Properties

Label 588.2.b.d.391.8
Level $588$
Weight $2$
Character 588.391
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(391,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.391"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.15911316233388032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 10 x^{10} - 20 x^{9} + 35 x^{8} - 56 x^{7} + 84 x^{6} - 112 x^{5} + 140 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 391.8
Root \(0.639847 + 1.26119i\) of defining polynomial
Character \(\chi\) \(=\) 588.391
Dual form 588.2.b.d.391.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.639847 + 1.26119i) q^{2} +1.00000 q^{3} +(-1.18119 + 1.61393i) q^{4} +3.10455i q^{5} +(0.639847 + 1.26119i) q^{6} +(-2.79126 - 0.457034i) q^{8} +1.00000 q^{9} +(-3.91542 + 1.98644i) q^{10} +5.34455i q^{11} +(-1.18119 + 1.61393i) q^{12} -3.92787i q^{13} +3.10455i q^{15} +(-1.20957 - 3.81273i) q^{16} -5.68178i q^{17} +(0.639847 + 1.26119i) q^{18} +0.170813 q^{19} +(-5.01054 - 3.66707i) q^{20} +(-6.74049 + 3.41969i) q^{22} +6.13153i q^{23} +(-2.79126 - 0.457034i) q^{24} -4.63824 q^{25} +(4.95378 - 2.51324i) q^{26} +1.00000 q^{27} -1.96817 q^{29} +(-3.91542 + 1.98644i) q^{30} -1.53115 q^{31} +(4.03463 - 3.96506i) q^{32} +5.34455i q^{33} +(7.16580 - 3.63547i) q^{34} +(-1.18119 + 1.61393i) q^{36} +8.93993 q^{37} +(0.109294 + 0.215427i) q^{38} -3.92787i q^{39} +(1.41889 - 8.66560i) q^{40} +5.84308i q^{41} +2.38285i q^{43} +(-8.62576 - 6.31294i) q^{44} +3.10455i q^{45} +(-7.73301 + 3.92324i) q^{46} +2.29477 q^{47} +(-1.20957 - 3.81273i) q^{48} +(-2.96776 - 5.84969i) q^{50} -5.68178i q^{51} +(6.33933 + 4.63957i) q^{52} -1.19905 q^{53} +(0.639847 + 1.26119i) q^{54} -16.5924 q^{55} +0.170813 q^{57} +(-1.25933 - 2.48223i) q^{58} +10.9942 q^{59} +(-5.01054 - 3.66707i) q^{60} +6.58977i q^{61} +(-0.979705 - 1.93107i) q^{62} +(7.58224 + 2.55140i) q^{64} +12.1943 q^{65} +(-6.74049 + 3.41969i) q^{66} -9.64794i q^{67} +(9.17002 + 6.71127i) q^{68} +6.13153i q^{69} +2.04649i q^{71} +(-2.79126 - 0.457034i) q^{72} -10.2724i q^{73} +(5.72019 + 11.2749i) q^{74} -4.63824 q^{75} +(-0.201763 + 0.275681i) q^{76} +(4.95378 - 2.51324i) q^{78} +14.3947i q^{79} +(11.8368 - 3.75518i) q^{80} +1.00000 q^{81} +(-7.36922 + 3.73867i) q^{82} +10.9783 q^{83} +17.6394 q^{85} +(-3.00522 + 1.52466i) q^{86} -1.96817 q^{87} +(2.44264 - 14.9180i) q^{88} -5.81871i q^{89} +(-3.91542 + 1.98644i) q^{90} +(-9.89588 - 7.24251i) q^{92} -1.53115 q^{93} +(1.46830 + 2.89414i) q^{94} +0.530298i q^{95} +(4.03463 - 3.96506i) q^{96} -2.32666i q^{97} +5.34455i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 12 q^{3} - 4 q^{4} + 4 q^{6} + 4 q^{8} + 12 q^{9} - 4 q^{12} - 4 q^{16} + 4 q^{18} - 24 q^{20} + 4 q^{24} - 12 q^{25} + 24 q^{26} + 12 q^{27} + 32 q^{29} + 16 q^{31} + 4 q^{32} + 32 q^{34}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.639847 + 1.26119i 0.452440 + 0.891795i
\(3\) 1.00000 0.577350
\(4\) −1.18119 + 1.61393i −0.590596 + 0.806967i
\(5\) 3.10455i 1.38840i 0.719783 + 0.694199i \(0.244241\pi\)
−0.719783 + 0.694199i \(0.755759\pi\)
\(6\) 0.639847 + 1.26119i 0.261216 + 0.514878i
\(7\) 0 0
\(8\) −2.79126 0.457034i −0.986859 0.161586i
\(9\) 1.00000 0.333333
\(10\) −3.91542 + 1.98644i −1.23817 + 0.628167i
\(11\) 5.34455i 1.61144i 0.592295 + 0.805721i \(0.298222\pi\)
−0.592295 + 0.805721i \(0.701778\pi\)
\(12\) −1.18119 + 1.61393i −0.340981 + 0.465903i
\(13\) 3.92787i 1.08939i −0.838633 0.544697i \(-0.816644\pi\)
0.838633 0.544697i \(-0.183356\pi\)
\(14\) 0 0
\(15\) 3.10455i 0.801592i
\(16\) −1.20957 3.81273i −0.302393 0.953183i
\(17\) 5.68178i 1.37803i −0.724745 0.689017i \(-0.758042\pi\)
0.724745 0.689017i \(-0.241958\pi\)
\(18\) 0.639847 + 1.26119i 0.150813 + 0.297265i
\(19\) 0.170813 0.0391872 0.0195936 0.999808i \(-0.493763\pi\)
0.0195936 + 0.999808i \(0.493763\pi\)
\(20\) −5.01054 3.66707i −1.12039 0.819982i
\(21\) 0 0
\(22\) −6.74049 + 3.41969i −1.43708 + 0.729081i
\(23\) 6.13153i 1.27851i 0.768994 + 0.639256i \(0.220758\pi\)
−0.768994 + 0.639256i \(0.779242\pi\)
\(24\) −2.79126 0.457034i −0.569763 0.0932917i
\(25\) −4.63824 −0.927647
\(26\) 4.95378 2.51324i 0.971517 0.492886i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −1.96817 −0.365480 −0.182740 0.983161i \(-0.558497\pi\)
−0.182740 + 0.983161i \(0.558497\pi\)
\(30\) −3.91542 + 1.98644i −0.714855 + 0.362672i
\(31\) −1.53115 −0.275003 −0.137502 0.990502i \(-0.543907\pi\)
−0.137502 + 0.990502i \(0.543907\pi\)
\(32\) 4.03463 3.96506i 0.713229 0.700931i
\(33\) 5.34455i 0.930367i
\(34\) 7.16580 3.63547i 1.22892 0.623478i
\(35\) 0 0
\(36\) −1.18119 + 1.61393i −0.196865 + 0.268989i
\(37\) 8.93993 1.46972 0.734858 0.678221i \(-0.237249\pi\)
0.734858 + 0.678221i \(0.237249\pi\)
\(38\) 0.109294 + 0.215427i 0.0177299 + 0.0349469i
\(39\) 3.92787i 0.628962i
\(40\) 1.41889 8.66560i 0.224345 1.37015i
\(41\) 5.84308i 0.912535i 0.889843 + 0.456268i \(0.150814\pi\)
−0.889843 + 0.456268i \(0.849186\pi\)
\(42\) 0 0
\(43\) 2.38285i 0.363381i 0.983356 + 0.181691i \(0.0581569\pi\)
−0.983356 + 0.181691i \(0.941843\pi\)
\(44\) −8.62576 6.31294i −1.30038 0.951712i
\(45\) 3.10455i 0.462799i
\(46\) −7.73301 + 3.92324i −1.14017 + 0.578450i
\(47\) 2.29477 0.334727 0.167364 0.985895i \(-0.446475\pi\)
0.167364 + 0.985895i \(0.446475\pi\)
\(48\) −1.20957 3.81273i −0.174587 0.550321i
\(49\) 0 0
\(50\) −2.96776 5.84969i −0.419705 0.827271i
\(51\) 5.68178i 0.795608i
\(52\) 6.33933 + 4.63957i 0.879106 + 0.643392i
\(53\) −1.19905 −0.164702 −0.0823508 0.996603i \(-0.526243\pi\)
−0.0823508 + 0.996603i \(0.526243\pi\)
\(54\) 0.639847 + 1.26119i 0.0870721 + 0.171626i
\(55\) −16.5924 −2.23732
\(56\) 0 0
\(57\) 0.170813 0.0226247
\(58\) −1.25933 2.48223i −0.165358 0.325933i
\(59\) 10.9942 1.43133 0.715663 0.698446i \(-0.246125\pi\)
0.715663 + 0.698446i \(0.246125\pi\)
\(60\) −5.01054 3.66707i −0.646858 0.473417i
\(61\) 6.58977i 0.843734i 0.906658 + 0.421867i \(0.138625\pi\)
−0.906658 + 0.421867i \(0.861375\pi\)
\(62\) −0.979705 1.93107i −0.124423 0.245247i
\(63\) 0 0
\(64\) 7.58224 + 2.55140i 0.947780 + 0.318925i
\(65\) 12.1943 1.51251
\(66\) −6.74049 + 3.41969i −0.829696 + 0.420935i
\(67\) 9.64794i 1.17868i −0.807884 0.589342i \(-0.799387\pi\)
0.807884 0.589342i \(-0.200613\pi\)
