-0.952380\pi\)
0.365338 0.930875i \(-0.380953\pi\)
\(710\) −3.76078 13.4383i −0.141139 0.504332i
\(711\) −7.28129 4.20385i −0.273070 0.157657i
\(712\) 21.8390 + 5.08070i 0.818453 + 0.190407i
\(713\) 19.3273i 0.723815i
\(714\) 0 0
\(715\) 8.51120i 0.318301i
\(716\) −4.16043 6.85106i −0.155483 0.256036i
\(717\) −13.5861 7.84392i −0.507381 0.292937i
\(718\) 17.1507 4.79969i 0.640058 0.179123i
\(719\) 15.9535 + 27.6323i 0.594966 + 1.03051i 0.993552 + 0.113380i \(0.0361677\pi\)
−0.398586 + 0.917131i \(0.630499\pi\)
\(720\) 0.199953 + 4.51102i 0.00745182 + 0.168116i
\(721\) 0 0
\(722\) −18.5410 + 18.9562i −0.690024 + 0.705478i
\(723\) 10.3066 5.95053i 0.383307 0.221303i
\(724\) −5.66899 + 10.3413i −0.210687 + 0.384333i
\(725\) −15.9323 + 27.5955i −0.591709 + 1.02487i
\(726\) 12.5731 + 3.22016i 0.466632 + 0.119511i
\(727\) −11.8242 −0.438535 −0.219268 0.975665i \(-0.570367\pi\)
−0.219268 + 0.975665i \(0.570367\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 2.73035 + 0.699281i 0.101055 + 0.0258816i
\(731\) 21.1701 36.6677i 0.783005 1.35620i
\(732\) −8.76301 + 15.9854i −0.323890 + 0.590838i
\(733\) −10.2349 + 5.90910i −0.378033 + 0.218258i −0.676962 0.736018i \(-0.736704\pi\)
0.298929 + 0.954275i \(0.403371\pi\)
\(734\) −5.40803 + 5.52915i −0.199614 + 0.204085i
\(735\) 0 0
\(736\) −27.8794 24.9511i −1.02765 0.919710i
\(737\) −0.158013 0.273686i −0.00582048 0.0100814i
\(738\) 0.203226 0.0568736i 0.00748084 0.00209354i
\(739\) −23.0318 13.2974i −0.847237 0.489153i 0.0124806 0.999922i \(-0.496027\pi\)
−0.859718 + 0.510770i \(0.829361\pi\)
\(740\) 7.41216 + 12.2057i 0.272476 + 0.448691i
\(741\) 34.3140i 1.26056i
\(742\) 0 0
\(743\) 34.9119i 1.28079i 0.768045 + 0.640396i \(0.221230\pi\)
−0.768045 + 0.640396i \(0.778770\pi\)
\(744\) −1.87284 + 8.05028i −0.0686616 + 0.295138i
\(745\) −10.8034 6.23733i −0.395805 0.228518i
\(746\) 5.65905 + 20.2214i 0.207193 + 0.740359i
\(747\) −4.56464 7.90619i −0.167012 0.289272i
\(748\) 0.237596 + 10.7258i 0.00868738 + 0.392173i
\(749\) 0 0
\(750\) 9.95856 + 9.74040i 0.363635 + 0.355669i
\(751\) 1.48965 0.860048i 0.0543580 0.0313836i −0.472575 0.881291i \(-0.656675\pi\)
0.526933 + 0.849907i \(0.323342\pi\)
\(752\) −6.63134 + 12.7593i −0.241820 + 0.465285i
\(753\) 0.843573 1.46111i 0.0307415 0.0532459i
\(754\) −16.7599 + 65.4390i −0.610359 + 2.38315i
\(755\) −1.73788 −0.0632480
\(756\) 0 0
\(757\) 33.2057 1.20688 0.603440 0.797408i \(-0.293796\pi\)
0.603440 + 0.797408i \(0.293796\pi\)
\(758\) −10.7416 + 41.9404i −0.390151 + 1.52334i
\(759\) 4.46442 7.73261i 0.162048 0.280676i
\(760\) 5.70399 + 18.7699i 0.206906 + 0.680857i
