Properties

Label 1764.2.b.m.1567.11
Level $1764$
Weight $2$
Character 1764.1567
Analytic conductor $14.086$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1764,2,Mod(1567,1764)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1764, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1764.1567"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,0,-4,0,0,0,-4,0,0,0,0,0,0,0,-4,0,0,0,24,0,0,0,0,-12,-24, 0,0,-32,0,16,-4,0,32,0,0,32,24,0,-32,0,0,0,24,0,24,0,0,0,28] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(50)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.15911316233388032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 10 x^{10} - 20 x^{9} + 35 x^{8} - 56 x^{7} + 84 x^{6} - 112 x^{5} + 140 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 588)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1567.11
Root \(-0.988865 - 1.01101i\) of defining polynomial
Character \(\chi\) \(=\) 1764.1567
Dual form 1764.2.b.m.1567.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.988865 - 1.01101i) q^{2} +(-0.0442929 - 1.99951i) q^{4} +1.12886i q^{5} +(-2.06533 - 1.93246i) q^{8} +(1.14129 + 1.11629i) q^{10} +1.35000i q^{11} +5.58489i q^{13} +(-3.99608 + 0.177128i) q^{16} +3.97347i q^{17} +6.14408 q^{19} +(2.25717 - 0.0500006i) q^{20} +(1.36487 + 1.33497i) q^{22} +6.61394i q^{23} +3.72567 q^{25} +(5.64640 + 5.52270i) q^{26} -8.55270 q^{29} -2.92221 q^{31} +(-3.77250 + 4.21524i) q^{32} +(4.01723 + 3.92923i) q^{34} +6.32497 q^{37} +(6.07567 - 6.21175i) q^{38} +(2.18149 - 2.33147i) q^{40} -0.149223i q^{41} -10.6557i q^{43} +(2.69934 - 0.0597956i) q^{44} +(6.68678 + 6.54030i) q^{46} +3.59492 q^{47} +(3.68418 - 3.76670i) q^{50} +(11.1670 - 0.247371i) q^{52} -0.733587 q^{53} -1.52397 q^{55} +(-8.45746 + 8.64689i) q^{58} +14.4054 q^{59} +9.11488i q^{61} +(-2.88967 + 2.95439i) q^{62} +(0.531167 + 7.98235i) q^{64} -6.30457 q^{65} +0.234093i q^{67} +(7.94500 - 0.175997i) q^{68} -8.74104i q^{71} +1.76546i q^{73} +(6.25454 - 6.39463i) q^{74} +(-0.272139 - 12.2852i) q^{76} +8.40771i q^{79} +(-0.199953 - 4.51102i) q^{80} +(-0.150867 - 0.147562i) q^{82} -9.12928 q^{83} -4.48551 q^{85} +(-10.7731 - 10.5371i) q^{86} +(2.60883 - 2.78820i) q^{88} -7.92746i q^{89} +(13.2246 - 0.292951i) q^{92} +(3.55489 - 3.63451i) q^{94} +6.93583i q^{95} +6.23063i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 4 q^{4} - 4 q^{8} - 4 q^{16} + 24 q^{20} - 12 q^{25} - 24 q^{26} - 32 q^{29} + 16 q^{31} - 4 q^{32} + 32 q^{34} + 32 q^{37} + 24 q^{38} - 32 q^{40} + 24 q^{44} + 24 q^{46} + 28 q^{50} + 32 q^{52}+ \cdots + 24 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.988865 1.01101i 0.699233 0.714894i
\(3\) 0 0
\(4\) −0.0442929 1.99951i −0.0221465 0.999755i
\(5\) 1.12886i 0.504843i 0.967617 + 0.252421i \(0.0812269\pi\)
−0.967617 + 0.252421i \(0.918773\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −2.06533 1.93246i −0.730204 0.683229i
\(9\) 0 0
\(10\) 1.14129 + 1.11629i 0.360909 + 0.353003i
\(11\) 1.35000i 0.407041i 0.979071 + 0.203521i \(0.0652384\pi\)
−0.979071 + 0.203521i \(0.934762\pi\)
\(12\) 0 0
\(13\) 5.58489i 1.54897i 0.632592 + 0.774485i \(0.281991\pi\)
−0.632592 + 0.774485i \(0.718009\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.99608 + 0.177128i −0.999019 + 0.0442821i
\(17\) 3.97347i 0.963709i 0.876251 + 0.481855i \(0.160037\pi\)
−0.876251 + 0.481855i \(0.839963\pi\)
\(18\) 0 0
\(19\) 6.14408 1.40955 0.704775 0.709431i \(-0.251048\pi\)
0.704775 + 0.709431i \(0.251048\pi\)
\(20\) 2.25717 0.0500006i 0.504719 0.0111805i
\(21\) 0 0
\(22\) 1.36487 + 1.33497i 0.290991 + 0.284617i
\(23\) 6.61394i 1.37910i 0.724237 + 0.689551i \(0.242192\pi\)
−0.724237 + 0.689551i \(0.757808\pi\)
\(24\) 0 0
\(25\) 3.72567 0.745134
\(26\) 5.64640 + 5.52270i 1.10735 + 1.08309i
\(27\) 0 0
\(28\) 0 0
\(29\) −8.55270 −1.58820 −0.794098 0.607790i \(-0.792056\pi\)
−0.794098 + 0.607790i \(0.792056\pi\)
\(30\) 0 0
\(31\) −2.92221 −0.524845 −0.262422 0.964953i \(-0.584521\pi\)
−0.262422 + 0.964953i \(0.584521\pi\)
\(32\) −3.77250 + 4.21524i −0.666890 + 0.745156i
\(33\) 0 0
\(34\) 4.01723 + 3.92923i 0.688950 + 0.673857i
\(35\) 0 0
\(36\) 0 0
\(37\) 6.32497 1.03982 0.519910 0.854221i \(-0.325966\pi\)
0.519910 + 0.854221i \(0.325966\pi\)
\(38\) 6.07567 6.21175i 0.985603 1.00768i
\(39\) 0 0
\(40\) 2.18149 2.33147i 0.344923 0.368638i
\(41\) 0.149223i 0.0233048i −0.999932 0.0116524i \(-0.996291\pi\)
0.999932 0.0116524i \(-0.00370916\pi\)
\(42\) 0 0
\(43\) 10.6557i 1.62498i −0.582974 0.812491i \(-0.698111\pi\)
0.582974 0.812491i \(-0.301889\pi\)
\(44\) 2.69934 0.0597956i 0.406942 0.00901452i
\(45\) 0 0
\(46\) 6.68678 + 6.54030i 0.985912 + 0.964314i
\(47\) 3.59492 0.524373 0.262186 0.965017i \(-0.415556\pi\)
0.262186 + 0.965017i \(0.415556\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.68418 3.76670i 0.521022 0.532692i
\(51\) 0 0
\(52\) 11.1670 0.247371i 1.54859 0.0343042i
\(53\) −0.733587 −0.100766 −0.0503830 0.998730i \(-0.516044\pi\)
−0.0503830 + 0.998730i \(0.516044\pi\)
\(54\) 0 0
\(55\) −1.52397 −0.205492
\(56\) 0 0
\(57\) 0 0
\(58\) −8.45746 + 8.64689i −1.11052 + 1.13539i
\(59\) 14.4054 1.87542 0.937712 0.347415i \(-0.112940\pi\)
0.937712 + 0.347415i \(0.112940\pi\)
\(60\) 0 0
\(61\) 9.11488i 1.16704i 0.812098 + 0.583520i \(0.198325\pi\)
−0.812098 + 0.583520i \(0.801675\pi\)
\(62\) −2.88967 + 2.95439i −0.366989 + 0.375208i
\(63\) 0 0