\(68\) 9.17002 + 6.71127i 1.11203 + 0.813861i
\(69\) 6.13153i 0.738149i
\(70\) 0 0
\(71\) 2.04649i 0.242873i 0.992599 + 0.121437i \(0.0387501\pi\)
−0.992599 + 0.121437i \(0.961250\pi\)
\(72\) −2.79126 0.457034i −0.328953 0.0538620i
\(73\) 10.2724i 1.20229i −0.799138 0.601147i \(-0.794711\pi\)
0.799138 0.601147i \(-0.205289\pi\)
\(74\) 5.72019 + 11.2749i 0.664959 + 1.31069i
\(75\) −4.63824 −0.535577
\(76\) −0.201763 + 0.275681i −0.0231438 + 0.0316228i
\(77\) 0 0
\(78\) 4.95378 2.51324i 0.560905 0.284568i
\(79\) 14.3947i 1.61953i 0.586757 + 0.809763i \(0.300404\pi\)
−0.586757 + 0.809763i \(0.699596\pi\)
\(80\) 11.8368 3.75518i 1.32340 0.419842i
\(81\) 1.00000 0.111111
\(82\) −7.36922 + 3.73867i −0.813794 + 0.412867i
\(83\) 10.9783 1.20503 0.602515 0.798108i \(-0.294165\pi\)
0.602515 + 0.798108i \(0.294165\pi\)
\(84\) 0 0
\(85\) 17.6394 1.91326
\(86\) −3.00522 + 1.52466i −0.324061 + 0.164408i
\(87\) −1.96817 −0.211010
\(88\) 2.44264 14.9180i 0.260386 1.59027i
\(89\) 5.81871i 0.616782i −0.951260 0.308391i \(-0.900209\pi\)
0.951260 0.308391i \(-0.0997905\pi\)
\(90\) −3.91542 + 1.98644i −0.412722 + 0.209389i
\(91\) 0 0
\(92\) −9.89588 7.24251i −1.03172 0.755084i
\(93\) −1.53115 −0.158773
\(94\) 1.46830 + 2.89414i 0.151444 + 0.298508i
\(95\) 0.530298i 0.0544074i
\(96\) 4.03463 3.96506i 0.411783 0.404683i
\(97\) 2.32666i 0.236237i −0.993000 0.118118i \(-0.962314\pi\)
0.993000 0.118118i \(-0.0376862\pi\)
\(98\) 0 0
\(99\) 5.34455i 0.537148i
\(100\) 5.47865 7.48581i 0.547865 0.748581i
\(101\) 7.44428i 0.740734i −0.928886 0.370367i \(-0.879232\pi\)
0.928886 0.370367i \(-0.120768\pi\)
\(102\) 7.16580 3.63547i 0.709520 0.359965i
\(103\) −16.2959 −1.60568 −0.802842 0.596192i \(-0.796680\pi\)
−0.802842 + 0.596192i \(0.796680\pi\)
\(104\) −1.79517 + 10.9637i −0.176031 + 1.07508i
\(105\) 0 0
\(106\) −0.767206 1.51222i −0.0745176 0.146880i
\(107\) 16.7392i 1.61824i −0.587645 0.809119i \(-0.699945\pi\)
0.587645 0.809119i \(-0.300055\pi\)
\(108\) −1.18119 + 1.61393i −0.113660 + 0.155301i
\(109\) 7.72117 0.739554 0.369777 0.929121i \(-0.379434\pi\)
0.369777 + 0.929121i \(0.379434\pi\)
\(110\) −10.6166 20.9262i −1.01225 1.99523i
\(111\) 8.93993 0.848541
\(112\) 0 0
\(113\) −0.715845 −0.0673410 −0.0336705 0.999433i \(-0.510720\pi\)
−0.0336705 + 0.999433i \(0.510720\pi\)
\(114\) 0.109294 + 0.215427i 0.0102363 + 0.0201766i
\(115\) −19.0356 −1.77508
\(116\) 2.32478 3.17649i 0.215851 0.294930i
\(117\) 3.92787i 0.363132i
\(118\) 7.03462 + 13.8658i 0.647589 + 1.27645i
\(119\) 0 0
\(120\) 1.41889 8.66560i 0.129526 0.791058i
\(121\) −17.5642 −1.59675
\(122\) −8.31095 + 4.21645i −0.752438 + 0.381739i
\(123\) 5.84308i 0.526852i
\(124\) 1.80859 2.47118i 0.162416 0.221919i
\(125\) 1.12312i 0.100455i
\(126\) 0 0
\(127\) 15.4079i 1.36723i −0.729844 0.683614i \(-0.760407\pi\)
0.729844 0.683614i \(-0.239593\pi\)
\(128\) 1.63368 + 11.1951i 0.144398 + 0.989520i
\(129\) 2.38285i 0.209798i
\(130\) 7.80247 + 15.3793i 0.684322 + 1.34885i
\(131\) 2.25918 0.197385 0.0986927 0.995118i \(-0.468534\pi\)
0.0986927 + 0.995118i \(0.468534\pi\)
\(132\) −8.62576 6.31294i −0.750776 0.549471i
\(133\) 0 0
\(134\) 12.1679 6.17321i 1.05114 0.533284i
\(135\) 3.10455i 0.267197i
\(136\) −2.59677 + 15.8593i −0.222671 + 1.35993i
\(137\) 20.0731 1.71496 0.857479 0.514519i \(-0.172030\pi\)
0.857479 + 0.514519i \(0.172030\pi\)
\(138\) −7.73301 + 3.92324i −0.658277 + 0.333968i
\(139\) 7.98360 0.677160 0.338580 0.940938i \(-0.390053\pi\)
0.338580 + 0.940938i \(0.390053\pi\)
\(140\) 0 0
\(141\) 2.29477 0.193255
\(142\) −2.58100 + 1.30944i −0.216593 + 0.109886i
\(143\) 20.9927 1.75550
\(144\) −1.20957 3.81273i −0.100798 0.317728i
\(145\) 6.11028i 0.507431i
\(146\) 12.9554 6.57277i 1.07220 0.543966i
\(147\) 0 0
\(148\) −10.5598 + 14.4285i −0.868008 + 1.18601i
\(149\) −5.30170 −0.434332 −0.217166 0.976135i \(-0.569681\pi\)
−0.217166 + 0.976135i \(0.569681\pi\)
\(150\) −2.96776 5.84969i −0.242317 0.477625i
\(151\) 1.52658i 0.124231i 0.998069 + 0.0621155i \(0.0197847\pi\)
−0.998069 + 0.0621155i \(0.980215\pi\)
\(152\) −0.476783 0.0780674i −0.0386722 0.00633210i
\(153\) 5.68178i 0.459345i
\(154\) 0 0
\(155\) 4.75355i 0.381814i
\(156\) 6.33933 + 4.63957i 0.507552 + 0.371463i
\(157\) 12.4358i 0.992487i 0.868183 + 0.496243i \(0.165288\pi\)
−0.868183 + 0.496243i \(0.834712\pi\)
\(158\) −18.1544 + 9.21038i −1.44428 + 0.732738i
\(159\) −1.19905 −0.0950905
\(160\) 12.3097 + 12.5257i 0.973170 + 0.990246i
\(161\) 0 0
\(162\) 0.639847 + 1.26119i 0.0502711 + 0.0990883i
\(163\) 6.22348i 0.487460i 0.969843 + 0.243730i \(0.0783711\pi\)
−0.969843 + 0.243730i \(0.921629\pi\)
\(164\) −9.43034 6.90179i −0.736386 0.538939i
\(165\) −16.5924 −1.29172
\(166\) 7.02446 + 13.8458i 0.545204 + 1.07464i
\(167\) −4.14549 −0.320788 −0.160394 0.987053i \(-0.551276\pi\)
−0.160394 + 0.987053i \(0.551276\pi\)
\(168\) 0 0
\(169\) −2.42816 −0.186781
\(170\) 11.2865 + 22.2466i 0.865635 + 1.70623i
\(171\) 0.170813 0.0130624
\(172\) −3.84576 2.81460i −0.293237 0.214611i
\(173\) 5.54634i 0.421681i −0.977521 0.210840i \(-0.932380\pi\)
0.977521 0.210840i \(-0.0676200\pi\)
\(174\) −1.25933 2.48223i −0.0954693 0.188177i
\(175\) 0 0
\(176\) 20.3773 6.46462i 1.53600 0.487289i
\(177\) 10.9942 0.826376
\(178\) 7.33849 3.72308i 0.550043 0.279057i
\(179\) 1.27166i 0.0950483i −0.998870 0.0475242i \(-0.984867\pi\)
0.998870 0.0475242i \(-0.0151331\pi\)
\(180\) −5.01054 3.66707i −0.373464 0.273327i
\(181\) 0.386679i 0.0287416i 0.999897 + 0.0143708i \(0.00457452\pi\)
−0.999897 + 0.0143708i \(0.995425\pi\)
\(182\) 0 0
\(183\) 6.58977i 0.487130i
\(184\) 2.80232 17.1147i 0.206589 1.26171i
\(185\) 27.7545i 2.04055i
\(186\) −0.979705 1.93107i −0.0718354 0.141593i
\(187\) 30.3666 2.22062
\(188\) −2.71057 + 3.70362i −0.197689 + 0.270114i
\(189\) 0 0
\(190\) −0.668805 + 0.339309i −0.0485202 + 0.0246161i
\(191\) 6.59547i 0.477231i 0.971114 + 0.238616i \(0.0766936\pi\)
−0.971114 + 0.238616i \(0.923306\pi\)
\(192\) 7.58224 + 2.55140i 0.547201 + 0.184131i
\(193\) 1.95706 0.140872 0.0704362 0.997516i \(-0.477561\pi\)
0.0704362 + 0.997516i \(0.477561\pi\)
\(194\) 2.93436 1.48871i 0.210675 0.106883i
\(195\) 12.1943 0.873250
\(196\) 0 0
\(197\) −0.362935 −0.0258580 −0.0129290 0.999916i \(-0.504116\pi\)