\(761\) 23.5363 13.5887i 0.853191 0.492590i −0.00853557 0.999964i \(-0.502717\pi\)
0.861726 + 0.507374i \(0.169384\pi\)
\(762\) 3.56325 + 3.48519i 0.129083 + 0.126255i
\(763\) 0 0
\(764\) 50.7713 1.12468i 1.83684 0.0406895i
\(765\) 2.24275 + 3.88456i 0.0810869 + 0.140447i
\(766\) 8.94832 + 31.9749i 0.323316 + 1.15530i
\(767\) 69.6740 + 40.2263i 2.51578 + 1.45249i
\(768\) −9.19460 13.0942i −0.331782 0.472498i
\(769\) 7.13960i 0.257460i −0.991680 0.128730i \(-0.958910\pi\)
0.991680 0.128730i \(-0.0410901\pi\)
\(770\) 0 0
\(771\) 21.3171i 0.767717i
\(772\) −0.125453 + 0.0761839i −0.00451517 + 0.00274192i
\(773\) 22.9995 + 13.2788i 0.827234 + 0.477604i 0.852905 0.522067i \(-0.174839\pi\)
−0.0256709 + 0.999670i \(0.508172\pi\)
\(774\) −14.5119 + 4.06122i −0.521620 + 0.145977i
\(775\) 5.44360 + 9.42858i 0.195540 + 0.338685i
\(776\) −12.0405 + 12.8683i −0.432227 + 0.461945i
\(777\) 0 0
\(778\) 35.7746 36.5758i 1.28258 1.31131i
\(779\) 0.794008 0.458421i 0.0284483 0.0164246i
\(780\) 11.0568 + 6.06119i 0.395897 + 0.217026i
\(781\) −5.90022 + 10.2195i −0.211126 + 0.365682i
\(782\) −36.0039 9.22113i −1.28750 0.329747i
\(783\) 8.55270 0.305648
\(784\) 0 0
\(785\) 9.66247 0.344869
\(786\) −3.24962 0.832274i −0.115910 0.0296862i
\(787\) −12.2335 + 21.1890i −0.436077 + 0.755307i −0.997383 0.0723013i \(-0.976966\pi\)
0.561306 + 0.827608i \(0.310299\pi\)
\(788\) 12.6887 + 6.95576i 0.452015 + 0.247789i
\(789\) 10.0326 5.79230i 0.357169 0.206211i
\(790\) −9.38546 + 9.59567i −0.333920 + 0.341399i
\(791\) 0 0
\(792\) 2.60883 2.78820i 0.0927008 0.0990744i
\(793\) 25.4528 + 44.0856i 0.903856 + 1.56552i
\(794\) 1.81368 0.507565i 0.0643649 0.0180128i
\(795\) 0.717172 + 0.414059i 0.0254355 + 0.0146852i
\(796\) −26.1755 + 15.8955i −0.927765 + 0.563403i
\(797\) 26.0084i 0.921265i 0.887591 + 0.460632i \(0.152377\pi\)
−0.887591 + 0.460632i \(0.847623\pi\)
\(798\) 0 0
\(799\) 14.2843i 0.505343i
\(800\) −20.6281 4.31977i −0.729314 0.152727i
\(801\) −6.86538 3.96373i −0.242576 0.140052i
\(802\) −9.93210 35.4903i −0.350715 1.25320i
\(803\) −1.19169 2.06406i −0.0420537 0.0728392i
\(804\) 0.468070 0.0103686i 0.0165076 0.000365674i
\(805\) 0 0
\(806\) 16.5000 + 16.1385i 0.581186 + 0.568454i
\(807\) 6.28171 3.62675i 0.221127 0.127668i
\(808\) 0.653772 + 2.15134i 0.0229996 + 0.0756840i
\(809\) 6.59877 11.4294i 0.232000 0.401836i −0.726396 0.687276i \(-0.758806\pi\)
0.958397 + 0.285440i \(0.0921396\pi\)
\(810\) 0.396091 1.54654i 0.0139172 0.0543397i
\(811\) 4.87597 0.171219 0.0856093 0.996329i \(-0.472716\pi\)
0.0856093 + 0.996329i \(0.472716\pi\)
\(812\) 0 0
\(813\) −29.0144 −1.01758
\(814\) 2.99603 11.6980i 0.105011 0.410015i