\(64\) 0.531167 + 7.98235i 0.0663959 + 0.997793i
\(65\) −6.30457 −0.781986
\(66\) 0 0
\(67\) 0.234093i 0.0285990i 0.999898 + 0.0142995i \(0.00455182\pi\)
−0.999898 + 0.0142995i \(0.995448\pi\)
\(68\) 7.94500 0.175997i 0.963473 0.0213427i
\(69\) 0 0
\(70\) 0 0
\(71\) 8.74104i 1.03737i −0.854965 0.518685i \(-0.826422\pi\)
0.854965 0.518685i \(-0.173578\pi\)
\(72\) 0 0
\(73\) 1.76546i 0.206631i 0.994649 + 0.103316i \(0.0329452\pi\)
−0.994649 + 0.103316i \(0.967055\pi\)
\(74\) 6.25454 6.39463i 0.727076 0.743360i
\(75\) 0 0
\(76\) −0.272139 12.2852i −0.0312165 1.40920i
\(77\) 0 0
\(78\) 0 0
\(79\) 8.40771i 0.945941i 0.881078 + 0.472971i \(0.156818\pi\)
−0.881078 + 0.472971i \(0.843182\pi\)
\(80\) −0.199953 4.51102i −0.0223555 0.504348i
\(81\) 0 0
\(82\) −0.150867 0.147562i −0.0166604 0.0162955i
\(83\) −9.12928 −1.00207 −0.501035 0.865427i \(-0.667047\pi\)
−0.501035 + 0.865427i \(0.667047\pi\)
\(84\) 0 0
\(85\) −4.48551 −0.486522
\(86\) −10.7731 10.5371i −1.16169 1.13624i
\(87\) 0 0
\(88\) 2.60883 2.78820i 0.278102 0.297223i
\(89\) 7.92746i 0.840309i −0.907453 0.420155i \(-0.861976\pi\)
0.907453 0.420155i \(-0.138024\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 13.2246 0.292951i 1.37876 0.0305422i
\(93\) 0 0
\(94\) 3.55489 3.63451i 0.366659 0.374871i
\(95\) 6.93583i 0.711601i
\(96\) 0 0
\(97\) 6.23063i 0.632624i 0.948655 + 0.316312i \(0.102445\pi\)
−0.948655 + 0.316312i \(0.897555\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.165021 7.44951i −0.0165021 0.744951i
\(101\) 0.794961i 0.0791016i 0.999218 + 0.0395508i \(0.0125927\pi\)
−0.999218 + 0.0395508i \(0.987407\pi\)
\(102\) 0 0
\(103\) 3.35476 0.330554 0.165277 0.986247i \(-0.447148\pi\)
0.165277 + 0.986247i \(0.447148\pi\)
\(104\) 10.7926 11.5346i 1.05830 1.13106i
\(105\) 0 0
\(106\) −0.725418 + 0.741666i −0.0704589 + 0.0720369i
\(107\) 12.5510i 1.21335i 0.794950 + 0.606675i \(0.207497\pi\)
−0.794950 + 0.606675i \(0.792503\pi\)
\(108\) 0 0
\(109\) −15.2532 −1.46099 −0.730496 0.682917i \(-0.760711\pi\)
−0.730496 + 0.682917i \(0.760711\pi\)
\(110\) −1.50700 + 1.54075i −0.143687 + 0.146905i
\(111\) 0 0
\(112\) 0 0
\(113\) 11.7783 1.10801 0.554004 0.832514i \(-0.313099\pi\)
0.554004 + 0.832514i \(0.313099\pi\)
\(114\) 0 0
\(115\) −7.46623 −0.696230
\(116\) 0.378824 + 17.1012i 0.0351729 + 1.58781i
\(117\) 0 0
\(118\) 14.2450 14.5640i 1.31136 1.34073i
\(119\) 0 0
\(120\) 0 0
\(121\) 9.17749 0.834317
\(122\) 9.21526 + 9.01338i 0.834310 + 0.816033i
\(123\) 0 0
\(124\) 0.129433 + 5.84299i 0.0116234 + 0.524716i
\(125\) 9.85008i 0.881018i
\(126\) 0 0
\(127\) 3.52444i 0.312743i −0.987698 0.156372i \(-0.950020\pi\)
0.987698 0.156372i \(-0.0499798\pi\)
\(128\) 8.59551 + 7.35644i 0.759743 + 0.650224i
\(129\) 0 0
\(130\) −6.23437 + 6.37400i −0.546791 + 0.559037i
\(131\) 2.37199 0.207242 0.103621 0.994617i \(-0.466957\pi\)
0.103621 + 0.994617i \(0.466957\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.236671 + 0.231486i 0.0204452 + 0.0199973i
\(135\) 0 0
\(136\) 7.67860 8.20653i 0.658434 0.703704i
\(137\) 7.17561 0.613054 0.306527 0.951862i \(-0.400833\pi\)
0.306527 + 0.951862i \(0.400833\pi\)
\(138\) 0 0
\(139\) −22.5888 −1.91595 −0.957977 0.286845i \(-0.907394\pi\)
−0.957977 + 0.286845i \(0.907394\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −8.83730 8.64371i −0.741610 0.725364i
\(143\) −7.53962 −0.630495
\(144\) 0 0
\(145\) 9.65482i 0.801789i
\(146\) 1.78490 + 1.74580i 0.147719 + 0.144483i
\(147\) 0 0
\(148\) −0.280151 12.6468i −0.0230283 1.03956i
\(149\) 11.0506 0.905304 0.452652 0.891687i \(-0.350478\pi\)
0.452652 + 0.891687i \(0.350478\pi\)
\(150\) 0 0
\(151\) 1.53950i 0.125283i −0.998036 0.0626413i \(-0.980048\pi\)
0.998036 0.0626413i \(-0.0199524\pi\)
\(152\) −12.6896 11.8732i −1.02926 0.963045i
\(153\) 0 0
\(154\) 0 0
\(155\) 3.29878i 0.264964i
\(156\) 0 0
\(157\) 8.55948i 0.683121i 0.939860 + 0.341560i \(0.110955\pi\)
−0.939860 + 0.341560i \(0.889045\pi\)
\(158\) 8.50030 + 8.31409i 0.676248 + 0.661433i
\(159\) 0 0
\(160\) −4.75843 4.25863i −0.376187 0.336675i
\(161\) 0 0
\(162\) 0 0
\(163\) 5.65996i 0.443323i −0.975124 0.221661i \(-0.928852\pi\)
0.975124 0.221661i \(-0.0711479\pi\)
\(164\) −0.298374 + 0.00660954i −0.0232991 + 0.000516118i
\(165\) 0 0
\(166\) −9.02763 + 9.22982i −0.700680 + 0.716373i
\(167\) −4.84357 −0.374807 −0.187403 0.982283i \(-0.560007\pi\)
−0.187403 + 0.982283i \(0.560007\pi\)
\(168\) 0 0
\(169\) −18.1910 −1.39931
\(170\) −4.43556 + 4.53490i −0.340192 + 0.347811i
\(171\) 0 0
\(172\) −21.3062 + 0.471973i −1.62458 + 0.0359876i
\(173\) 2.10368i 0.159940i −0.996797 0.0799701i \(-0.974518\pi\)
0.996797 0.0799701i \(-0.0254825\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.239124 5.39472i −0.0180246 0.406642i
\(177\) 0 0
\(178\) −8.01476 7.83919i −0.600732 0.587572i
\(179\) 4.00769i 0.299549i −0.988720 0.149774i \(-0.952145\pi\)
0.988720 0.149774i \(-0.0478547\pi\)
\(180\) 0 0
\(181\) 5.89663i 0.438293i 0.975692 + 0.219146i \(0.0703272\pi\)
−0.975692 + 0.219146i \(0.929673\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 12.7812 13.6600i 0.942243 1.00703i
\(185\) 7.14002i 0.524945i
\(186\) 0 0
\(187\) −5.36420 −0.392269
\(188\) −0.159229 7.18808i −0.0116130 0.524244i
\(189\) 0 0
\(190\) 7.01221 + 6.85859i 0.508719 + 0.497575i
\(191\) 25.3919i 1.83729i −0.395084 0.918645i \(-0.629284\pi\)
0.395084 0.918645i \(-0.370716\pi\)
\(192\) 0 0