−0.0129290 + 0.999916i \(0.504116\pi\)
\(198\) −6.74049 + 3.41969i −0.479025 + 0.243027i
\(199\) −9.86333 −0.699193 −0.349597 0.936900i \(-0.613681\pi\)
−0.349597 + 0.936900i \(0.613681\pi\)
\(200\) 12.9465 + 2.11983i 0.915457 + 0.149895i
\(201\) 9.64794i 0.680513i
\(202\) 9.38864 4.76320i 0.660583 0.335138i
\(203\) 0 0
\(204\) 9.17002 + 6.71127i 0.642030 + 0.469883i
\(205\) −18.1401 −1.26696
\(206\) −10.4269 20.5522i −0.726476 1.43194i
\(207\) 6.13153i 0.426171i
\(208\) −14.9759 + 4.75104i −1.03839 + 0.329425i
\(209\) 0.912919i 0.0631479i
\(210\) 0 0
\(211\) 25.7279i 1.77118i −0.464469 0.885589i \(-0.653755\pi\)
0.464469 0.885589i \(-0.346245\pi\)
\(212\) 1.41630 1.93518i 0.0972721 0.132909i
\(213\) 2.04649i 0.140223i
\(214\) 21.1113 10.7105i 1.44314 0.732156i
\(215\) −7.39767 −0.504517
\(216\) −2.79126 0.457034i −0.189921 0.0310972i
\(217\) 0 0
\(218\) 4.94037 + 9.73785i 0.334604 + 0.659530i
\(219\) 10.2724i 0.694145i
\(220\) 19.5988 26.7791i 1.32135 1.80545i
\(221\) −22.3173 −1.50122
\(222\) 5.72019 + 11.2749i 0.383914 + 0.756724i
\(223\) −16.2449 −1.08784 −0.543919 0.839138i \(-0.683060\pi\)
−0.543919 + 0.839138i \(0.683060\pi\)
\(224\) 0 0
\(225\) −4.63824 −0.309216
\(226\) −0.458031 0.902815i −0.0304678 0.0600544i
\(227\) −20.4484 −1.35721 −0.678603 0.734506i \(-0.737414\pi\)
−0.678603 + 0.734506i \(0.737414\pi\)
\(228\) −0.201763 + 0.275681i −0.0133621 + 0.0182574i
\(229\) 3.38952i 0.223986i 0.993709 + 0.111993i \(0.0357234\pi\)
−0.993709 + 0.111993i \(0.964277\pi\)
\(230\) −12.1799 24.0075i −0.803118 1.58301i
\(231\) 0 0
\(232\) 5.49366 + 0.899520i 0.360677 + 0.0590564i
\(233\) 1.90437 0.124759 0.0623796 0.998052i \(-0.480131\pi\)
0.0623796 + 0.998052i \(0.480131\pi\)
\(234\) 4.95378 2.51324i 0.323839 0.164295i
\(235\) 7.12425i 0.464735i
\(236\) −12.9863 + 17.7440i −0.845335 + 1.15503i
\(237\) 14.3947i 0.935034i
\(238\) 0 0
\(239\) 7.77419i 0.502871i 0.967874 + 0.251435i \(0.0809026\pi\)
−0.967874 + 0.251435i \(0.919097\pi\)
\(240\) 11.8368 3.75518i 0.764064 0.242396i
\(241\) 12.1107i 0.780119i −0.920790 0.390060i \(-0.872454\pi\)
0.920790 0.390060i \(-0.127546\pi\)
\(242\) −11.2384 22.1518i −0.722433 1.42397i
\(243\) 1.00000 0.0641500
\(244\) −10.6355 7.78379i −0.680866 0.498306i
\(245\) 0 0
\(246\) −7.36922 + 3.73867i −0.469844 + 0.238369i
\(247\) 0.670931i 0.0426903i
\(248\) 4.27385 + 0.699790i 0.271390 + 0.0444367i
\(249\) 10.9783 0.695724
\(250\) −1.41646 + 0.718623i −0.0895849 + 0.0454497i
\(251\) −7.89409 −0.498271 −0.249135 0.968469i \(-0.580146\pi\)
−0.249135 + 0.968469i \(0.580146\pi\)
\(252\) 0 0
\(253\) −32.7703 −2.06025
\(254\) 19.4322 9.85868i 1.21929 0.618589i
\(255\) 17.6394 1.10462
\(256\) −13.0739 + 9.22355i −0.817117 + 0.576472i
\(257\) 3.06316i 0.191074i −0.995426 0.0955372i \(-0.969543\pi\)
0.995426 0.0955372i \(-0.0304569\pi\)
\(258\) −3.00522 + 1.52466i −0.187097 + 0.0949211i
\(259\) 0 0
\(260\) −14.4038 + 19.6808i −0.893284 + 1.22055i
\(261\) −1.96817 −0.121827
\(262\) 1.44553 + 2.84925i 0.0893051 + 0.176027i
\(263\) 10.6284i 0.655375i −0.944786 0.327687i \(-0.893731\pi\)
0.944786 0.327687i \(-0.106269\pi\)
\(264\) 2.44264 14.9180i 0.150334 0.918141i
\(265\) 3.72250i 0.228671i
\(266\) 0 0
\(267\) 5.81871i 0.356099i
\(268\) 15.5712 + 11.3961i 0.951159 + 0.696126i
\(269\) 2.51512i 0.153350i 0.997056 + 0.0766748i \(0.0244303\pi\)
−0.997056 + 0.0766748i \(0.975570\pi\)
\(270\) −3.91542 + 1.98644i −0.238285 + 0.120891i
\(271\) −0.916212 −0.0556559 −0.0278279 0.999613i \(-0.508859\pi\)
−0.0278279 + 0.999613i \(0.508859\pi\)
\(272\) −21.6631 + 6.87252i −1.31352 + 0.416708i
\(273\) 0 0
\(274\) 12.8437 + 25.3159i 0.775916 + 1.52939i
\(275\) 24.7893i 1.49485i
\(276\) −9.89588 7.24251i −0.595662 0.435948i
\(277\) 11.7658 0.706941 0.353470 0.935446i \(-0.385002\pi\)
0.353470 + 0.935446i \(0.385002\pi\)
\(278\) 5.10828 + 10.0688i 0.306374 + 0.603888i
\(279\) −1.53115 −0.0916678
\(280\) 0 0
\(281\) −29.8347 −1.77979 −0.889895 0.456165i \(-0.849223\pi\)
−0.889895 + 0.456165i \(0.849223\pi\)
\(282\) 1.46830 + 2.89414i 0.0874363 + 0.172344i
\(283\) 4.82984 0.287104 0.143552 0.989643i \(-0.454148\pi\)
0.143552 + 0.989643i \(0.454148\pi\)
\(284\) −3.30289 2.41729i −0.195991 0.143440i
\(285\) 0.530298i 0.0314121i
\(286\) 13.4321 + 26.4757i 0.794258 + 1.56554i
\(287\) 0 0
\(288\) 4.03463 3.96506i 0.237743 0.233644i
\(289\) −15.2826 −0.898979
\(290\) 7.70621 3.90964i 0.452524 0.229582i
\(291\) 2.32666i 0.136391i
\(292\) 16.5790 + 12.1337i 0.970213 + 0.710070i
\(293\) 22.4276i 1.31023i −0.755528 0.655116i \(-0.772620\pi\)
0.755528 0.655116i \(-0.227380\pi\)
\(294\) 0 0
\(295\) 34.1321i 1.98725i
\(296\) −24.9537 4.08585i −1.45040 0.237485i
\(297\) 5.34455i 0.310122i
\(298\) −3.39228 6.68644i −0.196509 0.387335i
\(299\) 24.0838 1.39280
\(300\) 5.47865 7.48581i 0.316310 0.432193i
\(301\) 0 0
\(302\) −1.92530 + 0.976774i −0.110788 + 0.0562071i
\(303\) 7.44428i 0.427663i
\(304\) −0.206611 0.651265i −0.0118499 0.0373526i
\(305\) −20.4583 −1.17144
\(306\) 7.16580 3.63547i 0.409641 0.207826i
\(307\) −31.3123 −1.78709 −0.893543 0.448978i \(-0.851788\pi\)
−0.893543 + 0.448978i \(0.851788\pi\)
\(308\) 0 0
\(309\) −16.2959 −0.927042
\(310\) 5.99512 3.04154i 0.340500 0.172748i
\(311\) −15.4221 −0.874507 −0.437253 0.899338i \(-0.644049\pi\)
−0.437253 + 0.899338i \(0.644049\pi\)
\(312\) −1.79517 + 10.9637i −0.101631 + 0.620697i
\(313\) 6.09799i 0.344679i 0.985038 + 0.172339i \(0.0551326\pi\)
−0.985038 + 0.172339i \(0.944867\pi\)
\(314\) −15.6839 + 7.95703i −0.885095 + 0.449041i
\(315\) 0 0
\(316\) −23.2320 17.0029i −1.30690 0.956485i
\(317\) −29.7110 −1.66874 −0.834369 0.551206i \(-0.814168\pi\)
−0.834369 + 0.551206i \(0.814168\pi\)
\(318\) −0.767206 1.51222i −0.0430228 0.0848013i
\(319\) 10.5190i 0.588949i
\(320\) −7.92095 + 23.5394i −0.442794 + 1.31590i
\(321\) 16.7392i 0.934290i
\(322\) 0 0
\(323\) 0.970522i 0.0540013i
\(324\) −1.18119 + 1.61393i −0.0656218 + 0.0896631i
\(325\) 18.2184i 1.01057i
\(326\) −7.84898 + 3.98207i −0.434715 + 0.220547i
\(327\) 7.72117 0.426982
\(328\) 2.67048 16.3095i 0.147453 0.900543i
\(329\) 0 0
\(330\) −10.6166 20.9262i −0.584425 1.15195i
\(331\) 20.1722i 1.10877i −0.832262 0.554383i \(-0.812954\pi\)
0.832262 0.554383i \(-0.187046\pi\)