\(815\) 3.19466 5.53331i 0.111904 0.193824i
\(816\) −14.1029 7.32963i −0.493701 0.256588i
\(817\) −56.6984 + 32.7348i −1.98362 + 1.14525i
\(818\) 13.4676 + 13.1725i 0.470883 + 0.460567i
\(819\) 0 0
\(820\) −0.00746126 0.336823i −0.000260559 0.0117624i
\(821\) −3.53291 6.11917i −0.123299 0.213561i 0.797768 0.602965i \(-0.206014\pi\)
−0.921067 + 0.389404i \(0.872681\pi\)
\(822\) 2.73484 + 9.77238i 0.0953885 + 0.340851i
\(823\) −19.0192 10.9807i −0.662966 0.382764i 0.130440 0.991456i \(-0.458361\pi\)
−0.793406 + 0.608692i \(0.791694\pi\)
\(824\) 2.15006 9.24189i 0.0749008 0.321956i
\(825\) 5.02967i 0.175110i
\(826\) 0 0
\(827\) 17.4897i 0.608175i 0.952644 + 0.304088i \(0.0983515\pi\)
−0.952644 + 0.304088i \(0.901648\pi\)
\(828\) 6.86603 + 11.3064i 0.238611 + 0.392925i
\(829\) 22.1721 + 12.8011i 0.770069 + 0.444599i 0.832899 0.553425i \(-0.186679\pi\)
−0.0628304 + 0.998024i \(0.520013\pi\)
\(830\) −14.0352 + 3.92782i −0.487170 + 0.136337i
\(831\) 0.172570 + 0.298901i 0.00598640 + 0.0103688i
\(832\) −44.5805 + 2.96651i −1.54555 + 0.102845i
\(833\) 0 0
\(834\) 22.3372 22.8375i 0.773475 0.790799i
\(835\) −4.73519 + 2.73386i −0.163868 + 0.0946092i
\(836\) 7.97433 14.5467i 0.275798 0.503109i
\(837\) 1.46111 2.53071i 0.0505032 0.0874741i
\(838\) −10.3388 2.64793i −0.357150 0.0914712i
\(839\) −9.04513 −0.312273 −0.156136 0.987736i \(-0.549904\pi\)
−0.156136 + 0.987736i \(0.549904\pi\)
\(840\) 0 0
\(841\) 44.1486 1.52237
\(842\) 3.65870 + 0.937048i 0.126087 + 0.0322928i
\(843\) −3.31367 + 5.73944i −0.114129 + 0.197677i
\(844\) 13.2230 24.1213i 0.455154 0.830289i
\(845\) 17.7840 10.2676i 0.611787 0.353215i
\(846\) 3.55489 3.63451i 0.122220 0.124957i
\(847\) 0 0
\(848\) −2.93147 + 0.129939i −0.100667 + 0.00446212i
\(849\) 13.8906 + 24.0593i 0.476726 + 0.825713i
\(850\) −20.1612 + 5.64219i −0.691523 + 0.193526i
\(851\) 36.2285 + 20.9165i 1.24190 + 0.717009i
\(852\) −9.07419 14.9426i −0.310877 0.511926i
\(853\) 28.8642i 0.988292i −0.869379 0.494146i \(-0.835481\pi\)
0.869379 0.494146i \(-0.164519\pi\)
\(854\) 0 0
\(855\) 6.93583i 0.237200i
\(856\) −34.5762 8.04391i −1.18179 0.274935i
\(857\) −41.9058 24.1943i −1.43148 0.826463i −0.434242 0.900796i \(-0.642984\pi\)
−0.997233 + 0.0743338i \(0.976317\pi\)
\(858\) −2.87358 10.2681i −0.0981023 0.350548i
\(859\) −9.91892 17.1801i −0.338429 0.586176i 0.645708 0.763584i \(-0.276562\pi\)
−0.984137 + 0.177408i \(0.943229\pi\)
\(860\) 0.532793 + 24.0518i 0.0181681 + 0.820159i
\(861\) 0 0
\(862\) −12.0171 11.7539i −0.409304 0.400338i
\(863\) −33.6011 + 19.3996i −1.14379 + 0.660370i −0.947367 0.320148i \(-0.896267\pi\)
−0.196427 + 0.980518i \(0.562934\pi\)