\(193\) 0.0733869 0.00528250 0.00264125 0.999997i \(-0.499159\pi\)
0.00264125 + 0.999997i \(0.499159\pi\)
\(194\) 6.29924 + 6.16125i 0.452259 + 0.442352i
\(195\) 0 0
\(196\) 0 0
\(197\) −7.23506 −0.515477 −0.257739 0.966215i \(-0.582977\pi\)
−0.257739 + 0.966215i \(0.582977\pi\)
\(198\) 0 0
\(199\) 15.3120 1.08544 0.542718 0.839915i \(-0.317395\pi\)
0.542718 + 0.839915i \(0.317395\pi\)
\(200\) −7.69473 7.19972i −0.544100 0.509097i
\(201\) 0 0
\(202\) 0.803715 + 0.786109i 0.0565492 + 0.0553104i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.168453 0.0117653
\(206\) 3.31740 3.39170i 0.231134 0.236311i
\(207\) 0 0
\(208\) −0.989242 22.3177i −0.0685916 1.54745i
\(209\) 8.29453i 0.573745i
\(210\) 0 0
\(211\) 13.7540i 0.946861i −0.880831 0.473431i \(-0.843015\pi\)
0.880831 0.473431i \(-0.156985\pi\)
\(212\) 0.0324927 + 1.46681i 0.00223161 + 0.100741i
\(213\) 0 0
\(214\) 12.6892 + 12.4112i 0.867417 + 0.848415i
\(215\) 12.0288 0.820360
\(216\) 0 0
\(217\) 0 0
\(218\) −15.0833 + 15.4212i −1.02157 + 1.04445i
\(219\) 0 0
\(220\) 0.0675010 + 3.04719i 0.00455092 + 0.205441i
\(221\) −22.1914 −1.49276
\(222\) 0 0
\(223\) −16.4120 −1.09903 −0.549516 0.835483i \(-0.685188\pi\)
−0.549516 + 0.835483i \(0.685188\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 11.6471 11.9080i 0.774756 0.792108i
\(227\) −16.1319 −1.07071 −0.535356 0.844627i \(-0.679822\pi\)
−0.535356 + 0.844627i \(0.679822\pi\)
\(228\) 0 0
\(229\) 21.6682i 1.43187i −0.698165 0.715937i \(-0.746000\pi\)
0.698165 0.715937i \(-0.254000\pi\)
\(230\) −7.38310 + 7.54846i −0.486827 + 0.497731i
\(231\) 0 0
\(232\) 17.6641 + 16.5278i 1.15971 + 1.08510i
\(233\) 19.0312 1.24678 0.623389 0.781912i \(-0.285755\pi\)
0.623389 + 0.781912i \(0.285755\pi\)
\(234\) 0 0
\(235\) 4.05817i 0.264726i
\(236\) −0.638057 28.8037i −0.0415340 1.87496i
\(237\) 0 0
\(238\) 0 0
\(239\) 15.6878i 1.01476i −0.861722 0.507381i \(-0.830614\pi\)
0.861722 0.507381i \(-0.169386\pi\)
\(240\) 0 0
\(241\) 11.9011i 0.766615i 0.923621 + 0.383307i \(0.125215\pi\)
−0.923621 + 0.383307i \(0.874785\pi\)
\(242\) 9.07530 9.27856i 0.583382 0.596448i
\(243\) 0 0
\(244\) 18.2253 0.403725i 1.16675 0.0258458i
\(245\) 0 0
\(246\) 0 0
\(247\) 34.3140i 2.18335i
\(248\) 6.03533 + 5.64707i 0.383244 + 0.358589i
\(249\) 0 0
\(250\) 9.95856 + 9.74040i 0.629834 + 0.616037i
\(251\) 1.68715 0.106492 0.0532459 0.998581i \(-0.483043\pi\)
0.0532459 + 0.998581i \(0.483043\pi\)
\(252\) 0 0
\(253\) −8.92885 −0.561352
\(254\) −3.56325 3.48519i −0.223578 0.218681i
\(255\) 0 0
\(256\) 15.9373 1.41564i 0.996078 0.0884772i
\(257\) 21.3171i 1.32972i 0.746966 + 0.664862i \(0.231510\pi\)
−0.746966 + 0.664862i \(0.768490\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.279248 + 12.6061i 0.0173182 + 0.781794i
\(261\) 0 0
\(262\) 2.34558 2.39811i 0.144910 0.148156i
\(263\) 11.5846i 0.714337i −0.934040 0.357169i \(-0.883742\pi\)
0.934040 0.357169i \(-0.116258\pi\)
\(264\) 0 0
\(265\) 0.828119i 0.0508709i
\(266\) 0 0
\(267\) 0 0
\(268\) 0.468070 0.0103686i 0.0285919 0.000633366i
\(269\) 7.25350i 0.442254i −0.975245 0.221127i \(-0.929027\pi\)
0.975245 0.221127i \(-0.0709735\pi\)
\(270\) 0 0
\(271\) −29.0144 −1.76250 −0.881249 0.472653i \(-0.843296\pi\)
−0.881249 + 0.472653i \(0.843296\pi\)
\(272\) −0.703814 15.8783i −0.0426750 0.962764i
\(273\) 0 0
\(274\) 7.09571 7.25463i 0.428667 0.438268i
\(275\) 5.02967i 0.303300i
\(276\) 0 0
\(277\) −0.345141 −0.0207375 −0.0103688 0.999946i \(-0.503301\pi\)
−0.0103688 + 0.999946i \(0.503301\pi\)
\(278\) −22.3372 + 22.8375i −1.33970 + 1.36970i
\(279\) 0 0
\(280\) 0 0
\(281\) −6.62734 −0.395354 −0.197677 0.980267i \(-0.563340\pi\)
−0.197677 + 0.980267i \(0.563340\pi\)
\(282\) 0 0
\(283\) −27.7813 −1.65143 −0.825713 0.564090i \(-0.809227\pi\)
−0.825713 + 0.564090i \(0.809227\pi\)
\(284\) −17.4778 + 0.387166i −1.03712 + 0.0229741i
\(285\) 0 0
\(286\) −7.45567 + 7.62265i −0.440863 + 0.450737i
\(287\) 0 0
\(288\) 0 0
\(289\) 1.21150 0.0712647
\(290\) −9.76115 9.54731i −0.573194 0.560638i
\(291\) 0 0
\(292\) 3.53005 0.0781973i 0.206581 0.00457615i
\(293\) 7.28491i 0.425589i 0.977097 + 0.212794i \(0.0682565\pi\)
−0.977097 + 0.212794i \(0.931744\pi\)
\(294\) 0 0
\(295\) 16.2617i 0.946794i
\(296\) −13.0631 12.2228i −0.759280 0.710435i
\(297\) 0 0
\(298\) 10.9276 11.1723i 0.633018 0.647196i
\(299\) −36.9382 −2.13619
\(300\) 0 0
\(301\) 0 0
\(302\) −1.55645 1.52236i −0.0895638 0.0876018i
\(303\) 0 0
\(304\) −24.5522 + 1.08829i −1.40817 + 0.0624177i
\(305\) −10.2894 −0.589172
\(306\) 0 0
\(307\) 27.1911 1.55188 0.775939 0.630808i \(-0.217276\pi\)
0.775939 + 0.630808i \(0.217276\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3.33510 3.26204i −0.189421 0.185272i
\(311\) −20.9218 −1.18636 −0.593182 0.805068i \(-0.702129\pi\)
−0.593182 + 0.805068i \(0.702129\pi\)
\(312\) 0 0
\(313\) 2.61741i 0.147945i 0.997260 + 0.0739724i \(0.0235677\pi\)
−0.997260 + 0.0739724i \(0.976432\pi\)
\(314\) 8.65374 + 8.46417i 0.488359 + 0.477661i
\(315\) 0 0
\(316\) 16.8113 0.372402i 0.945709 0.0209492i
\(317\) 12.9486 0.727266 0.363633 0.931542i \(-0.381536\pi\)
0.363633 + 0.931542i \(0.381536\pi\)
\(318\) 0 0
\(319\) 11.5462i 0.646461i
\(320\) −9.01097 + 0.599615i −0.503729 + 0.0335195i
\(321\) 0 0
\(322\) 0 0
\(323\) 24.4134i 1.35840i
\(324\) 0 0
\(325\) 20.8075i 1.15419i
\(326\) −5.72229 5.59694i −0.316929 0.309986i
\(327\) 0 0