\(332\) −12.9675 + 17.7183i −0.711686 + 0.972420i
\(333\) 8.93993 0.489905
\(334\) −2.65248 5.22824i −0.145137 0.286077i
\(335\) 29.9525 1.63648
\(336\) 0 0
\(337\) 14.0021 0.762746 0.381373 0.924421i \(-0.375451\pi\)
0.381373 + 0.924421i \(0.375451\pi\)
\(338\) −1.55365 3.06236i −0.0845074 0.166571i
\(339\) −0.715845 −0.0388794
\(340\) −20.8355 + 28.4688i −1.12996 + 1.54394i
\(341\) 8.18333i 0.443152i
\(342\) 0.109294 + 0.215427i 0.00590995 + 0.0116490i
\(343\) 0 0
\(344\) 1.08904 6.65115i 0.0587173 0.358606i
\(345\) −19.0356 −1.02484
\(346\) 6.99498 3.54881i 0.376053 0.190785i
\(347\) 11.9859i 0.643435i 0.946836 + 0.321718i \(0.104260\pi\)
−0.946836 + 0.321718i \(0.895740\pi\)
\(348\) 2.32478 3.17649i 0.124621 0.170278i
\(349\) 28.8227i 1.54284i −0.636324 0.771422i \(-0.719546\pi\)
0.636324 0.771422i \(-0.280454\pi\)
\(350\) 0 0
\(351\) 3.92787i 0.209654i
\(352\) 21.1915 + 21.5633i 1.12951 + 1.14933i
\(353\) 0.114784i 0.00610936i 0.999995 + 0.00305468i \(0.000972336\pi\)
−0.999995 + 0.00305468i \(0.999028\pi\)
\(354\) 7.03462 + 13.8658i 0.373886 + 0.736958i
\(355\) −6.35342 −0.337204
\(356\) 9.39102 + 6.87301i 0.497723 + 0.364269i
\(357\) 0 0
\(358\) 1.60380 0.813668i 0.0847636 0.0430037i
\(359\) 1.97719i 0.104352i 0.998638 + 0.0521760i \(0.0166157\pi\)
−0.998638 + 0.0521760i \(0.983384\pi\)
\(360\) 1.41889 8.66560i 0.0747818 0.456717i
\(361\) −18.9708 −0.998464
\(362\) −0.487674 + 0.247415i −0.0256316 + 0.0130038i
\(363\) −17.5642 −0.921883
\(364\) 0 0
\(365\) 31.8912 1.66926
\(366\) −8.31095 + 4.21645i −0.434420 + 0.220397i
\(367\) 26.7789 1.39785 0.698925 0.715195i \(-0.253662\pi\)
0.698925 + 0.715195i \(0.253662\pi\)
\(368\) 23.3779 7.41652i 1.21866 0.386613i
\(369\) 5.84308i 0.304178i
\(370\) −35.0036 + 17.7586i −1.81975 + 0.923227i
\(371\) 0 0
\(372\) 1.80859 2.47118i 0.0937709 0.128125i
\(373\) 23.0396 1.19295 0.596474 0.802633i \(-0.296568\pi\)
0.596474 + 0.802633i \(0.296568\pi\)
\(374\) 19.4300 + 38.2980i 1.00470 + 1.98034i
\(375\) 1.12312i 0.0579975i
\(376\) −6.40531 1.04879i −0.330329 0.0540872i
\(377\) 7.73071i 0.398152i
\(378\) 0 0
\(379\) 22.3697i 1.14906i −0.818485 0.574528i \(-0.805186\pi\)
0.818485 0.574528i \(-0.194814\pi\)
\(380\) −0.855866 0.626383i −0.0439050 0.0321328i
\(381\) 15.4079i 0.789370i
\(382\) −8.31813 + 4.22009i −0.425592 + 0.215919i
\(383\) −28.7083 −1.46693 −0.733463 0.679730i \(-0.762097\pi\)
−0.733463 + 0.679730i \(0.762097\pi\)
\(384\) 1.63368 + 11.1951i 0.0833683 + 0.571299i
\(385\) 0 0
\(386\) 1.25222 + 2.46822i 0.0637363 + 0.125629i
\(387\) 2.38285i 0.121127i
\(388\) 3.75508 + 2.74823i 0.190635 + 0.139520i
\(389\) 12.3494 0.626138 0.313069 0.949730i \(-0.398643\pi\)
0.313069 + 0.949730i \(0.398643\pi\)
\(390\) 7.80247 + 15.3793i 0.395093 + 0.778760i
\(391\) 34.8380 1.76183
\(392\) 0 0
\(393\) 2.25918 0.113961
\(394\) −0.232223 0.457729i −0.0116992 0.0230601i
\(395\) −44.6890 −2.24855
\(396\) −8.62576 6.31294i −0.433461 0.317237i
\(397\) 17.9991i 0.903349i −0.892183 0.451674i \(-0.850827\pi\)
0.892183 0.451674i \(-0.149173\pi\)
\(398\) −6.31102 12.4395i −0.316343 0.623537i
\(399\) 0 0
\(400\) 5.61028 + 17.6844i 0.280514 + 0.884218i
\(401\) −0.0569723 −0.00284506 −0.00142253 0.999999i \(-0.500453\pi\)
−0.00142253 + 0.999999i \(0.500453\pi\)
\(402\) 12.1679 6.17321i 0.606878 0.307892i
\(403\) 6.01418i 0.299587i
\(404\) 12.0146 + 8.79313i 0.597748 + 0.437474i
\(405\) 3.10455i 0.154266i
\(406\) 0 0
\(407\) 47.7799i 2.36836i
\(408\) −2.59677 + 15.8593i −0.128559 + 0.785153i
\(409\) 35.0224i 1.73175i −0.500265 0.865873i \(-0.666764\pi\)
0.500265 0.865873i \(-0.333236\pi\)
\(410\) −11.6069 22.8781i −0.573224 1.12987i
\(411\) 20.0731 0.990131
\(412\) 19.2486 26.3005i 0.948311 1.29574i
\(413\) 0 0
\(414\) −7.73301 + 3.92324i −0.380057 + 0.192817i
\(415\) 34.0828i 1.67306i
\(416\) −15.5743 15.8475i −0.763591 0.776988i
\(417\) 7.98360 0.390958
\(418\) −1.15136 + 0.584128i −0.0563150 + 0.0285707i
\(419\) 17.9222 0.875558 0.437779 0.899083i \(-0.355765\pi\)
0.437779 + 0.899083i \(0.355765\pi\)
\(420\) 0 0
\(421\) −8.47542 −0.413067 −0.206533 0.978440i \(-0.566218\pi\)
−0.206533 + 0.978440i \(0.566218\pi\)
\(422\) 32.4477 16.4619i 1.57953 0.801352i
\(423\) 2.29477 0.111576
\(424\) 3.34685 + 0.548005i 0.162537 + 0.0266135i
\(425\) 26.3534i 1.27833i
\(426\) −2.58100 + 1.30944i −0.125050 + 0.0634424i
\(427\) 0 0
\(428\) 27.0159 + 19.7722i 1.30587 + 0.955725i
\(429\) 20.9927 1.01354
\(430\) −4.73338 9.32986i −0.228264 0.449926i
\(431\) 23.9988i 1.15598i 0.816044 + 0.577990i \(0.196163\pi\)
−0.816044 + 0.577990i \(0.803837\pi\)
\(432\) −1.20957 3.81273i −0.0581956 0.183440i
\(433\) 12.5505i 0.603137i 0.953445 + 0.301568i \(0.0975102\pi\)
−0.953445 + 0.301568i \(0.902490\pi\)
\(434\) 0 0
\(435\) 6.11028i 0.292965i
\(436\) −9.12018 + 12.4615i −0.436777 + 0.596796i
\(437\) 1.04734i 0.0501013i
\(438\) 12.9554 6.57277i 0.619035 0.314059i
\(439\) 7.15150 0.341323 0.170661 0.985330i \(-0.445410\pi\)
0.170661 + 0.985330i \(0.445410\pi\)
\(440\) 46.3137 + 7.58330i 2.20792 + 0.361520i
\(441\) 0 0
\(442\) −14.2797 28.1463i −0.679214 1.33878i
\(443\) 24.8722i 1.18172i 0.806776 + 0.590858i \(0.201211\pi\)
−0.806776 + 0.590858i \(0.798789\pi\)
\(444\) −10.5598 + 14.4285i −0.501145 + 0.684745i
\(445\) 18.0645 0.856339
\(446\) −10.3942 20.4879i −0.492182 0.970128i
\(447\) −5.30170 −0.250762
\(448\) 0 0
\(449\) −9.93727 −0.468969 −0.234484 0.972120i \(-0.575340\pi\)
−0.234484 + 0.972120i \(0.575340\pi\)
\(450\) −2.96776 5.84969i −0.139902 0.275757i
\(451\) −31.2286 −1.47050
\(452\) 0.845550 1.15533i 0.0397713 0.0543420i
\(453\) 1.52658i 0.0717248i
\(454\) −13.0838 25.7892i −0.614054 1.21035i
\(455\) 0 0
\(456\) −0.476783 0.0780674i −0.0223274 0.00365584i
\(457\) 26.0911 1.22049 0.610245 0.792213i \(-0.291071\pi\)
0.610245 + 0.792213i \(0.291071\pi\)
\(458\) −4.27482 + 2.16877i −0.199749 + 0.101340i
\(459\) 5.68178i 0.265203i
\(460\) 22.4847 30.7223i 1.04836 1.43243i
\(461\) 29.5120i 1.37451i 0.726417 + 0.687254i \(0.241184\pi\)
−0.726417 + 0.687254i \(0.758816\pi\)
\(462\) 0 0
\(463\) 2.80479i 0.130350i −0.997874 0.0651748i \(-0.979239\pi\)
0.997874 0.0651748i \(-0.0207605\pi\)
\(464\) 2.38064 + 7.50410i 0.110518 + 0.348369i
\(465\) 4.75355i 0.220440i