\(864\) 1.76425 + 5.37470i 0.0600211 + 0.182851i
\(865\) −1.18738 + 2.05661i −0.0403723 + 0.0699269i
\(866\) 7.25144 28.3132i 0.246414 0.962123i
\(867\) 1.21150 0.0411447
\(868\) 0 0
\(869\) 11.3504 0.385037
\(870\) 3.38764 13.2271i 0.114852 0.448439i
\(871\) 0.653691 1.13223i 0.0221495 0.0383640i
\(872\) 41.2786 12.5442i 1.39787 0.424799i
\(873\) 5.39588 3.11531i 0.182623 0.105437i
\(874\) 41.0841 + 40.1841i 1.38969 + 1.35925i
\(875\) 0 0
\(876\) 3.53005 0.0781973i 0.119269 0.00264204i
\(877\) 7.48487 + 12.9642i 0.252746 + 0.437769i 0.964281 0.264882i \(-0.0853330\pi\)
−0.711535 + 0.702651i \(0.752000\pi\)
\(878\) −2.06597 7.38230i −0.0697231 0.249141i
\(879\) 6.30891 + 3.64245i 0.212794 + 0.122857i
\(880\) −3.27872 5.13903i −0.110526 0.173237i
\(881\) 44.9991i 1.51606i 0.652221 + 0.758029i \(0.273837\pi\)
−0.652221 + 0.758029i \(0.726163\pi\)
\(882\) 0 0
\(883\) 20.0940i 0.676217i 0.941107 + 0.338109i \(0.109787\pi\)
−0.941107 + 0.338109i \(0.890213\pi\)
\(884\) −37.9358 + 23.0372i −1.27592 + 0.774825i
\(885\) −14.0831 8.13086i −0.473397 0.273316i
\(886\) −30.9200 + 8.65309i −1.03878 + 0.290706i
\(887\) 7.60734 + 13.1763i 0.255430 + 0.442417i 0.965012 0.262205i \(-0.0844498\pi\)
−0.709583 + 0.704622i \(0.751116\pi\)
\(888\) 13.0631 + 12.2228i 0.438371 + 0.410170i
\(889\) 0 0
\(890\) −8.84937 + 9.04757i −0.296631 + 0.303275i
\(891\) −1.16914 + 0.675002i −0.0391676 + 0.0226134i
\(892\) −28.7830 15.7785i −0.963725 0.528302i
\(893\) 11.0437 19.1283i 0.369565 0.640105i
\(894\) −15.1393 3.87740i −0.506335 0.129680i
\(895\) 4.52413 0.151225
\(896\) 0 0
\(897\) 36.9382 1.23333
\(898\) −21.4426 5.49177i −0.715549 0.183263i
\(899\) 12.4964 21.6444i 0.416778 0.721881i
\(900\) 6.53398 + 3.58184i 0.217799 + 0.119395i
\(901\) −2.52437 + 1.45744i −0.0840989 + 0.0485545i
\(902\) −0.199209 + 0.203671i −0.00663293 + 0.00678149i
\(903\) 0 0
\(904\) −24.3260 22.7611i −0.809072 0.757023i
\(905\) −3.32824 5.76468i −0.110634 0.191625i
\(906\) −2.09663 + 0.586750i −0.0696557 + 0.0194935i
\(907\) −12.2298 7.06089i −0.406084 0.234453i 0.283022 0.959114i \(-0.408663\pi\)
−0.689106 + 0.724661i \(0.741997\pi\)
\(908\) −27.5771 + 16.7467i −0.915180 + 0.555760i
\(909\) 0.794961i 0.0263672i
\(910\) 0 0
\(911\) 12.5510i 0.415832i 0.978147 + 0.207916i \(0.0666681\pi\)
−0.978147 + 0.207916i \(0.933332\pi\)
\(912\) 13.2186 + 20.7187i 0.437712 + 0.686065i
\(913\) 10.6734 + 6.16228i 0.353238 + 0.203942i
\(914\) 6.48934 + 23.1883i 0.214648 + 0.767000i
\(915\) −5.14472 8.91092i −0.170079 0.294586i
\(916\) −43.3257 + 0.959747i −1.43152 + 0.0317109i
\(917\) 0 0
\(918\) 4.01723 + 3.92923i 0.132588 + 0.129684i
