Properties

Label 588.2.b.c.391.8
Level $588$
Weight $2$
Character 588.391
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(391,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.391"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.15911316233388032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 10 x^{10} - 20 x^{9} + 35 x^{8} - 56 x^{7} + 84 x^{6} - 112 x^{5} + 140 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 391.8
Root \(0.639847 + 1.26119i\) of defining polynomial
Character \(\chi\) \(=\) 588.391
Dual form 588.2.b.c.391.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.639847 + 1.26119i) q^{2} -1.00000 q^{3} +(-1.18119 + 1.61393i) q^{4} -3.10455i q^{5} +(-0.639847 - 1.26119i) q^{6} +(-2.79126 - 0.457034i) q^{8} +1.00000 q^{9} +(3.91542 - 1.98644i) q^{10} +5.34455i q^{11} +(1.18119 - 1.61393i) q^{12} +3.92787i q^{13} +3.10455i q^{15} +(-1.20957 - 3.81273i) q^{16} +5.68178i q^{17} +(0.639847 + 1.26119i) q^{18} -0.170813 q^{19} +(5.01054 + 3.66707i) q^{20} +(-6.74049 + 3.41969i) q^{22} +6.13153i q^{23} +(2.79126 + 0.457034i) q^{24} -4.63824 q^{25} +(-4.95378 + 2.51324i) q^{26} -1.00000 q^{27} -1.96817 q^{29} +(-3.91542 + 1.98644i) q^{30} +1.53115 q^{31} +(4.03463 - 3.96506i) q^{32} -5.34455i q^{33} +(-7.16580 + 3.63547i) q^{34} +(-1.18119 + 1.61393i) q^{36} +8.93993 q^{37} +(-0.109294 - 0.215427i) q^{38} -3.92787i q^{39} +(-1.41889 + 8.66560i) q^{40} -5.84308i q^{41} +2.38285i q^{43} +(-8.62576 - 6.31294i) q^{44} -3.10455i q^{45} +(-7.73301 + 3.92324i) q^{46} -2.29477 q^{47} +(1.20957 + 3.81273i) q^{48} +(-2.96776 - 5.84969i) q^{50} -5.68178i q^{51} +(-6.33933 - 4.63957i) q^{52} -1.19905 q^{53} +(-0.639847 - 1.26119i) q^{54} +16.5924 q^{55} +0.170813 q^{57} +(-1.25933 - 2.48223i) q^{58} -10.9942 q^{59} +(-5.01054 - 3.66707i) q^{60} -6.58977i q^{61} +(0.979705 + 1.93107i) q^{62} +(7.58224 + 2.55140i) q^{64} +12.1943 q^{65} +(6.74049 - 3.41969i) q^{66} -9.64794i q^{67} +(-9.17002 - 6.71127i) q^{68} -6.13153i q^{69} +2.04649i q^{71} +(-2.79126 - 0.457034i) q^{72} +10.2724i q^{73} +(5.72019 + 11.2749i) q^{74} +4.63824 q^{75} +(0.201763 - 0.275681i) q^{76} +(4.95378 - 2.51324i) q^{78} +14.3947i q^{79} +(-11.8368 + 3.75518i) q^{80} +1.00000 q^{81} +(7.36922 - 3.73867i) q^{82} -10.9783 q^{83} +17.6394 q^{85} +(-3.00522 + 1.52466i) q^{86} +1.96817 q^{87} +(2.44264 - 14.9180i) q^{88} +5.81871i q^{89} +(3.91542 - 1.98644i) q^{90} +(-9.89588 - 7.24251i) q^{92} -1.53115 q^{93} +(-1.46830 - 2.89414i) q^{94} +0.530298i q^{95} +(-4.03463 + 3.96506i) q^{96} +2.32666i q^{97} +5.34455i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} - 12 q^{3} - 4 q^{4} - 4 q^{6} + 4 q^{8} + 12 q^{9} + 4 q^{12} - 4 q^{16} + 4 q^{18} + 24 q^{20} - 4 q^{24} - 12 q^{25} - 24 q^{26} - 12 q^{27} + 32 q^{29} - 16 q^{31} + 4 q^{32} - 32 q^{34}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.639847 + 1.26119i 0.452440 + 0.891795i