\(466\) 1.21850 + 2.40177i 0.0564461 + 0.111260i
\(467\) −32.9710 −1.52571 −0.762857 0.646567i \(-0.776204\pi\)
−0.762857 + 0.646567i \(0.776204\pi\)
\(468\) 6.33933 + 4.63957i 0.293035 + 0.214464i
\(469\) 0 0
\(470\) −8.98501 + 4.55843i −0.414448 + 0.210265i
\(471\) 12.4358i 0.573013i
\(472\) −30.6877 5.02473i −1.41252 0.231282i
\(473\) −12.7353 −0.585568
\(474\) −18.1544 + 9.21038i −0.833858 + 0.423047i
\(475\) −0.792271 −0.0363519
\(476\) 0 0
\(477\) −1.19905 −0.0549006
\(478\) −9.80472 + 4.97429i −0.448457 + 0.227519i
\(479\) 23.9252 1.09317 0.546585 0.837403i \(-0.315927\pi\)
0.546585 + 0.837403i \(0.315927\pi\)
\(480\) 12.3097 + 12.5257i 0.561860 + 0.571719i
\(481\) 35.1149i 1.60110i
\(482\) 15.2739 7.74900i 0.695706 0.352957i
\(483\) 0 0
\(484\) 20.7467 28.3475i 0.943033 1.28852i
\(485\) 7.22323 0.327990
\(486\) 0.639847 + 1.26119i 0.0290240 + 0.0572087i
\(487\) 0.822201i 0.0372575i 0.999826 + 0.0186287i \(0.00593006\pi\)
−0.999826 + 0.0186287i \(0.994070\pi\)
\(488\) 3.01175 18.3938i 0.136336 0.832646i
\(489\) 6.22348i 0.281435i
\(490\) 0 0
\(491\) 22.6377i 1.02163i −0.859692 0.510813i \(-0.829345\pi\)
0.859692 0.510813i \(-0.170655\pi\)
\(492\) −9.43034 6.90179i −0.425153 0.311157i
\(493\) 11.1827i 0.503643i
\(494\) 0.846171 0.429293i 0.0380710 0.0193148i
\(495\) −16.5924 −0.745774
\(496\) 1.85204 + 5.83788i 0.0831591 + 0.262129i
\(497\) 0 0
\(498\) 7.02446 + 13.8458i 0.314774 + 0.620443i
\(499\) 29.9874i 1.34242i −0.741267 0.671211i \(-0.765775\pi\)
0.741267 0.671211i \(-0.234225\pi\)
\(500\) −1.81264 1.32662i −0.0810636 0.0593281i
\(501\) −4.14549 −0.185207
\(502\) −5.05101 9.95593i −0.225438 0.444355i
\(503\) −28.7539 −1.28207 −0.641037 0.767510i \(-0.721496\pi\)
−0.641037 + 0.767510i \(0.721496\pi\)
\(504\) 0 0
\(505\) 23.1112 1.02843
\(506\) −20.9679 41.3295i −0.932139 1.83732i
\(507\) −2.42816 −0.107838
\(508\) 24.8673 + 18.1997i 1.10331 + 0.807479i
\(509\) 41.0461i 1.81934i 0.415336 + 0.909668i \(0.363664\pi\)
−0.415336 + 0.909668i \(0.636336\pi\)
\(510\) 11.2865 + 22.2466i 0.499775 + 0.985095i
\(511\) 0 0
\(512\) −19.9979 10.5870i −0.883791 0.467882i
\(513\) 0.170813 0.00754158
\(514\) 3.86322 1.95995i 0.170399 0.0864497i
\(515\) 50.5915i 2.22933i
\(516\) −3.84576 2.81460i −0.169300 0.123906i
\(517\) 12.2645i 0.539394i
\(518\) 0 0
\(519\) 5.54634i 0.243457i
\(520\) −34.0374 5.57320i −1.49264 0.244401i
\(521\) 20.4251i 0.894841i 0.894324 + 0.447420i \(0.147657\pi\)
−0.894324 + 0.447420i \(0.852343\pi\)
\(522\) −1.25933 2.48223i −0.0551192 0.108644i
\(523\) −1.90741 −0.0834053 −0.0417026 0.999130i \(-0.513278\pi\)
−0.0417026 + 0.999130i \(0.513278\pi\)
\(524\) −2.66852 + 3.64617i −0.116575 + 0.159284i
\(525\) 0 0
\(526\) 13.4044 6.80055i 0.584460 0.296518i
\(527\) 8.69968i 0.378964i
\(528\) 20.3773 6.46462i 0.886810 0.281336i
\(529\) −14.5956 −0.634592
\(530\) 4.69477 2.38183i 0.203928 0.103460i
\(531\) 10.9942 0.477108
\(532\) 0 0
\(533\) 22.9508 0.994111
\(534\) 7.33849 3.72308i 0.317568 0.161114i
\(535\) 51.9676 2.24676
\(536\) −4.40944 + 26.9299i −0.190459 + 1.16319i
\(537\) 1.27166i 0.0548762i
\(538\) −3.17204 + 1.60929i −0.136756 + 0.0693815i
\(539\) 0 0
\(540\) −5.01054 3.66707i −0.215619 0.157806i
\(541\) 35.5224 1.52723 0.763614 0.645673i \(-0.223423\pi\)
0.763614 + 0.645673i \(0.223423\pi\)
\(542\) −0.586235 1.15552i −0.0251810 0.0496336i
\(543\) 0.386679i 0.0165940i
\(544\) −22.5286 22.9239i −0.965907 0.982854i
\(545\) 23.9708i 1.02679i
\(546\) 0 0
\(547\) 9.02584i 0.385917i −0.981207 0.192959i \(-0.938192\pi\)
0.981207 0.192959i \(-0.0618083\pi\)
\(548\) −23.7101 + 32.3966i −1.01285 + 1.38392i
\(549\) 6.58977i 0.281245i
\(550\) 31.2640 15.8613i 1.33310 0.676330i
\(551\) −0.336189 −0.0143221
\(552\) 2.80232 17.1147i 0.119274 0.728449i
\(553\) 0 0
\(554\) 7.52833 + 14.8389i 0.319848 + 0.630446i
\(555\) 27.7545i 1.17811i
\(556\) −9.43016 + 12.8850i −0.399928 + 0.546446i
\(557\) 33.9921 1.44029 0.720145 0.693823i \(-0.244075\pi\)
0.720145 + 0.693823i \(0.244075\pi\)
\(558\) −0.979705 1.93107i −0.0414742 0.0817489i
\(559\) 9.35952 0.395865
\(560\) 0 0
\(561\) 30.3666 1.28208
\(562\) −19.0897 37.6272i −0.805249 1.58721i
\(563\) 12.8259 0.540547 0.270274 0.962784i \(-0.412886\pi\)
0.270274 + 0.962784i \(0.412886\pi\)
\(564\) −2.71057 + 3.70362i −0.114136 + 0.155950i
\(565\) 2.22238i 0.0934961i
\(566\) 3.09036 + 6.09133i 0.129897 + 0.256038i
\(567\) 0 0
\(568\) 0.935313 5.71227i 0.0392449 0.239681i
\(569\) 17.6976 0.741923 0.370962 0.928648i \(-0.379028\pi\)
0.370962 + 0.928648i \(0.379028\pi\)
\(570\) −0.668805 + 0.339309i −0.0280132 + 0.0142121i
\(571\) 23.7859i 0.995410i 0.867346 + 0.497705i \(0.165824\pi\)
−0.867346 + 0.497705i \(0.834176\pi\)
\(572\) −24.7964 + 33.8808i −1.03679 + 1.41663i
\(573\) 6.59547i 0.275530i
\(574\) 0 0
\(575\) 28.4395i 1.18601i
\(576\) 7.58224 + 2.55140i 0.315927 + 0.106308i
\(577\) 40.5467i 1.68798i 0.536357 + 0.843991i \(0.319800\pi\)
−0.536357 + 0.843991i \(0.680200\pi\)
\(578\) −9.77855 19.2743i −0.406734 0.801704i
\(579\) 1.95706 0.0813327
\(580\) 9.86159 + 7.21741i 0.409480 + 0.299687i
\(581\) 0 0
\(582\) 2.93436 1.48871i 0.121633 0.0617089i
\(583\) 6.40836i 0.265407i
\(584\) −4.69484 + 28.6729i −0.194274 + 1.18649i
\(585\) 12.1943 0.504171
\(586\) 28.2854 14.3502i 1.16846 0.592801i
\(587\) −26.0331 −1.07450 −0.537251 0.843422i \(-0.680537\pi\)
−0.537251 + 0.843422i \(0.680537\pi\)
\(588\) 0 0
\(589\) −0.261541 −0.0107766
\(590\) −43.0470 + 21.8393i −1.77222 + 0.899111i
\(591\) −0.362935 −0.0149291
\(592\) −10.8135 34.0856i −0.444432 1.40091i
\(593\) 11.2192i 0.460719i −0.973106 0.230359i \(-0.926010\pi\)
0.973106 0.230359i \(-0.0739901\pi\)
\(594\) −6.74049 + 3.41969i −0.276565 + 0.140312i
\(595\) 0 0
\(596\) 6.26232 8.55660i 0.256515 0.350492i
\(597\) −9.86333 −0.403679
\(598\) 15.4100 + 30.3743i 0.630160 + 1.24210i
\(599\) 17.3998i 0.710935i −0.934689 0.355467i \(-0.884322\pi\)
0.934689 0.355467i \(-0.115678\pi\)
\(600\) 12.9465 + 2.11983i 0.528539 + 0.0865417i
\(601\) 18.1962i 0.742237i 0.928585 + 0.371119i \(0.121026\pi\)
−0.928585 + 0.371119i \(0.878974\pi\)
\(602\) 0 0
\(603\) 9.64794i 0.392895i
\(604\) −2.46379 1.80318i −0.100250 0.0733703i
\(605\) 54.5290i 2.21692i
\(606\) 9.38864 4.76320i 0.381388 0.193492i