\(328\) −0.288369 + 0.308195i −0.0159225 + 0.0170172i
\(329\) 0 0
\(330\) 0 0
\(331\) 5.23999i 0.288016i −0.989577 0.144008i \(-0.954001\pi\)
0.989577 0.144008i \(-0.0459991\pi\)
\(332\) 0.404363 + 18.2541i 0.0221923 + 1.00182i
\(333\) 0 0
\(334\) −4.78963 + 4.89691i −0.262077 + 0.267947i
\(335\) −0.264258 −0.0144380
\(336\) 0 0
\(337\) 21.6837 1.18119 0.590594 0.806969i \(-0.298894\pi\)
0.590594 + 0.806969i \(0.298894\pi\)
\(338\) −17.9884 + 18.3913i −0.978443 + 1.00036i
\(339\) 0 0
\(340\) 0.198676 + 8.96881i 0.0107747 + 0.486402i
\(341\) 3.94500i 0.213633i
\(342\) 0 0
\(343\) 0 0
\(344\) −20.5918 + 22.0076i −1.11024 + 1.18657i
\(345\) 0 0
\(346\) −2.12685 2.08026i −0.114340 0.111835i
\(347\) 0.655611i 0.0351951i −0.999845 0.0175975i \(-0.994398\pi\)
0.999845 0.0175975i \(-0.00560176\pi\)
\(348\) 0 0
\(349\) 19.4157i 1.03930i 0.854380 + 0.519649i \(0.173937\pi\)
−0.854380 + 0.519649i \(0.826063\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −5.69059 5.09289i −0.303309 0.271452i
\(353\) 29.8844i 1.59058i −0.606226 0.795292i \(-0.707317\pi\)
0.606226 0.795292i \(-0.292683\pi\)
\(354\) 0 0
\(355\) 9.86743 0.523709
\(356\) −15.8510 + 0.351130i −0.840103 + 0.0186099i
\(357\) 0 0
\(358\) −4.05182 3.96306i −0.214145 0.209454i
\(359\) 12.5933i 0.664650i −0.943165 0.332325i \(-0.892167\pi\)
0.943165 0.332325i \(-0.107833\pi\)
\(360\) 0 0
\(361\) 18.7498 0.986830
\(362\) 5.96156 + 5.83097i 0.313333 + 0.306469i
\(363\) 0 0
\(364\) 0 0
\(365\) −1.99296 −0.104316
\(366\) 0 0
\(367\) 5.46893 0.285476 0.142738 0.989761i \(-0.454409\pi\)
0.142738 + 0.989761i \(0.454409\pi\)
\(368\) −1.17152 26.4298i −0.0610695 1.37775i
\(369\) 0 0
\(370\) 7.21866 + 7.06052i 0.375280 + 0.367059i
\(371\) 0 0
\(372\) 0 0
\(373\) −14.8481 −0.768805 −0.384402 0.923166i \(-0.625592\pi\)
−0.384402 + 0.923166i \(0.625592\pi\)
\(374\) −5.30447 + 5.42328i −0.274288 + 0.280431i
\(375\) 0 0
\(376\) −7.42469 6.94705i −0.382899 0.358267i
\(377\) 47.7659i 2.46007i
\(378\) 0 0
\(379\) 30.6135i 1.57251i 0.617901 + 0.786256i \(0.287983\pi\)
−0.617901 + 0.786256i \(0.712017\pi\)
\(380\) 13.8683 0.307208i 0.711426 0.0157594i
\(381\) 0 0
\(382\) −25.6715 25.1091i −1.31347 1.28469i
\(383\) 23.4784 1.19969 0.599844 0.800117i \(-0.295229\pi\)
0.599844 + 0.800117i \(0.295229\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0.0725697 0.0741951i 0.00369370 0.00377643i
\(387\) 0 0
\(388\) 12.4582 0.275973i 0.632469 0.0140104i
\(389\) 36.1774 1.83427 0.917134 0.398579i \(-0.130497\pi\)
0.917134 + 0.398579i \(0.130497\pi\)
\(390\) 0 0
\(391\) −26.2803 −1.32905
\(392\) 0 0
\(393\) 0 0
\(394\) −7.15450 + 7.31474i −0.360439 + 0.368511i
\(395\) −9.49115 −0.477552
\(396\) 0 0
\(397\) 1.33174i 0.0668379i 0.999441 + 0.0334189i \(0.0106396\pi\)
−0.999441 + 0.0334189i \(0.989360\pi\)
\(398\) 15.1415 15.4806i 0.758973 0.775971i
\(399\) 0 0
\(400\) −14.8881 + 0.659921i −0.744403 + 0.0329961i
\(401\) −26.0596 −1.30135 −0.650677 0.759355i \(-0.725515\pi\)
−0.650677 + 0.759355i \(0.725515\pi\)
\(402\) 0 0
\(403\) 16.3202i 0.812969i
\(404\) 1.58953 0.0352111i 0.0790822 0.00175182i
\(405\) 0 0
\(406\) 0 0
\(407\) 8.53873i 0.423249i
\(408\) 0 0
\(409\) 13.3209i 0.658675i −0.944212 0.329337i \(-0.893175\pi\)
0.944212 0.329337i \(-0.106825\pi\)
\(410\) 0.166577 0.170308i 0.00822665 0.00841091i
\(411\) 0 0
\(412\) −0.148592 6.70787i −0.00732060 0.330473i
\(413\) 0 0
\(414\) 0 0
\(415\) 10.3057i 0.505887i
\(416\) −23.5417 21.0690i −1.15422 1.03299i
\(417\) 0 0
\(418\) 8.38588 + 8.20217i 0.410167 + 0.401181i
\(419\) 7.54663 0.368677 0.184339 0.982863i \(-0.440986\pi\)
0.184339 + 0.982863i \(0.440986\pi\)
\(420\) 0 0
\(421\) 2.67060 0.130157 0.0650785 0.997880i \(-0.479270\pi\)
0.0650785 + 0.997880i \(0.479270\pi\)
\(422\) −13.9054 13.6008i −0.676905 0.662076i
\(423\) 0 0
\(424\) 1.51510 + 1.41763i 0.0735797 + 0.0688462i
\(425\) 14.8039i 0.718092i
\(426\) 0 0
\(427\) 0 0
\(428\) 25.0958 0.555920i 1.21305 0.0268714i
\(429\) 0 0
\(430\) 11.8949 12.1613i 0.573623 0.586471i
\(431\) 11.8862i 0.572539i −0.958149 0.286269i \(-0.907585\pi\)
0.958149 0.286269i \(-0.0924152\pi\)
\(432\) 0 0
\(433\) 20.6667i 0.993177i −0.867986 0.496589i \(-0.834586\pi\)
0.867986 0.496589i \(-0.165414\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.675609 + 30.4989i 0.0323558 + 1.46063i
\(437\) 40.6366i 1.94391i
\(438\) 0 0
\(439\) 5.42064 0.258713 0.129356 0.991598i \(-0.458709\pi\)
0.129356 + 0.991598i \(0.458709\pi\)
\(440\) 3.14750 + 2.94501i 0.150051 + 0.140398i
\(441\) 0 0
\(442\) −21.9443 + 22.4358i −1.04378 + 1.06716i
\(443\) 22.7038i 1.07869i 0.842085 + 0.539344i \(0.181328\pi\)
−0.842085 + 0.539344i \(0.818672\pi\)
\(444\) 0 0
\(445\) 8.94902 0.424224
\(446\) −16.2293 + 16.5928i −0.768479 + 0.785691i
\(447\) 0 0
\(448\) 0 0
\(449\) 15.6516 0.738645 0.369322 0.929301i \(-0.379590\pi\)
0.369322 + 0.929301i \(0.379590\pi\)
\(450\) 0 0
\(451\) 0.201452 0.00948601
\(452\) −0.521695 23.5508i −0.0245385 1.10774i
\(453\) 0 0
\(454\) −15.9523 + 16.3095i −0.748677 + 0.765445i
\(455\) 0 0
\(456\) 0 0
\(457\) −17.0266 −0.796469 −0.398235 0.917284i \(-0.630377\pi\)
−0.398235 + 0.917284i \(0.630377\pi\)
\(458\) −21.9068 21.4269i −1.02364 1.00121i
\(459\) 0 0
\(460\) 0.330701 + 14.9288i 0.0154190 + 0.696059i
\(461\) 38.1090i 1.77491i 0.460891 + 0.887457i \(0.347530\pi\)
−0.460891 + 0.887457i \(0.652470\pi\)
\(462\) 0 0