\(919\) −30.7045 + 17.7272i −1.01285 + 0.584768i −0.912024 0.410136i \(-0.865481\pi\)
−0.100824 + 0.994904i \(0.532148\pi\)
\(920\) 20.2053 6.14020i 0.666150 0.202436i
\(921\) −13.5955 + 23.5482i −0.447989 + 0.775939i
\(922\) 13.3715 52.2092i 0.440368 1.71942i
\(923\) −48.8178 −1.60686
\(924\) 0 0
\(925\) 23.5648 0.774804
\(926\) 0.487571 1.90372i 0.0160226 0.0625601i
\(927\) −1.67738 + 2.90531i −0.0550924 + 0.0954228i
\(928\) 15.0891 + 45.9682i 0.495325 + 1.50898i
\(929\) −48.0685 + 27.7524i −1.57708 + 0.910526i −0.581813 + 0.813322i \(0.697657\pi\)
−0.995264 + 0.0972040i \(0.969010\pi\)
\(930\) −3.33510 3.26204i −0.109362 0.106967i
\(931\) 0 0
\(932\) 0.842949 + 38.0531i 0.0276117 + 1.24647i
\(933\) −10.4609 18.1188i −0.342474 0.593182i
\(934\) 1.33160 + 4.75818i 0.0435712 + 0.155692i
\(935\) −5.24417 3.02772i −0.171503 0.0990172i
\(936\) 15.3856 + 3.57935i 0.502894 + 0.116995i
\(937\) 18.8683i 0.616400i 0.951322 + 0.308200i \(0.0997265\pi\)
−0.951322 + 0.308200i \(0.900273\pi\)
\(938\) 0 0
\(939\) 2.61741i 0.0854160i
\(940\) −4.21284 6.93736i −0.137408 0.226272i
\(941\) −34.8394 20.1145i −1.13573 0.655715i −0.190361 0.981714i \(-0.560966\pi\)
−0.945370 + 0.325999i \(0.894299\pi\)
\(942\) 11.6571 3.26228i 0.379807 0.106291i
\(943\) −0.493478 0.854729i −0.0160698 0.0278338i
\(944\) 57.5651 2.55160i 1.87358 0.0830476i
\(945\) 0 0
\(946\) 14.2251 14.5437i 0.462497 0.472856i
\(947\) 42.9382 24.7904i 1.39530 0.805579i 0.401408 0.915899i \(-0.368521\pi\)
0.993896 + 0.110320i \(0.0351877\pi\)
\(948\) −8.08314 + 14.7452i −0.262528 + 0.478902i
\(949\) 4.92995 8.53892i 0.160033 0.277185i
\(950\) 31.3603 + 8.03183i 1.01746 + 0.260587i
\(951\) −12.9486 −0.419887
\(952\) 0 0
\(953\) −35.9273 −1.16380 −0.581900 0.813260i \(-0.697691\pi\)
−0.581900 + 0.813260i \(0.697691\pi\)
\(954\) 1.00501 + 0.257398i 0.0325384 + 0.00833356i
\(955\) −14.3320 + 24.8237i −0.463771 + 0.803275i
\(956\) −15.0822 + 27.5129i −0.487794 + 0.889831i
\(957\) −9.99928 + 5.77309i −0.323231 + 0.186617i
\(958\) −13.5688 + 13.8727i −0.438388 + 0.448206i
\(959\) 0 0
\(960\) 9.01097 0.599615i 0.290828 0.0193525i
\(961\) 11.2303 + 19.4515i 0.362269 + 0.627468i
\(962\) 48.1077 13.4631i 1.55106 0.434069i
\(963\) 10.8695 + 6.27550i 0.350264 + 0.202225i
\(964\) −12.3547 20.3446i −0.397916 0.655256i
\(965\) 0.0828437i 0.00266683i
\(966\) 0 0
\(967\) 33.5277i 1.07818i −0.842249 0.539089i \(-0.818769\pi\)
0.842249 0.539089i \(-0.181231\pi\)
\(968\) 5.88184 25.2827i 0.189049 0.812617i
\(969\) 21.1426 + 12.2067i 0.679198 + 0.392135i
\(970\) −2.68069 9.57887i −0.0860717 0.307559i