\(607\) −5.45708 −0.221496 −0.110748 0.993849i \(-0.535325\pi\)
−0.110748 + 0.993849i \(0.535325\pi\)
\(608\) 0.689168 0.677284i 0.0279495 0.0274675i
\(609\) 0 0
\(610\) −13.0902 25.8018i −0.530006 1.04468i
\(611\) 9.01358i 0.364650i
\(612\) 9.17002 + 6.71127i 0.370676 + 0.271287i
\(613\) −30.1051 −1.21593 −0.607967 0.793962i \(-0.708015\pi\)
−0.607967 + 0.793962i \(0.708015\pi\)
\(614\) −20.0351 39.4907i −0.808549 1.59371i
\(615\) −18.1401 −0.731480
\(616\) 0 0
\(617\) 38.4324 1.54723 0.773616 0.633655i \(-0.218446\pi\)
0.773616 + 0.633655i \(0.218446\pi\)
\(618\) −10.4269 20.5522i −0.419431 0.826732i
\(619\) 18.3356 0.736970 0.368485 0.929634i \(-0.379877\pi\)
0.368485 + 0.929634i \(0.379877\pi\)
\(620\) 7.67192 + 5.61485i 0.308112 + 0.225498i
\(621\) 6.13153i 0.246050i
\(622\) −9.86778 19.4502i −0.395662 0.779881i
\(623\) 0 0
\(624\) −14.9759 + 4.75104i −0.599517 + 0.190194i
\(625\) −26.6779 −1.06712
\(626\) −7.69071 + 3.90178i −0.307383 + 0.155947i
\(627\) 0.912919i 0.0364585i
\(628\) −20.0706 14.6891i −0.800905 0.586159i
\(629\) 50.7948i 2.02532i
\(630\) 0 0
\(631\) 44.4442i 1.76930i 0.466259 + 0.884648i \(0.345601\pi\)
−0.466259 + 0.884648i \(0.654399\pi\)
\(632\) 6.57885 40.1792i 0.261693 1.59824i
\(633\) 25.7279i 1.02259i
\(634\) −19.0105 37.4712i −0.755004 1.48817i
\(635\) 47.8345 1.89826
\(636\) 1.41630 1.93518i 0.0561601 0.0767350i
\(637\) 0 0
\(638\) 13.2664 6.73053i 0.525222 0.266464i
\(639\) 2.04649i 0.0809577i
\(640\) −34.7559 + 5.07184i −1.37385 + 0.200482i
\(641\) 0.827523 0.0326852 0.0163426 0.999866i \(-0.494798\pi\)
0.0163426 + 0.999866i \(0.494798\pi\)
\(642\) 21.1113 10.7105i 0.833195 0.422710i
\(643\) 50.0469 1.97366 0.986829 0.161764i \(-0.0517183\pi\)
0.986829 + 0.161764i \(0.0517183\pi\)
\(644\) 0 0
\(645\) −7.39767 −0.291283
\(646\) 1.22401 0.620986i 0.0481581 0.0244324i
\(647\) 17.3220 0.680998 0.340499 0.940245i \(-0.389404\pi\)
0.340499 + 0.940245i \(0.389404\pi\)
\(648\) −2.79126 0.457034i −0.109651 0.0179540i
\(649\) 58.7592i 2.30650i
\(650\) −22.9768 + 11.6570i −0.901225 + 0.457224i
\(651\) 0 0
\(652\) −10.0443 7.35112i −0.393365 0.287892i
\(653\) 6.96007 0.272368 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(654\) 4.94037 + 9.73785i 0.193184 + 0.380780i
\(655\) 7.01374i 0.274049i
\(656\) 22.2781 7.06762i 0.869813 0.275944i
\(657\) 10.2724i 0.400765i
\(658\) 0 0
\(659\) 20.5979i 0.802381i −0.915995 0.401191i \(-0.868596\pi\)
0.915995 0.401191i \(-0.131404\pi\)
\(660\) 19.5988 26.7791i 0.762884 1.04238i
\(661\) 43.7552i 1.70188i −0.525262 0.850940i \(-0.676033\pi\)
0.525262 0.850940i \(-0.323967\pi\)
\(662\) 25.4410 12.9071i 0.988792 0.501650i
\(663\) −22.3173 −0.866732
\(664\) −30.6434 5.01748i −1.18919 0.194716i
\(665\) 0 0
\(666\) 5.72019 + 11.2749i 0.221653 + 0.436895i
\(667\) 12.0679i 0.467270i
\(668\) 4.89662 6.69055i 0.189456 0.258865i
\(669\) −16.2449 −0.628064
\(670\) 19.1650 + 37.7758i 0.740410 + 1.45941i
\(671\) −35.2194 −1.35963
\(672\) 0 0
\(673\) 5.42765 0.209220 0.104610 0.994513i \(-0.466641\pi\)
0.104610 + 0.994513i \(0.466641\pi\)
\(674\) 8.95923 + 17.6593i 0.345097 + 0.680213i
\(675\) −4.63824 −0.178526
\(676\) 2.86812 3.91889i 0.110312 0.150726i
\(677\) 33.9056i 1.30310i −0.758607 0.651549i \(-0.774120\pi\)
0.758607 0.651549i \(-0.225880\pi\)
\(678\) −0.458031 0.902815i −0.0175906 0.0346724i
\(679\) 0 0
\(680\) −49.2361 8.06180i −1.88812 0.309156i
\(681\) −20.4484 −0.783583
\(682\) 10.3207 5.23608i 0.395201 0.200500i
\(683\) 5.89787i 0.225676i 0.993613 + 0.112838i \(0.0359941\pi\)
−0.993613 + 0.112838i \(0.964006\pi\)
\(684\) −0.201763 + 0.275681i −0.00771460 + 0.0105409i
\(685\) 62.3179i 2.38104i
\(686\) 0 0
\(687\) 3.38952i 0.129318i
\(688\) 9.08517 2.88223i 0.346369 0.109884i
\(689\) 4.70970i 0.179425i
\(690\) −12.1799 24.0075i −0.463681 0.913951i
\(691\) −43.3271 −1.64824 −0.824119 0.566416i \(-0.808329\pi\)
−0.824119 + 0.566416i \(0.808329\pi\)
\(692\) 8.95144 + 6.55129i 0.340283 + 0.249043i
\(693\) 0 0
\(694\) −15.1164 + 7.66913i −0.573812 + 0.291116i
\(695\) 24.7855i 0.940167i
\(696\) 5.49366 + 0.899520i 0.208237 + 0.0340962i
\(697\) 33.1991 1.25750
\(698\) 36.3509 18.4421i 1.37590 0.698045i
\(699\) 1.90437 0.0720298
\(700\) 0 0
\(701\) 28.9345 1.09284 0.546420 0.837511i \(-0.315990\pi\)
0.546420 + 0.837511i \(0.315990\pi\)
\(702\) 4.95378 2.51324i 0.186968 0.0948559i
\(703\) 1.52706 0.0575941
\(704\) −13.6361 + 40.5237i −0.513929 + 1.52729i
\(705\) 7.12425i 0.268315i
\(706\) −0.144765 + 0.0734444i −0.00544829 + 0.00276412i
\(707\) 0 0
\(708\) −12.9863 + 17.7440i −0.488054 + 0.666859i
\(709\) 16.7583 0.629373 0.314686 0.949196i \(-0.398101\pi\)
0.314686 + 0.949196i \(0.398101\pi\)
\(710\) −4.06521 8.01286i −0.152565 0.300717i
\(711\) 14.3947i 0.539842i
\(712\) −2.65935 + 16.2415i −0.0996633 + 0.608677i
\(713\) 9.38831i 0.351595i
\(714\) 0 0
\(715\) 65.1729i 2.43733i
\(716\) 2.05238 + 1.50207i 0.0767009 + 0.0561352i
\(717\) 7.77419i 0.290333i
\(718\) −2.49361 + 1.26510i −0.0930605 + 0.0472130i
\(719\) −30.8239 −1.14954 −0.574768 0.818316i \(-0.694908\pi\)
−0.574768 + 0.818316i \(0.694908\pi\)
\(720\) 11.8368 3.75518i 0.441132 0.139947i
\(721\) 0 0
\(722\) −12.1384 23.9258i −0.451745 0.890425i
\(723\) 12.1107i 0.450402i
\(724\) −0.624074 0.456742i −0.0231935 0.0169747i
\(725\) 9.12883 0.339036
\(726\) −11.2384 22.1518i −0.417097 0.822130i
\(727\) 20.6890 0.767313 0.383657 0.923476i \(-0.374665\pi\)
0.383657 + 0.923476i \(0.374665\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 20.4055 + 40.2208i 0.755241 + 1.48864i
\(731\) 13.5388 0.500752
\(732\) −10.6355 7.78379i −0.393098 0.287697i
\(733\) 25.2113i 0.931201i 0.884995 + 0.465601i \(0.154162\pi\)
−0.884995 + 0.465601i \(0.845838\pi\)
\(734\) 17.1344 + 33.7733i 0.632443 + 1.24660i
\(735\) 0 0
\(736\) 24.3119 + 24.7385i 0.896148 + 0.911872i
\(737\) 51.5639 1.89938
\(738\) −7.36922 + 3.73867i −0.271265 + 0.137622i
\(739\) 29.1040i 1.07061i −0.844659 0.535305i \(-0.820197\pi\)
0.844659 0.535305i \(-0.179803\pi\)
\(740\) −44.7939 32.7834i −1.64666 1.20514i
\(741\) 0.670931i 0.0246473i
\(742\) 0 0
\(743\) 4.72777i 0.173445i 0.996233 + 0.0867226i \(0.0276394\pi\)
−0.996233 + 0.0867226i \(0.972361\pi\)