\(3\) −1.00000 −0.577350
\(4\) −1.18119 + 1.61393i −0.590596 + 0.806967i
\(5\) 3.10455i 1.38840i −0.719783 0.694199i \(-0.755759\pi\)
0.719783 0.694199i \(-0.244241\pi\)
\(6\) −0.639847 1.26119i −0.261216 0.514878i
\(7\) 0 0
\(8\) −2.79126 0.457034i −0.986859 0.161586i
\(9\) 1.00000 0.333333
\(10\) 3.91542 1.98644i 1.23817 0.628167i
\(11\) 5.34455i 1.61144i 0.592295 + 0.805721i \(0.298222\pi\)
−0.592295 + 0.805721i \(0.701778\pi\)
\(12\) 1.18119 1.61393i 0.340981 0.465903i
\(13\) 3.92787i 1.08939i 0.838633 + 0.544697i \(0.183356\pi\)
−0.838633 + 0.544697i \(0.816644\pi\)
\(14\) 0 0
\(15\) 3.10455i 0.801592i
\(16\) −1.20957 3.81273i −0.302393 0.953183i
\(17\) 5.68178i 1.37803i 0.724745 + 0.689017i \(0.241958\pi\)
−0.724745 + 0.689017i \(0.758042\pi\)
\(18\) 0.639847 + 1.26119i 0.150813 + 0.297265i
\(19\) −0.170813 −0.0391872 −0.0195936 0.999808i \(-0.506237\pi\)
−0.0195936 + 0.999808i \(0.506237\pi\)
\(20\) 5.01054 + 3.66707i 1.12039 + 0.819982i
\(21\) 0 0
\(22\) −6.74049 + 3.41969i −1.43708 + 0.729081i
\(23\) 6.13153i 1.27851i 0.768994 + 0.639256i \(0.220758\pi\)
−0.768994 + 0.639256i \(0.779242\pi\)
\(24\) 2.79126 + 0.457034i 0.569763 + 0.0932917i
\(25\) −4.63824 −0.927647
\(26\) −4.95378 + 2.51324i −0.971517 + 0.492886i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −1.96817 −0.365480 −0.182740 0.983161i \(-0.558497\pi\)
−0.182740 + 0.983161i \(0.558497\pi\)
\(30\) −3.91542 + 1.98644i −0.714855 + 0.362672i
\(31\) 1.53115 0.275003 0.137502 0.990502i \(-0.456093\pi\)
0.137502 + 0.990502i \(0.456093\pi\)
\(32\) 4.03463 3.96506i 0.713229 0.700931i
\(33\) 5.34455i 0.930367i
\(34\) −7.16580 + 3.63547i −1.22892 + 0.623478i
\(35\) 0 0
\(36\) −1.18119 + 1.61393i −0.196865 + 0.268989i
\(37\) 8.93993 1.46972 0.734858 0.678221i \(-0.237249\pi\)
0.734858 + 0.678221i \(0.237249\pi\)
\(38\) −0.109294 0.215427i −0.0177299 0.0349469i
\(39\) 3.92787i 0.628962i
\(40\) −1.41889 + 8.66560i −0.224345 + 1.37015i
\(41\) 5.84308i 0.912535i −0.889843 0.456268i \(-0.849186\pi\)
0.889843 0.456268i \(-0.150814\pi\)
\(42\) 0 0
\(43\) 2.38285i 0.363381i 0.983356 + 0.181691i \(0.0581569\pi\)
−0.983356 + 0.181691i \(0.941843\pi\)
\(44\) −8.62576 6.31294i −1.30038 0.951712i
\(45\) 3.10455i 0.462799i
\(46\) −7.73301 + 3.92324i −1.14017 + 0.578450i
\(47\) −2.29477 −0.334727 −0.167364 0.985895i \(-0.553525\pi\)