\(971\) 7.35991 + 12.7477i 0.236191 + 0.409094i 0.959618 0.281306i \(-0.0907677\pi\)
−0.723427 + 0.690401i \(0.757434\pi\)
\(972\) −0.0442929 1.99951i −0.00142070 0.0641343i
\(973\) 0 0
\(974\) −3.80175 3.71847i −0.121816 0.119148i
\(975\) 18.0198 10.4037i 0.577095 0.333186i
\(976\) 32.3512 + 16.8137i 1.03554 + 0.538193i
\(977\) 4.48644 7.77075i 0.143534 0.248608i −0.785291 0.619127i \(-0.787487\pi\)
0.928825 + 0.370519i \(0.120820\pi\)
\(978\) 1.98594 7.75412i 0.0635035 0.247949i
\(979\) 10.7021 0.342041
\(980\) 0 0
\(981\) −15.2532 −0.486997
\(982\) 3.01927 11.7888i 0.0963489 0.376195i
\(983\) 0.933162 1.61628i 0.0297633 0.0515515i −0.850760 0.525554i \(-0.823858\pi\)
0.880523 + 0.474003i \(0.157191\pi\)
\(984\) −0.122721 0.403833i −0.00391219 0.0128737i
\(985\) −7.07317 + 4.08370i −0.225370 + 0.130117i
\(986\) 34.3582 + 33.6055i 1.09419 + 1.07022i
\(987\) 0 0
\(988\) 68.6112 1.51987i 2.18281 0.0483535i
\(989\) 35.2382 + 61.0343i 1.12051 + 1.94078i
\(990\) 0.580830 + 2.07547i 0.0184600 + 0.0659629i
\(991\) 5.62256 + 3.24619i 0.178607 + 0.103119i 0.586638 0.809849i \(-0.300451\pi\)
−0.408031 + 0.912968i \(0.633785\pi\)
\(992\) 16.1796 + 3.38819i 0.513702 + 0.107575i
\(993\) 5.23999i 0.166286i
\(994\) 0 0
\(995\) 17.2851i 0.547974i
\(996\) −15.6063 + 9.47723i −0.494505 + 0.300298i
\(997\) −10.6805 6.16637i −0.338254 0.195291i 0.321246 0.946996i \(-0.395898\pi\)
−0.659500 + 0.751705i \(0.729232\pi\)
\(998\) −25.3072 + 7.08234i −0.801086 + 0.224187i
\(999\) −3.16249 5.47759i −0.100057 0.173303i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.o.e.31.11 24
4.3 odd 2 588.2.o.f.31.6 24
7.2 even 3 inner 588.2.o.e.19.6 24
7.3 odd 6 588.2.b.c.391.2 yes 12
7.4 even 3 588.2.b.d.391.2 yes 12
7.5 odd 6 588.2.o.f.19.6 24
7.6 odd 2 588.2.o.f.31.11 24
21.11 odd 6 1764.2.b.m.1567.11 12
21.17 even 6 1764.2.b.l.1567.11 12
28.3 even 6 588.2.b.d.391.1 yes 12
28.11 odd 6 588.2.b.c.391.1 12
28.19 even 6 inner 588.2.o.e.19.11 24
28.23 odd 6 588.2.o.f.19.11 24
28.27 even 2 inner 588.2.o.e.31.6 24
84.11 even 6 1764.2.b.l.1567.12 12
84.59 odd 6 1764.2.b.m.1567.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.1 12 28.11 odd 6
588.2.b.c.391.2 yes 12 7.3 odd 6
588.2.b.d.391.1 yes 12 28.3 even 6
588.2.b.d.391.2 yes 12 7.4 even 3
588.2.o.e.19.6 24 7.2 even 3 inner
588.2.o.e.19.11 24 28.19 even 6 inner
588.2.o.e.31.6 24 28.27 even 2 inner
588.2.o.e.31.11 24 1.1 even 1 trivial
588.2.o.f.19.6 24 7.5 odd 6
588.2.o.f.19.11 24 28.23 odd 6
588.2.o.f.31.6 24 4.3 odd 2
588.2.o.f.31.11 24 7.6 odd 2
1764.2.b.l.1567.11 12 21.17 even 6
1764.2.b.l.1567.12 12 84.11 even 6
1764.2.b.m.1567.11 12 21.11 odd 6
1764.2.b.m.1567.12 12 84.59 odd 6