\(744\) 4.27385 + 0.699790i 0.156687 + 0.0256555i
\(745\) 16.4594i 0.603026i
\(746\) 14.7418 + 29.0573i 0.539737 + 1.06386i
\(747\) 10.9783 0.401677
\(748\) −35.8687 + 49.0097i −1.31149 + 1.79197i
\(749\) 0 0
\(750\) −1.41646 + 0.718623i −0.0517219 + 0.0262404i
\(751\) 7.35651i 0.268443i 0.990951 + 0.134221i \(0.0428533\pi\)
−0.990951 + 0.134221i \(0.957147\pi\)
\(752\) −2.77570 8.74937i −0.101219 0.319057i
\(753\) −7.89409 −0.287677
\(754\) −9.74988 + 4.94647i −0.355070 + 0.180140i
\(755\) −4.73933 −0.172482
\(756\) 0 0
\(757\) 6.36602 0.231377 0.115688 0.993286i \(-0.463093\pi\)
0.115688 + 0.993286i \(0.463093\pi\)
\(758\) 28.2125 14.3132i 1.02472 0.519879i
\(759\) −32.7703 −1.18948
\(760\) 0.242364 1.48020i 0.00879147 0.0536924i
\(761\) 2.01702i 0.0731167i 0.999332 + 0.0365584i \(0.0116395\pi\)
−0.999332 + 0.0365584i \(0.988361\pi\)
\(762\) 19.4322 9.85868i 0.703956 0.357142i
\(763\) 0 0
\(764\) −10.6447 7.79051i −0.385110 0.281851i
\(765\) 17.6394 0.637753
\(766\) −18.3689 36.2066i −0.663696 1.30820i
\(767\) 43.1839i 1.55928i
\(768\) −13.0739 + 9.22355i −0.471763 + 0.332826i
\(769\) 52.1122i 1.87922i −0.342253 0.939608i \(-0.611190\pi\)
0.342253 0.939608i \(-0.388810\pi\)
\(770\) 0 0
\(771\) 3.06316i 0.110317i
\(772\) −2.31167 + 3.15857i −0.0831987 + 0.113679i
\(773\) 25.2185i 0.907045i −0.891245 0.453523i \(-0.850167\pi\)
0.891245 0.453523i \(-0.149833\pi\)
\(774\) −3.00522 + 1.52466i −0.108020 + 0.0548027i
\(775\) 7.10186 0.255106
\(776\) −1.06336 + 6.49431i −0.0381725 + 0.233132i
\(777\) 0 0
\(778\) 7.90171 + 15.5749i 0.283290 + 0.558387i
\(779\) 0.998073i 0.0357597i
\(780\) −14.4038 + 19.6808i −0.515738 + 0.704684i
\(781\) −10.9375 −0.391376
\(782\) 22.2910 + 43.9373i 0.797124 + 1.57119i
\(783\) −1.96817 −0.0703366
\(784\) 0 0
\(785\) −38.6077 −1.37797
\(786\) 1.44553 + 2.84925i 0.0515603 + 0.101629i
\(787\) 23.4850 0.837148 0.418574 0.908183i \(-0.362530\pi\)
0.418574 + 0.908183i \(0.362530\pi\)
\(788\) 0.428696 0.585753i 0.0152717 0.0208666i
\(789\) 10.6284i 0.378381i
\(790\) −28.5941 56.3612i −1.01733 2.00524i
\(791\) 0 0
\(792\) 2.44264 14.9180i 0.0867955 0.530089i
\(793\) 25.8838 0.919160
\(794\) 22.7002 11.5167i 0.805602 0.408711i
\(795\) 3.72250i 0.132023i
\(796\) 11.6505 15.9188i 0.412941 0.564226i
\(797\) 44.2469i 1.56730i −0.621200 0.783652i \(-0.713354\pi\)
0.621200 0.783652i \(-0.286646\pi\)
\(798\) 0 0
\(799\) 13.0384i 0.461266i
\(800\) −18.7136 + 18.3909i −0.661625 + 0.650216i
\(801\) 5.81871i 0.205594i
\(802\) −0.0364535 0.0718528i −0.00128722 0.00253721i
\(803\) 54.9014 1.93743
\(804\) 15.5712 + 11.3961i 0.549152 + 0.401908i
\(805\) 0 0
\(806\) −7.58501 + 3.84815i −0.267170 + 0.135545i
\(807\) 2.51512i 0.0885364i
\(808\) −3.40229 + 20.7789i −0.119692 + 0.731000i
\(809\) −29.9743 −1.05384 −0.526920 0.849915i \(-0.676653\pi\)
−0.526920 + 0.849915i \(0.676653\pi\)
\(810\) −3.91542 + 1.98644i −0.137574 + 0.0697963i
\(811\) 8.74124 0.306946 0.153473 0.988153i \(-0.450954\pi\)
0.153473 + 0.988153i \(0.450954\pi\)
\(812\) 0 0
\(813\) −0.916212 −0.0321329
\(814\) −60.2595 + 30.5718i −2.11209 + 1.07154i
\(815\) −19.3211 −0.676789
\(816\) −21.6631 + 6.87252i −0.758361 + 0.240586i
\(817\) 0.407022i 0.0142399i
\(818\) 44.1698 22.4090i 1.54436 0.783511i
\(819\) 0 0
\(820\) 21.4270 29.2770i 0.748262 1.02240i
\(821\) −48.0127 −1.67566 −0.837828 0.545935i \(-0.816175\pi\)
−0.837828 + 0.545935i \(0.816175\pi\)
\(822\) 12.8437 + 25.3159i 0.447975 + 0.882994i
\(823\) 20.1297i 0.701676i 0.936436 + 0.350838i \(0.114103\pi\)
−0.936436 + 0.350838i \(0.885897\pi\)
\(824\) 45.4861 + 7.44779i 1.58458 + 0.259456i
\(825\) 24.7893i 0.863052i
\(826\) 0 0
\(827\) 24.4464i 0.850084i 0.905174 + 0.425042i \(0.139741\pi\)
−0.905174 + 0.425042i \(0.860259\pi\)
\(828\) −9.89588 7.24251i −0.343906 0.251695i
\(829\) 10.8168i 0.375682i 0.982199 + 0.187841i \(0.0601490\pi\)
−0.982199 + 0.187841i \(0.939851\pi\)
\(830\) −42.9849 + 21.8078i −1.49203 + 0.756959i
\(831\) 11.7658 0.408152
\(832\) 10.0216 29.7820i 0.347435 1.03251i
\(833\) 0 0
\(834\) 5.10828 + 10.0688i 0.176885 + 0.348655i
\(835\) 12.8699i 0.445381i
\(836\) −1.47339 1.07833i −0.0509583 0.0372949i
\(837\) −1.53115 −0.0529244
\(838\) 11.4675 + 22.6033i 0.396137 + 0.780818i
\(839\) −10.6831 −0.368821 −0.184410 0.982849i \(-0.559038\pi\)
−0.184410 + 0.982849i \(0.559038\pi\)
\(840\) 0 0
\(841\) −25.1263 −0.866425
\(842\) −5.42297 10.6891i −0.186888 0.368371i
\(843\) −29.8347 −1.02756
\(844\) 41.5231 + 30.3895i 1.42928 + 1.04605i
\(845\) 7.53834i 0.259327i
\(846\) 1.46830 + 2.89414i 0.0504814 + 0.0995027i
\(847\) 0 0
\(848\) 1.45033 + 4.57164i 0.0498046 + 0.156991i
\(849\) 4.82984 0.165760
\(850\) −33.2366 + 16.8622i −1.14001 + 0.578368i
\(851\) 54.8154i 1.87905i
\(852\) −3.30289 2.41729i −0.113155 0.0828150i
\(853\) 47.6336i 1.63094i 0.578796 + 0.815472i \(0.303523\pi\)
−0.578796 + 0.815472i \(0.696477\pi\)
\(854\) 0 0
\(855\) 0.530298i 0.0181358i
\(856\) −7.65037 + 46.7234i −0.261484 + 1.59697i
\(857\) 17.9251i 0.612311i 0.951981 + 0.306156i \(0.0990428\pi\)
−0.951981 + 0.306156i \(0.900957\pi\)
\(858\) 13.4321 + 26.4757i 0.458565 + 0.903867i
\(859\) 19.2616 0.657199 0.328599 0.944469i \(-0.393423\pi\)
0.328599 + 0.944469i \(0.393423\pi\)
\(860\) 8.73807 11.9394i 0.297966 0.407129i
\(861\) 0 0
\(862\) −30.2670 + 15.3555i −1.03090 + 0.523012i
\(863\) 7.57076i 0.257712i 0.991663 + 0.128856i \(0.0411305\pi\)
−0.991663 + 0.128856i \(0.958870\pi\)
\(864\) 4.03463 3.96506i 0.137261 0.134894i
\(865\) 17.2189 0.585460
\(866\) −15.8285 + 8.03038i −0.537874 + 0.272883i
\(867\) −15.2826 −0.519026
\(868\) 0 0
\(869\) −76.9330 −2.60977
\(870\) 7.70621 3.90964i 0.261265 0.132549i
\(871\) −37.8959 −1.28405
\(872\) −21.5518 3.52884i −0.729835 0.119501i
\(873\) 2.32666i 0.0787455i
\(874\) −1.32090 + 0.670140i −0.0446801 + 0.0226678i
\(875\) 0 0
\(876\) 16.5790 + 12.1337i 0.560152 + 0.409959i
\(877\) −23.0973 −0.779939 −0.389969 0.920828i \(-0.627514\pi\)
−0.389969 + 0.920828i \(0.627514\pi\)
\(878\) 4.57587 + 9.01939i 0.154428 + 0.304390i
\(879\) 22.4276i 0.756463i
\(880\) 20.0697 + 63.2625i 0.676551 + 2.13258i
\(881\) 26.0108i 0.876325i 0.898896 + 0.438163i \(0.144371\pi\)
−0.898896 + 0.438163i \(0.855629\pi\)
\(882\) 0 0