−0.167364 + 0.985895i \(0.553525\pi\)
\(48\) 1.20957 + 3.81273i 0.174587 + 0.550321i
\(49\) 0 0
\(50\) −2.96776 5.84969i −0.419705 0.827271i
\(51\) 5.68178i 0.795608i
\(52\) −6.33933 4.63957i −0.879106 0.643392i
\(53\) −1.19905 −0.164702 −0.0823508 0.996603i \(-0.526243\pi\)
−0.0823508 + 0.996603i \(0.526243\pi\)
\(54\) −0.639847 1.26119i −0.0870721 0.171626i
\(55\) 16.5924 2.23732
\(56\) 0 0
\(57\) 0.170813 0.0226247
\(58\) −1.25933 2.48223i −0.165358 0.325933i
\(59\) −10.9942 −1.43133 −0.715663 0.698446i \(-0.753875\pi\)
−0.715663 + 0.698446i \(0.753875\pi\)
\(60\) −5.01054 3.66707i −0.646858 0.473417i
\(61\) 6.58977i 0.843734i −0.906658 0.421867i \(-0.861375\pi\)
0.906658 0.421867i \(-0.138625\pi\)
\(62\) 0.979705 + 1.93107i 0.124423 + 0.245247i
\(63\) 0 0
\(64\) 7.58224 + 2.55140i 0.947780 + 0.318925i
\(65\) 12.1943 1.51251
\(66\) 6.74049 3.41969i 0.829696 0.420935i
\(67\) 9.64794i 1.17868i −0.807884 0.589342i \(-0.799387\pi\)
0.807884 0.589342i \(-0.200613\pi\)
\(68\) −9.17002 6.71127i −1.11203 0.813861i
\(69\) 6.13153i 0.738149i
\(70\) 0 0
\(71\) 2.04649i 0.242873i 0.992599 + 0.121437i \(0.0387501\pi\)
−0.992599 + 0.121437i \(0.961250\pi\)
\(72\) −2.79126 0.457034i −0.328953 0.0538620i
\(73\) 10.2724i 1.20229i 0.799138 + 0.601147i \(0.205289\pi\)
−0.799138 + 0.601147i \(0.794711\pi\)
\(74\) 5.72019 + 11.2749i 0.664959 + 1.31069i
\(75\) 4.63824 0.535577
\(76\) 0.201763 0.275681i 0.0231438 0.0316228i
\(77\) 0 0
\(78\) 4.95378 2.51324i 0.560905 0.284568i
\(79\) 14.3947i 1.61953i 0.586757 + 0.809763i \(0.300404\pi\)
−0.586757 + 0.809763i \(0.699596\pi\)
\(80\) −11.8368 + 3.75518i −1.32340 + 0.419842i
\(81\) 1.00000 0.111111
\(82\) 7.36922 3.73867i 0.813794 0.412867i
\(83\) −10.9783 −1.20503 −0.602515 0.798108i \(-0.705835\pi\)
−0.602515 + 0.798108i \(0.705835\pi\)
\(84\) 0 0
\(85\) 17.6394 1.91326
\(86\) −3.00522 + 1.52466i −0.324061 + 0.164408i
\(87\) 1.96817 0.211010
\(88\) 2.44264 14.9180i 0.260386 1.59027i
\(89\) 5.81871i 0.616782i 0.951260 + 0.308391i \(0.0997905\pi\)
−0.951260 + 0.308391i \(0.900209\pi\)
\(90\) 3.91542 1.98644i 0.412722 0.209389i
\(91\) 0 0
\(92\) −9.89588 7.24251i −1.03172 0.755084i
\(93\) −1.53115 −0.158773
\(94\) −1.46830 2.89414i −0.151444 0.298508i
\(95\) 0.530298i 0.0544074i
\(96\) −4.03463 + 3.96506i −0.411783 + 0.404683i
\(97\) 2.32666i 0.236237i 0.993000 + 0.118118i \(0.0376862\pi\)
−0.993000 + 0.118118i \(0.962314\pi\)
\(98\) 0 0
\(99\) 5.34455i 0.537148i
\(100\) 5.47865 7.48581i 0.547865 0.748581i
\(101\) 7.44428i 0.740734i 0.928886 + 0.370367i \(0.120768\pi\)
−0.928886 + 0.370367i \(0.879232\pi\)
\(102\) 7.16580 3.63547i 0.709520 0.359965i