\(463\) 1.38958i 0.0645794i −0.999479 0.0322897i \(-0.989720\pi\)
0.999479 0.0322897i \(-0.0102799\pi\)
\(464\) 34.1772 1.51492i 1.58664 0.0703286i
\(465\) 0 0
\(466\) 18.8193 19.2408i 0.871788 0.891313i
\(467\) 3.49381 0.161674 0.0808372 0.996727i \(-0.474241\pi\)
0.0808372 + 0.996727i \(0.474241\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4.10286 + 4.01298i 0.189251 + 0.185105i
\(471\) 0 0
\(472\) −29.7519 27.8379i −1.36944 1.28134i
\(473\) 14.3853 0.661435
\(474\) 0 0
\(475\) 22.8908 1.05030
\(476\) 0 0
\(477\) 0 0
\(478\) −15.8606 15.5132i −0.725447 0.709555i
\(479\) −13.7216 −0.626955 −0.313478 0.949596i \(-0.601494\pi\)
−0.313478 + 0.949596i \(0.601494\pi\)
\(480\) 0 0
\(481\) 35.3243i 1.61065i
\(482\) 12.0321 + 11.7685i 0.548048 + 0.536042i
\(483\) 0 0
\(484\) −0.406498 18.3505i −0.0184772 0.834113i
\(485\) −7.03352 −0.319376
\(486\) 0 0
\(487\) 3.76034i 0.170397i 0.996364 + 0.0851987i \(0.0271525\pi\)
−0.996364 + 0.0851987i \(0.972847\pi\)
\(488\) 17.6142 18.8252i 0.797356 0.852178i
\(489\) 0 0
\(490\) 0 0
\(491\) 8.60497i 0.388337i 0.980968 + 0.194168i \(0.0622008\pi\)
−0.980968 + 0.194168i \(0.937799\pi\)
\(492\) 0 0
\(493\) 33.9839i 1.53056i
\(494\) 34.6919 + 33.9319i 1.56086 + 1.52667i
\(495\) 0 0
\(496\) 11.6774 0.517606i 0.524330 0.0232412i
\(497\) 0 0
\(498\) 0 0
\(499\) 18.5825i 0.831865i −0.909395 0.415933i \(-0.863455\pi\)
0.909395 0.415933i \(-0.136545\pi\)
\(500\) 19.6953 0.436289i 0.880802 0.0195114i
\(501\) 0 0
\(502\) 1.66836 1.70573i 0.0744625 0.0761303i
\(503\) 33.4544 1.49166 0.745828 0.666139i \(-0.232054\pi\)
0.745828 + 0.666139i \(0.232054\pi\)
\(504\) 0 0
\(505\) −0.897402 −0.0399338
\(506\) −8.82942 + 9.02718i −0.392516 + 0.401307i
\(507\) 0 0
\(508\) −7.04715 + 0.156108i −0.312667 + 0.00692616i
\(509\) 23.9925i 1.06345i −0.846917 0.531725i \(-0.821544\pi\)
0.846917 0.531725i \(-0.178456\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 14.3286 17.5126i 0.633239 0.773956i
\(513\) 0 0
\(514\) 21.5519 + 21.0797i 0.950612 + 0.929787i
\(515\) 3.78706i 0.166878i
\(516\) 0 0
\(517\) 4.85315i 0.213441i
\(518\) 0 0
\(519\) 0 0
\(520\) 13.0210 + 12.1834i 0.571010 + 0.534276i
\(521\) 14.0811i 0.616904i −0.951240 0.308452i \(-0.900189\pi\)
0.951240 0.308452i \(-0.0998109\pi\)
\(522\) 0 0
\(523\) 35.1452 1.53679 0.768396 0.639975i \(-0.221055\pi\)
0.768396 + 0.639975i \(0.221055\pi\)
\(524\) −0.105062 4.74282i −0.00458967 0.207191i
\(525\) 0 0
\(526\) −11.7122 11.4556i −0.510675 0.499488i
\(527\) 11.6113i 0.505798i
\(528\) 0 0
\(529\) −20.7443 −0.901924
\(530\) −0.837239 0.818898i −0.0363673 0.0355706i
\(531\) 0 0
\(532\) 0 0
\(533\) 0.833397 0.0360984
\(534\) 0 0
\(535\) −14.1684 −0.612551
\(536\) 0.452375 0.483478i 0.0195396 0.0208831i
\(537\) 0 0
\(538\) −7.33338 7.17273i −0.316164 0.309238i
\(539\) 0 0
\(540\) 0 0
\(541\) 12.7152 0.546669 0.273334 0.961919i \(-0.411873\pi\)
0.273334 + 0.961919i \(0.411873\pi\)
\(542\) −28.6913 + 29.3339i −1.23240 + 1.26000i
\(543\) 0 0
\(544\) −16.7491 14.9899i −0.718114 0.642688i
\(545\) 17.2188i 0.737571i
\(546\) 0 0
\(547\) 42.0999i 1.80006i −0.435828 0.900030i \(-0.643544\pi\)
0.435828 0.900030i \(-0.356456\pi\)
\(548\) −0.317829 14.3477i −0.0135770 0.612903i
\(549\) 0 0
\(550\) 5.08506 + 4.97366i 0.216827 + 0.212078i
\(551\) −52.5485 −2.23864
\(552\) 0 0
\(553\) 0 0
\(554\) −0.341298 + 0.348942i −0.0145003 + 0.0148251i
\(555\) 0 0
\(556\) 1.00052 + 45.1665i 0.0424316 + 1.91548i
\(557\) −15.8853 −0.673080 −0.336540 0.941669i \(-0.609257\pi\)
−0.336540 + 0.941669i \(0.609257\pi\)
\(558\) 0 0
\(559\) 59.5110 2.51705
\(560\) 0 0
\(561\) 0 0
\(562\) −6.55354 + 6.70032i −0.276444 + 0.282636i
\(563\) 32.9188 1.38736 0.693681 0.720283i \(-0.255988\pi\)
0.693681 + 0.720283i \(0.255988\pi\)
\(564\) 0 0
\(565\) 13.2961i 0.559370i
\(566\) −27.4719 + 28.0872i −1.15473 + 1.18059i
\(567\) 0 0
\(568\) −16.8917 + 18.0531i −0.708762 + 0.757492i
\(569\) −34.9841 −1.46661 −0.733304 0.679901i \(-0.762023\pi\)
−0.733304 + 0.679901i \(0.762023\pi\)
\(570\) 0 0
\(571\) 6.50173i 0.272089i 0.990703 + 0.136044i \(0.0434390\pi\)
−0.990703 + 0.136044i \(0.956561\pi\)
\(572\) 0.333952 + 15.0755i 0.0139632 + 0.630340i
\(573\) 0 0
\(574\) 0 0
\(575\) 24.6414i 1.02762i
\(576\) 0 0
\(577\) 37.2134i 1.54921i −0.632444 0.774606i \(-0.717948\pi\)
0.632444 0.774606i \(-0.282052\pi\)
\(578\) 1.19801 1.22484i 0.0498306 0.0509467i
\(579\) 0 0
\(580\) −19.3049 + 0.427640i −0.801593 + 0.0177568i
\(581\) 0 0
\(582\) 0 0
\(583\) 0.990345i 0.0410159i
\(584\) 3.41168 3.64625i 0.141176 0.150883i
\(585\) 0 0
\(586\) 7.36513 + 7.20379i 0.304251 + 0.297586i
\(587\) −24.7914 −1.02325 −0.511625 0.859209i \(-0.670956\pi\)
−0.511625 + 0.859209i \(0.670956\pi\)
\(588\) 0 0
\(589\) −17.9543 −0.739794
\(590\) 16.4408 + 16.0806i 0.676857 + 0.662029i
\(591\) 0 0
\(592\) −25.2751 + 1.12033i −1.03880 + 0.0460453i
\(593\) 31.0027i 1.27313i −0.771223 0.636565i \(-0.780355\pi\)
0.771223 0.636565i \(-0.219645\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.489465 22.0959i −0.0200493 0.905082i
\(597\) 0 0
\(598\) −36.5268 + 37.3449i −1.49369 + 1.52715i
\(599\) 8.22986i 0.336263i −0.985765 0.168131i \(-0.946227\pi\)
0.985765 0.168131i \(-0.0537733\pi\)
\(600\) 0 0
\(601\) 47.6805i 1.94493i −0.233053 0.972464i \(-0.574872\pi\)
0.233053 0.972464i \(-0.425128\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −3.07824 + 0.0681889i −0.125252 + 0.00277457i