\(883\) 13.5662i 0.456539i −0.973598 0.228270i \(-0.926693\pi\)
0.973598 0.228270i \(-0.0733068\pi\)
\(884\) 26.3610 36.0187i 0.886617 1.21144i
\(885\) 34.1321i 1.14734i
\(886\) −31.3686 + 15.9144i −1.05385 + 0.534656i
\(887\) 1.15898 0.0389147 0.0194573 0.999811i \(-0.493806\pi\)
0.0194573 + 0.999811i \(0.493806\pi\)
\(888\) −24.9537 4.08585i −0.837390 0.137112i
\(889\) 0 0
\(890\) 11.5585 + 22.7827i 0.387442 + 0.763678i
\(891\) 5.34455i 0.179049i
\(892\) 19.1883 26.2182i 0.642473 0.877850i
\(893\) 0.391977 0.0131170
\(894\) −3.39228 6.68644i −0.113455 0.223628i
\(895\) 3.94793 0.131965
\(896\) 0 0
\(897\) 24.0838 0.804136
\(898\) −6.35833 12.5328i −0.212180 0.418224i
\(899\) 3.01357 0.100508
\(900\) 5.47865 7.48581i 0.182622 0.249527i
\(901\) 6.81272i 0.226965i
\(902\) −19.9815 39.3852i −0.665312 1.31138i
\(903\) 0 0
\(904\) 1.99811 + 0.327166i 0.0664561 + 0.0108814i
\(905\) −1.20046 −0.0399047
\(906\) −1.92530 + 0.976774i −0.0639638 + 0.0324512i
\(907\) 37.1328i 1.23298i 0.787364 + 0.616488i \(0.211445\pi\)
−0.787364 + 0.616488i \(0.788555\pi\)
\(908\) 24.1534 33.0023i 0.801560 1.09522i
\(909\) 7.44428i 0.246911i
\(910\) 0 0
\(911\) 27.9490i 0.925992i −0.886360 0.462996i \(-0.846774\pi\)
0.886360 0.462996i \(-0.153226\pi\)
\(912\) −0.206611 0.651265i −0.00684156 0.0215655i
\(913\) 58.6743i 1.94184i
\(914\) 16.6943 + 32.9058i 0.552198 + 1.08843i
\(915\) −20.4583 −0.676330
\(916\) −5.47046 4.00367i −0.180749 0.132285i
\(917\) 0 0
\(918\) 7.16580 3.63547i 0.236507 0.119988i
\(919\) 8.62097i 0.284380i 0.989839 + 0.142190i \(0.0454143\pi\)
−0.989839 + 0.142190i \(0.954586\pi\)
\(920\) 53.1334 + 8.69993i 1.75176 + 0.286828i
\(921\) −31.3123 −1.03177
\(922\) −37.2201 + 18.8831i −1.22578 + 0.621883i
\(923\) 8.03833 0.264585
\(924\) 0 0
\(925\) −41.4655 −1.36338
\(926\) 3.53737 1.79464i 0.116245 0.0589754i
\(927\) −16.2959 −0.535228
\(928\) −7.94084 + 7.80391i −0.260671 + 0.256176i
\(929\) 22.7403i 0.746086i 0.927814 + 0.373043i \(0.121686\pi\)
−0.927814 + 0.373043i \(0.878314\pi\)
\(930\) 5.99512 3.04154i 0.196588 0.0997361i
\(931\) 0 0
\(932\) −2.24942 + 3.07353i −0.0736823 + 0.100677i
\(933\) −15.4221 −0.504897
\(934\) −21.0964 41.5826i −0.690294 1.36062i
\(935\) 94.2746i 3.08311i
\(936\) −1.79517 + 10.9637i −0.0586770 + 0.358360i
\(937\) 0.364981i 0.0119234i 0.999982 + 0.00596171i \(0.00189768\pi\)
−0.999982 + 0.00596171i \(0.998102\pi\)
\(938\) 0 0
\(939\) 6.09799i 0.199000i
\(940\) −11.4981 8.41510i −0.375026 0.274470i
\(941\) 18.7799i 0.612207i −0.951998 0.306104i \(-0.900975\pi\)
0.951998 0.306104i \(-0.0990254\pi\)
\(942\) −15.6839 + 7.95703i −0.511010 + 0.259254i
\(943\) −35.8270 −1.16669
\(944\) −13.2983 41.9180i −0.432823 1.36432i
\(945\) 0 0
\(946\) −8.14861 16.0616i −0.264934 0.522206i
\(947\) 4.20227i 0.136555i 0.997666 + 0.0682776i \(0.0217504\pi\)
−0.997666 + 0.0682776i \(0.978250\pi\)
\(948\) −23.2320 17.0029i −0.754542 0.552227i
\(949\) −40.3487 −1.30977
\(950\) −0.506932 0.999203i −0.0164471 0.0324184i
\(951\) −29.7110 −0.963446
\(952\) 0 0
\(953\) −24.9457 −0.808072 −0.404036 0.914743i \(-0.632393\pi\)
−0.404036 + 0.914743i \(0.632393\pi\)
\(954\) −0.767206 1.51222i −0.0248392 0.0489600i
\(955\) −20.4760 −0.662587
\(956\) −12.5470 9.18281i −0.405800 0.296993i
\(957\) 10.5190i 0.340030i
\(958\) 15.3085 + 30.1742i 0.494594 + 0.974884i
\(959\) 0 0
\(960\) −7.92095 + 23.5394i −0.255648 + 0.759732i
\(961\) −28.6556 −0.924373
\(962\) 44.2865 22.4682i 1.42785 0.724402i
\(963\) 16.7392i 0.539413i
\(964\) 19.5459 + 14.3051i 0.629531 + 0.460735i
\(965\) 6.07580i 0.195587i
\(966\) 0 0
\(967\) 45.6476i 1.46793i 0.679188 + 0.733964i \(0.262332\pi\)
−0.679188 + 0.733964i \(0.737668\pi\)
\(968\) 49.0263 + 8.02745i 1.57576 + 0.258012i
\(969\) 0.970522i 0.0311777i
\(970\) 4.62176 + 9.10986i 0.148396 + 0.292500i
\(971\) −50.6854 −1.62657 −0.813286 0.581864i \(-0.802324\pi\)
−0.813286 + 0.581864i \(0.802324\pi\)
\(972\) −1.18119 + 1.61393i −0.0378867 + 0.0517670i
\(973\) 0 0
\(974\) −1.03695 + 0.526083i −0.0332260 + 0.0168568i
\(975\) 18.2184i 0.583455i
\(976\) 25.1251 7.97080i 0.804233 0.255139i
\(977\) 30.6897 0.981850 0.490925 0.871202i \(-0.336659\pi\)
0.490925 + 0.871202i \(0.336659\pi\)
\(978\) −7.84898 + 3.98207i −0.250983 + 0.127333i
\(979\) 31.0984 0.993909
\(980\) 0 0
\(981\) 7.72117 0.246518
\(982\) 28.5504 14.4847i 0.911080 0.462224i
\(983\) −24.6949 −0.787646 −0.393823 0.919186i \(-0.628848\pi\)
−0.393823 + 0.919186i \(0.628848\pi\)
\(984\) 2.67048 16.3095i 0.0851319 0.519929i
\(985\) 1.12675i 0.0359012i
\(986\) −14.1035 + 7.15522i −0.449147 + 0.227868i
\(987\) 0 0
\(988\) 1.08284 + 0.792498i 0.0344497 + 0.0252127i
\(989\) −14.6105 −0.464587
\(990\) −10.6166 20.9262i −0.337418 0.665078i
\(991\) 58.9597i 1.87292i −0.350778 0.936459i \(-0.614083\pi\)
0.350778 0.936459i \(-0.385917\pi\)
\(992\) −6.17765 + 6.07113i −0.196141 + 0.192758i
\(993\) 20.1722i 0.640147i
\(994\) 0 0
\(995\) 30.6212i 0.970758i
\(996\) −12.9675 + 17.7183i −0.410892 + 0.561427i
\(997\) 25.6594i 0.812640i 0.913731 + 0.406320i \(0.133188\pi\)
−0.913731 + 0.406320i \(0.866812\pi\)
\(998\) 37.8198 19.1874i 1.19716 0.607365i
\(999\) 8.93993 0.282847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.b.d.391.8 yes 12
3.2 odd 2 1764.2.b.m.1567.5 12
4.3 odd 2 588.2.b.c.391.7 12
7.2 even 3 588.2.o.e.31.9 24
7.3 odd 6 588.2.o.f.19.1 24
7.4 even 3 588.2.o.e.19.1 24
7.5 odd 6 588.2.o.f.31.9 24
7.6 odd 2 588.2.b.c.391.8 yes 12
12.11 even 2 1764.2.b.l.1567.6 12
21.20 even 2 1764.2.b.l.1567.5 12
28.3 even 6 588.2.o.e.19.9 24
28.11 odd 6 588.2.o.f.19.9 24
28.19 even 6 588.2.o.e.31.1 24
28.23 odd 6 588.2.o.f.31.1 24
28.27 even 2 inner 588.2.b.d.391.7 yes 12
84.83 odd 2 1764.2.b.m.1567.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.7 12 4.3 odd 2
588.2.b.c.391.8 yes 12 7.6 odd 2
588.2.b.d.391.7 yes 12 28.27 even 2 inner
588.2.b.d.391.8 yes 12 1.1 even 1 trivial
588.2.o.e.19.1 24 7.4 even 3
588.2.o.e.19.9 24 28.3 even 6
588.2.o.e.31.1 24 28.19 even 6
588.2.o.e.31.9 24 7.2 even 3
588.2.o.f.19.1 24 7.3 odd 6
588.2.o.f.19.9 24 28.11 odd 6
588.2.o.f.31.1 24 28.23 odd 6
588.2.o.f.31.9 24 7.5 odd 6
1764.2.b.l.1567.5 12 21.20 even 2
1764.2.b.l.1567.6 12 12.11 even 2
1764.2.b.m.1567.5 12 3.2 odd 2
1764.2.b.m.1567.6 12 84.83 odd 2