L(s) = 1 | + (−0.381 − 1.36i)2-s + (−0.5 − 0.866i)3-s + (−1.70 + 1.03i)4-s + (0.977 + 0.564i)5-s + (−0.988 + 1.01i)6-s + (2.06 + 1.93i)8-s + (−0.499 + 0.866i)9-s + (0.396 − 1.54i)10-s + (−1.16 + 0.675i)11-s + (1.75 + 0.961i)12-s + 5.58i·13-s − 1.12i·15-s + (1.84 − 3.54i)16-s + (−3.44 + 1.98i)17-s + (1.36 + 0.350i)18-s + (−3.07 + 5.32i)19-s + ⋯ |
L(s) = 1 | + (−0.269 − 0.963i)2-s + (−0.288 − 0.499i)3-s + (−0.854 + 0.519i)4-s + (0.437 + 0.252i)5-s + (−0.403 + 0.412i)6-s + (0.730 + 0.683i)8-s + (−0.166 + 0.288i)9-s + (0.125 − 0.489i)10-s + (−0.352 + 0.203i)11-s + (0.506 + 0.277i)12-s + 1.54i·13-s − 0.291i·15-s + (0.461 − 0.887i)16-s + (−0.834 + 0.481i)17-s + (0.322 + 0.0827i)18-s + (−0.704 + 1.22i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 - 0.189i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.981 - 0.189i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.886156 + 0.0847056i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.886156 + 0.0847056i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.381 + 1.36i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-0.977 - 0.564i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.16 - 0.675i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 5.58iT - 13T^{2} \) |
| 17 | \( 1 + (3.44 - 1.98i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.07 - 5.32i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.72 - 3.30i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 8.55T + 29T^{2} \) |
| 31 | \( 1 + (-1.46 - 2.53i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.16 - 5.47i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 0.149iT - 41T^{2} \) |
| 43 | \( 1 + 10.6iT - 43T^{2} \) |
| 47 | \( 1 + (-1.79 + 3.11i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.366 + 0.635i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.20 - 12.4i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.89 + 4.55i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.202 + 0.117i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.74iT - 71T^{2} \) |
| 73 | \( 1 + (-1.52 + 0.882i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.28 + 4.20i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 9.12T + 83T^{2} \) |
| 89 | \( 1 + (6.86 + 3.96i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 6.23iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.59710003734121109115707496128, −10.16103225942483269399324951175, −8.984623796065599265742774768234, −8.368361082743586891601658898733, −7.12539897356238219079859979865, −6.28979627929246212493238098624, −4.96915846183412283455891794186, −3.96346847979845522274141460591, −2.48312159166720111675227739459, −1.56292647480883755282218569682,
0.59206407523070058477033839739, 2.88284465811674499180649991319, 4.55203330123155172169239163818, 5.15791526510362092104344208518, 6.10625358947098815693265540190, 6.98136663580238385838621557021, 8.114426026160812887819047912039, 8.880067456358908746584934228932, 9.631501808313132079588634275660, 10.57114580620380076334399004813