\(605\) 10.3601i 0.421199i
\(606\) 0 0
\(607\) −12.6543 −0.513621 −0.256810 0.966462i \(-0.582672\pi\)
−0.256810 + 0.966462i \(0.582672\pi\)
\(608\) −23.1786 + 25.8988i −0.940015 + 1.05033i
\(609\) 0 0
\(610\) −10.1749 + 10.4028i −0.411969 + 0.421196i
\(611\) 20.0772i 0.812238i
\(612\) 0 0
\(613\) 0.452915 0.0182930 0.00914652 0.999958i \(-0.497089\pi\)
0.00914652 + 0.999958i \(0.497089\pi\)
\(614\) 26.8883 27.4905i 1.08512 1.10943i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.575345 0.0231625 0.0115813 0.999933i \(-0.496313\pi\)
0.0115813 + 0.999933i \(0.496313\pi\)
\(618\) 0 0
\(619\) 2.04323 0.0821243 0.0410622 0.999157i \(-0.486926\pi\)
0.0410622 + 0.999157i \(0.486926\pi\)
\(620\) −6.59593 + 0.146112i −0.264899 + 0.00586801i
\(621\) 0 0
\(622\) −20.6888 + 21.1522i −0.829545 + 0.848125i
\(623\) 0 0
\(624\) 0 0
\(625\) 7.50896 0.300358
\(626\) 2.64624 + 2.58827i 0.105765 + 0.103448i
\(627\) 0 0
\(628\) 17.1148 0.379124i 0.682953 0.0151287i
\(629\) 25.1321i 1.00208i
\(630\) 0 0
\(631\) 38.8983i 1.54852i 0.632870 + 0.774258i \(0.281877\pi\)
−0.632870 + 0.774258i \(0.718123\pi\)
\(632\) 16.2476 17.3647i 0.646295 0.690730i
\(633\) 0 0
\(634\) 12.8044 13.0912i 0.508529 0.519918i
\(635\) 3.97861 0.157886
\(636\) 0 0
\(637\) 0 0
\(638\) −11.6733 11.4176i −0.462151 0.452027i
\(639\) 0 0
\(640\) −8.30442 + 9.70315i −0.328261 + 0.383551i
\(641\) 2.06073 0.0813938 0.0406969 0.999172i \(-0.487042\pi\)
0.0406969 + 0.999172i \(0.487042\pi\)
\(642\) 0 0
\(643\) −2.86029 −0.112799 −0.0563994 0.998408i \(-0.517962\pi\)
−0.0563994 + 0.998408i \(0.517962\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 24.6822 + 24.1415i 0.971109 + 0.949835i
\(647\) 19.4084 0.763021 0.381511 0.924364i \(-0.375404\pi\)
0.381511 + 0.924364i \(0.375404\pi\)
\(648\) 0 0
\(649\) 19.4473i 0.763375i
\(650\) 21.0366 + 20.5758i 0.825123 + 0.807048i
\(651\) 0 0
\(652\) −11.3171 + 0.250696i −0.443214 + 0.00981802i
\(653\) 0.729729 0.0285565 0.0142783 0.999898i \(-0.495455\pi\)
0.0142783 + 0.999898i \(0.495455\pi\)
\(654\) 0 0
\(655\) 2.67765i 0.104625i
\(656\) 0.0264317 + 0.596308i 0.00103198 + 0.0232819i
\(657\) 0 0
\(658\) 0 0
\(659\) 19.6921i 0.767097i 0.923521 + 0.383548i \(0.125298\pi\)
−0.923521 + 0.383548i \(0.874702\pi\)
\(660\) 0 0
\(661\) 9.40545i 0.365830i 0.983129 + 0.182915i \(0.0585533\pi\)
−0.983129 + 0.182915i \(0.941447\pi\)
\(662\) −5.29769 5.18164i −0.205901 0.201390i
\(663\) 0 0
\(664\) 18.8550 + 17.6420i 0.731715 + 0.684643i
\(665\) 0 0
\(666\) 0 0
\(667\) 56.5671i 2.19029i
\(668\) 0.214536 + 9.68476i 0.00830064 + 0.374715i
\(669\) 0 0
\(670\) −0.261316 + 0.267169i −0.0100955 + 0.0103216i
\(671\) −12.3051 −0.475034
\(672\) 0 0
\(673\) 30.0031 1.15653 0.578266 0.815848i \(-0.303729\pi\)
0.578266 + 0.815848i \(0.303729\pi\)
\(674\) 21.4423 21.9225i 0.825925 0.844424i
\(675\) 0 0
\(676\) 0.805733 + 36.3731i 0.0309897 + 1.39897i
\(677\) 30.8100i 1.18413i 0.805892 + 0.592063i \(0.201686\pi\)
−0.805892 + 0.592063i \(0.798314\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 9.26405 + 8.66808i 0.355260 + 0.332406i
\(681\) 0 0
\(682\) −3.98844 3.90107i −0.152725 0.149380i
\(683\) 41.6279i 1.59285i −0.604739 0.796424i \(-0.706722\pi\)
0.604739 0.796424i \(-0.293278\pi\)
\(684\) 0 0
\(685\) 8.10028i 0.309496i
\(686\) 0 0
\(687\) 0 0
\(688\) 1.88743 + 42.5811i 0.0719575 + 1.62339i
\(689\) 4.09700i 0.156083i
\(690\) 0 0
\(691\) −8.78828 −0.334322 −0.167161 0.985930i \(-0.553460\pi\)
−0.167161 + 0.985930i \(0.553460\pi\)
\(692\) −4.20634 + 0.0931783i −0.159901 + 0.00354211i
\(693\) 0 0
\(694\) −0.662831 0.648311i −0.0251607 0.0246095i
\(695\) 25.4996i 0.967256i
\(696\) 0 0
\(697\) 0.592936 0.0224590
\(698\) 19.6295 + 19.1995i 0.742987 + 0.726711i
\(699\) 0 0
\(700\) 0 0
\(701\) 0.0621184 0.00234618 0.00117309 0.999999i \(-0.499627\pi\)
0.00117309 + 0.999999i \(0.499627\pi\)
\(702\) 0 0
\(703\) 38.8612 1.46568
\(704\) −10.7762 + 0.717078i −0.406143 + 0.0270259i
\(705\) 0 0
\(706\) −30.2135 29.5516i −1.13710 1.11219i
\(707\) 0 0
\(708\) 0 0
\(709\) 33.2035 1.24698 0.623492 0.781830i \(-0.285713\pi\)
0.623492 + 0.781830i \(0.285713\pi\)
\(710\) 9.75756 9.97610i 0.366195 0.374396i
\(711\) 0 0
\(712\) −15.3195 + 16.3728i −0.574124 + 0.613597i
\(713\) 19.3273i 0.723815i
\(714\) 0 0
\(715\) 8.51120i 0.318301i
\(716\) −8.01341 + 0.177512i −0.299475 + 0.00663394i
\(717\) 0 0
\(718\) −12.7320 12.4531i −0.475154 0.464745i
\(719\) 31.9070 1.18993 0.594966 0.803751i \(-0.297166\pi\)
0.594966 + 0.803751i \(0.297166\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 18.5410 18.9562i 0.690024 0.705478i
\(723\) 0 0
\(724\) 11.7904 0.261179i 0.438185 0.00970663i
\(725\) −31.8645 −1.18342
\(726\) 0 0
\(727\) −11.8242 −0.438535 −0.219268 0.975665i \(-0.570367\pi\)
−0.219268 + 0.975665i \(0.570367\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −1.97077 + 2.01491i −0.0729414 + 0.0745751i
\(731\) 42.3402 1.56601
\(732\) 0 0
\(733\) 11.8182i 0.436515i −0.975891 0.218258i \(-0.929963\pi\)
0.975891 0.218258i \(-0.0700373\pi\)
\(734\) 5.40803 5.52915i 0.199614 0.204085i
\(735\) 0 0
\(736\) −27.8794 24.9511i −1.02765 0.919710i
\(737\) −0.316026 −0.0116410
\(738\) 0 0
\(739\) 26.5948i 0.978305i 0.872198 + 0.489153i \(0.162694\pi\)
−0.872198 + 0.489153i \(0.837306\pi\)
\(740\) 14.2765 0.316253i 0.524816 0.0116257i
\(741\) 0 0
\(742\) 0 0
\(743\) 34.9119i 1.28079i −0.768045 0.640396i \(-0.778770\pi\)
0.768045 0.640396i \(-0.221230\pi\)
\(744\) 0 0
\(745\) 12.4747i 0.457036i
\(746\) −14.6828 + 15.0116i −0.537574 + 0.549614i
\(747\) 0 0
\(748\) 0.237596 + 10.7258i 0.00868738 + 0.392173i
\(749\) 0 0
\(750\) 0 0
\(751\) 1.72010i 0.0627672i 0.999507 + 0.0313836i \(0.00999135\pi\)
−0.999507 + 0.0313836i \(0.990009\pi\)
\(752\) −14.3656 + 0.636762i −0.523859 + 0.0232203i
\(753\) 0 0
\(754\) −48.2919 47.2340i −1.75869 1.72016i
\(755\) 1.73788 0.0632480
\(756\) 0 0
\(757\) 33.2057 1.20688 0.603440 0.797408i \(-0.293796\pi\)
0.603440 + 0.797408i \(0.293796\pi\)
\(758\) 30.9507 + 30.2727i 1.12418 + 1.09955i
\(759\) 0 0
\(760\) 13.4032 14.3248i 0.486186 0.519614i
\(761\) 27.1774i 0.985180i −0.870262 0.492590i \(-0.836050\pi\)
0.870262 0.492590i \(-0.163950\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −50.7713 + 1.12468i −1.83684 + 0.0406895i
\(765\) 0 0
\(766\) 23.2169 23.7369i 0.838862 0.857650i
\(767\) 80.4526i 2.90497i
\(768\) 0 0
\(769\) 7.13960i 0.257460i −0.991680 0.128730i \(-0.958910\pi\)
0.991680 0.128730i \(-0.0410901\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.00325052 0.146738i −0.000116989 0.00528121i
\(773\) 26.5575i 0.955207i 0.878575 + 0.477604i \(0.158494\pi\)
−0.878575 + 0.477604i \(0.841506\pi\)
\(774\) 0 0
\(775\) −10.8872 −0.391079
\(776\) 12.0405 12.8683i 0.432227 0.461945i
\(777\) 0 0
\(778\) 35.7746 36.5758i 1.28258 1.31131i
\(779\) 0.916841i 0.0328492i
\(780\) 0 0
\(781\) 11.8004 0.422253
\(782\) −25.9877 + 26.5698i −0.929318 + 0.950132i
\(783\) 0 0
\(784\) 0 0
\(785\) −9.66247 −0.344869
\(786\) 0 0
\(787\) 24.4670 0.872153 0.436077 0.899910i \(-0.356368\pi\)
0.436077 + 0.899910i \(0.356368\pi\)
\(788\) 0.320462 + 14.4666i 0.0114160 + 0.515351i
\(789\) 0 0
\(790\) −9.38546 + 9.59567i −0.333920 + 0.341399i
\(791\) 0 0
\(792\) 0 0
\(793\) −50.9056 −1.80771
\(794\) 1.34640 + 1.31691i 0.0477820 + 0.0467353i
\(795\) 0 0
\(796\) −0.678211 30.6164i −0.0240386 1.08517i
\(797\) 26.0084i 0.921265i −0.887591 0.460632i \(-0.847623\pi\)
0.887591 0.460632i \(-0.152377\pi\)
\(798\) 0 0
\(799\) 14.2843i 0.505343i
\(800\) −14.0551 + 15.7046i −0.496922 + 0.555241i
\(801\) 0 0
\(802\) −25.7694 + 26.3466i −0.909950 + 0.930330i
\(803\) −2.38337 −0.0841075
\(804\) 0 0
\(805\) 0 0
\(806\) −16.5000 16.1385i −0.581186 0.568454i
\(807\) 0 0
\(808\) 1.53623 1.64186i 0.0540445 0.0577603i
\(809\) 13.1975 0.464001 0.232000 0.972716i \(-0.425473\pi\)
0.232000 + 0.972716i \(0.425473\pi\)
\(810\) 0 0
\(811\) 4.87597 0.171219 0.0856093 0.996329i \(-0.472716\pi\)
0.0856093 + 0.996329i \(0.472716\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 8.63277 + 8.44365i 0.302578 + 0.295950i
\(815\) 6.38932 0.223808
\(816\) 0 0
\(817\) 65.4696i 2.29049i
\(818\) −13.4676 13.1725i −0.470883 0.460567i
\(819\) 0 0
\(820\) −0.00746126 0.336823i −0.000260559 0.0117624i
\(821\) −7.06581 −0.246599 −0.123299 0.992370i \(-0.539348\pi\)
−0.123299 + 0.992370i \(0.539348\pi\)
\(822\) 0 0
\(823\) 21.9614i 0.765528i 0.923846 + 0.382764i \(0.125028\pi\)
−0.923846 + 0.382764i \(0.874972\pi\)
\(824\) −6.92868 6.48295i −0.241372 0.225844i
\(825\) 0 0
\(826\) 0 0
\(827\) 17.4897i 0.608175i −0.952644 0.304088i \(-0.901648\pi\)
0.952644 0.304088i \(-0.0983515\pi\)
\(828\) 0 0
\(829\) 25.6021i 0.889199i −0.895730 0.444599i \(-0.853346\pi\)
0.895730 0.444599i \(-0.146654\pi\)
\(830\) −10.4192 10.1910i −0.361656 0.353733i
\(831\) 0 0
\(832\) −44.5805 + 2.96651i −1.54555 + 0.102845i
\(833\) 0 0
\(834\) 0 0
\(835\) 5.46772i 0.189218i
\(836\) 16.5850 0.367389i 0.573604 0.0127064i
\(837\) 0 0
\(838\) 7.46260 7.62974i 0.257791 0.263565i
\(839\) 9.04513 0.312273 0.156136 0.987736i \(-0.450096\pi\)
0.156136 + 0.987736i \(0.450096\pi\)
\(840\) 0 0
\(841\) 44.1486 1.52237
\(842\) 2.64086 2.70001i 0.0910100 0.0930484i
\(843\) 0 0
\(844\) −27.5012 + 0.609203i −0.946629 + 0.0209696i
\(845\) 20.5351i 0.706431i
\(846\) 0 0
\(847\) 0 0
\(848\) 2.93147 0.129939i 0.100667 0.00446212i
\(849\) 0 0
\(850\) 14.9669 + 14.6390i 0.513360 + 0.502114i
\(851\) 41.8330i 1.43402i
\(852\) 0 0
\(853\) 28.8642i 0.988292i −0.869379 0.494146i \(-0.835481\pi\)
0.869379 0.494146i \(-0.164519\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 24.2543 25.9219i 0.828997 0.885994i
\(857\) 48.3887i 1.65293i −0.562992 0.826463i \(-0.690350\pi\)
0.562992 0.826463i \(-0.309650\pi\)
\(858\) 0 0
\(859\) 19.8378 0.676858 0.338429 0.940992i \(-0.390104\pi\)
0.338429 + 0.940992i \(0.390104\pi\)
\(860\) −0.532793 24.0518i −0.0181681 0.820159i
\(861\) 0 0
\(862\) −12.0171 11.7539i −0.409304 0.400338i
\(863\) 38.7992i 1.32074i 0.750940 + 0.660370i \(0.229601\pi\)
−0.750940 + 0.660370i \(0.770399\pi\)
\(864\) 0 0
\(865\) 2.37477 0.0807446
\(866\) −20.8943 20.4365i −0.710016 0.694462i
\(867\) 0 0
\(868\) 0 0
\(869\) −11.3504 −0.385037
\(870\) 0 0
\(871\) −1.30738 −0.0442989
\(872\) 31.5029 + 29.4763i 1.06682 + 0.998192i
\(873\) 0 0
\(874\) 41.0841 + 40.1841i 1.38969 + 1.35925i
\(875\) 0 0
\(876\) 0 0
\(877\) −14.9697 −0.505492 −0.252746 0.967533i \(-0.581334\pi\)
−0.252746 + 0.967533i \(0.581334\pi\)
\(878\) 5.36028 5.48033i 0.180901 0.184952i
\(879\) 0 0
\(880\) 6.08989 0.269938i 0.205290 0.00909960i
\(881\) 44.9991i 1.51606i −0.652221 0.758029i \(-0.726163\pi\)
0.652221 0.758029i \(-0.273837\pi\)
\(882\) 0 0
\(883\) 20.0940i 0.676217i 0.941107 + 0.338109i \(0.109787\pi\)
−0.941107 + 0.338109i \(0.890213\pi\)
\(884\) 0.982923 + 44.3720i 0.0330593 + 1.49239i
\(885\) 0 0
\(886\) 22.9538 + 22.4510i 0.771148 + 0.754255i
\(887\) 15.2147 0.510859 0.255430 0.966828i \(-0.417783\pi\)
0.255430 + 0.966828i \(0.417783\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 8.84937 9.04757i 0.296631 0.303275i
\(891\) 0 0
\(892\) 0.726937 + 32.8160i 0.0243396 + 1.09876i
\(893\) 22.0875 0.739130
\(894\) 0 0
\(895\) 4.52413 0.151225
\(896\) 0 0
\(897\) 0 0
\(898\) 15.4773 15.8240i 0.516485 0.528052i
\(899\) 24.9928 0.833556
\(900\) 0 0
\(901\) 2.91489i 0.0971090i
\(902\) 0.199209 0.203671i 0.00663293 0.00678149i
\(903\) 0 0
\(904\) −24.3260 22.7611i −0.809072 0.757023i
\(905\) −6.65648 −0.221269
\(906\) 0 0
\(907\) 14.1218i 0.468906i 0.972127 + 0.234453i \(0.0753298\pi\)
−0.972127 + 0.234453i \(0.924670\pi\)
\(908\) 0.714529 + 32.2559i 0.0237125 + 1.07045i
\(909\) 0 0
\(910\) 0 0
\(911\) 12.5510i 0.415832i −0.978147 0.207916i \(-0.933332\pi\)
0.978147 0.207916i \(-0.0666681\pi\)
\(912\) 0 0
\(913\) 12.3246i 0.407884i
\(914\) −16.8370 + 17.2141i −0.556918 + 0.569391i
\(915\) 0 0
\(916\) −43.3257 + 0.959747i −1.43152 + 0.0317109i
\(917\) 0 0
\(918\) 0 0
\(919\) 35.4545i 1.16954i −0.811201 0.584768i \(-0.801186\pi\)
0.811201 0.584768i \(-0.198814\pi\)
\(920\) 15.4202 + 14.4282i 0.508390 + 0.475685i
\(921\) 0 0
\(922\) 38.5287 + 37.6847i 1.26887 + 1.24108i
\(923\) 48.8178 1.60686
\(924\) 0 0
\(925\) 23.5648 0.774804
\(926\) −1.40488 1.37411i −0.0461674 0.0451560i
\(927\) 0 0
\(928\) 32.2651 36.0517i 1.05915 1.18345i
\(929\) 55.5048i 1.82105i 0.413451 + 0.910526i \(0.364323\pi\)
−0.413451 + 0.910526i \(0.635677\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −0.842949 38.0531i −0.0276117 1.24647i
\(933\) 0 0
\(934\) 3.45491 3.53229i 0.113048 0.115580i
\(935\) 6.05545i 0.198034i
\(936\) 0 0
\(937\) 18.8683i 0.616400i 0.951322 + 0.308200i \(0.0997265\pi\)
−0.951322 + 0.308200i \(0.900273\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 8.11435 0.179748i 0.264661 0.00586274i
\(941\) 40.2290i 1.31143i −0.755009 0.655715i \(-0.772367\pi\)
0.755009 0.655715i \(-0.227633\pi\)
\(942\) 0 0
\(943\) 0.986956 0.0321397
\(944\) −57.5651 + 2.55160i −1.87358 + 0.0830476i
\(945\) 0 0
\(946\) 14.2251 14.5437i 0.462497 0.472856i
\(947\) 49.5808i 1.61116i −0.592488 0.805579i \(-0.701854\pi\)
0.592488 0.805579i \(-0.298146\pi\)
\(948\) 0 0
\(949\) −9.85989 −0.320066
\(950\) 22.6359 23.1429i 0.734406 0.750855i
\(951\) 0 0
\(952\) 0 0
\(953\) 35.9273 1.16380 0.581900 0.813260i \(-0.302309\pi\)
0.581900 + 0.813260i \(0.302309\pi\)
\(954\) 0 0
\(955\) 28.6639 0.927543
\(956\) −31.3680 + 0.694860i −1.01451 + 0.0224734i
\(957\) 0 0
\(958\) −13.5688 + 13.8727i −0.438388 + 0.448206i
\(959\) 0 0
\(960\) 0 0
\(961\) −22.4607 −0.724538
\(962\) 35.7133 + 34.9309i 1.15144 + 1.12622i
\(963\) 0 0
\(964\) 23.7963 0.527133i 0.766427 0.0169778i
\(965\) 0.0828437i 0.00266683i
\(966\) 0 0
\(967\) 33.5277i 1.07818i −0.842249 0.539089i \(-0.818769\pi\)
0.842249 0.539089i \(-0.181231\pi\)
\(968\) −18.9545 17.7352i −0.609222 0.570030i
\(969\) 0 0
\(970\) −6.95520 + 7.11098i −0.223318 + 0.228320i
\(971\) 14.7198 0.472381 0.236191 0.971707i \(-0.424101\pi\)
0.236191 + 0.971707i \(0.424101\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 3.80175 + 3.71847i 0.121816 + 0.119148i
\(975\) 0 0
\(976\) −1.61450 36.4238i −0.0516790 1.16590i
\(977\) 8.97289 0.287068 0.143534 0.989645i \(-0.454153\pi\)
0.143534 + 0.989645i \(0.454153\pi\)
\(978\) 0 0
\(979\) 10.7021 0.342041
\(980\) 0 0
\(981\) 0 0
\(982\) 8.69973 + 8.50915i 0.277620 + 0.271538i
\(983\) 1.86632 0.0595265 0.0297633 0.999557i \(-0.490525\pi\)
0.0297633 + 0.999557i \(0.490525\pi\)
\(984\) 0 0
\(985\) 8.16739i 0.260235i
\(986\) −34.3582 33.6055i −1.09419 1.07022i
\(987\) 0 0
\(988\) 68.6112 1.51987i 2.18281 0.0483535i
\(989\) 70.4763 2.24102
\(990\) 0 0
\(991\) 6.49237i 0.206237i −0.994669 0.103119i \(-0.967118\pi\)
0.994669 0.103119i \(-0.0328821\pi\)
\(992\) 11.0240 12.3178i 0.350014 0.391091i
\(993\) 0 0
\(994\) 0 0
\(995\) 17.2851i 0.547974i
\(996\) 0 0
\(997\) 12.3327i 0.390582i 0.980745 + 0.195291i \(0.0625651\pi\)
−0.980745 + 0.195291i \(0.937435\pi\)
\(998\) −18.7871 18.3755i −0.594695 0.581667i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.b.m.1567.11 12
3.2 odd 2 588.2.b.d.391.2 yes 12
4.3 odd 2 1764.2.b.l.1567.12 12
7.6 odd 2 1764.2.b.l.1567.11 12
12.11 even 2 588.2.b.c.391.1 12
21.2 odd 6 588.2.o.e.31.11 24
21.5 even 6 588.2.o.f.31.11 24
21.11 odd 6 588.2.o.e.19.6 24
21.17 even 6 588.2.o.f.19.6 24
21.20 even 2 588.2.b.c.391.2 yes 12
28.27 even 2 inner 1764.2.b.m.1567.12 12
84.11 even 6 588.2.o.f.19.11 24
84.23 even 6 588.2.o.f.31.6 24
84.47 odd 6 588.2.o.e.31.6 24
84.59 odd 6 588.2.o.e.19.11 24
84.83 odd 2 588.2.b.d.391.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.1 12 12.11 even 2
588.2.b.c.391.2 yes 12 21.20 even 2
588.2.b.d.391.1 yes 12 84.83 odd 2
588.2.b.d.391.2 yes 12 3.2 odd 2
588.2.o.e.19.6 24 21.11 odd 6
588.2.o.e.19.11 24 84.59 odd 6
588.2.o.e.31.6 24 84.47 odd 6
588.2.o.e.31.11 24 21.2 odd 6
588.2.o.f.19.6 24 21.17 even 6
588.2.o.f.19.11 24 84.11 even 6
588.2.o.f.31.6 24 84.23 even 6
588.2.o.f.31.11 24 21.5 even 6
1764.2.b.l.1567.11 12 7.6 odd 2
1764.2.b.l.1567.12 12 4.3 odd 2
1764.2.b.m.1567.11 12 1.1 even 1 trivial
1764.2.b.m.1567.12 12 28.27 even 2 inner