\(103\) 16.2959 1.60568 0.802842 0.596192i \(-0.203320\pi\)
0.802842 + 0.596192i \(0.203320\pi\)
\(104\) 1.79517 10.9637i 0.176031 1.07508i
\(105\) 0 0
\(106\) −0.767206 1.51222i −0.0745176 0.146880i
\(107\) 16.7392i 1.61824i −0.587645 0.809119i \(-0.699945\pi\)
0.587645 0.809119i \(-0.300055\pi\)
\(108\) 1.18119 1.61393i 0.113660 0.155301i
\(109\) 7.72117 0.739554 0.369777 0.929121i \(-0.379434\pi\)
0.369777 + 0.929121i \(0.379434\pi\)
\(110\) 10.6166 + 20.9262i 1.01225 + 1.99523i
\(111\) −8.93993 −0.848541
\(112\) 0 0
\(113\) −0.715845 −0.0673410 −0.0336705 0.999433i \(-0.510720\pi\)
−0.0336705 + 0.999433i \(0.510720\pi\)
\(114\) 0.109294 + 0.215427i 0.0102363 + 0.0201766i
\(115\) 19.0356 1.77508
\(116\) 2.32478 3.17649i 0.215851 0.294930i
\(117\) 3.92787i 0.363132i
\(118\) −7.03462 13.8658i −0.647589 1.27645i
\(119\) 0 0
\(120\) 1.41889 8.66560i 0.129526 0.791058i
\(121\) −17.5642 −1.59675
\(122\) 8.31095 4.21645i 0.752438 0.381739i
\(123\) 5.84308i 0.526852i
\(124\) −1.80859 + 2.47118i −0.162416 + 0.221919i
\(125\) 1.12312i 0.100455i
\(126\) 0 0
\(127\) 15.4079i 1.36723i −0.729844 0.683614i \(-0.760407\pi\)
0.729844 0.683614i \(-0.239593\pi\)
\(128\) 1.63368 + 11.1951i 0.144398 + 0.989520i
\(129\) 2.38285i 0.209798i
\(130\) 7.80247 + 15.3793i 0.684322 + 1.34885i
\(131\) −2.25918 −0.197385 −0.0986927 0.995118i \(-0.531466\pi\)
−0.0986927 + 0.995118i \(0.531466\pi\)
\(132\) 8.62576 + 6.31294i 0.750776 + 0.549471i
\(133\) 0 0
\(134\) 12.1679 6.17321i 1.05114 0.533284i
\(135\) 3.10455i 0.267197i
\(136\) 2.59677 15.8593i 0.222671 1.35993i
\(137\) 20.0731 1.71496 0.857479 0.514519i \(-0.172030\pi\)
0.857479 + 0.514519i \(0.172030\pi\)
\(138\) 7.73301 3.92324i 0.658277 0.333968i
\(139\) −7.98360 −0.677160 −0.338580 0.940938i \(-0.609947\pi\)
−0.338580 + 0.940938i \(0.609947\pi\)
\(140\) 0 0
\(141\) 2.29477 0.193255
\(142\) −2.58100 + 1.30944i −0.216593 + 0.109886i
\(143\) −20.9927 −1.75550
\(144\) −1.20957 3.81273i −0.100798 0.317728i
\(145\) 6.11028i 0.507431i
\(146\) −12.9554 + 6.57277i −1.07220 + 0.543966i
\(147\) 0 0
\(148\) −10.5598 + 14.4285i −0.868008 + 1.18601i
\(149\) −5.30170 −0.434332 −0.217166 0.976135i \(-0.569681\pi\)
−0.217166 + 0.976135i \(0.569681\pi\)
\(150\) 2.96776 + 5.84969i 0.242317 + 0.477625i
\(151\) 1.52658i 0.124231i 0.998069 + 0.0621155i \(0.0197847\pi\)
−0.998069 + 0.0621155i \(0.980215\pi\)
\(152\) 0.476783 + 0.0780674i 0.0386722 + 0.00633210i
\(153\) 5.68178i 0.459345i
\(154\) 0 0
\(155\) 4.75355i 0.381814i
\(156\) 6.33933 + 4.63957i 0.507552 + 0.371463i
\(157\) 12.4358i 0.992487i −0.868183 0.496243i \(-0.834712\pi\)
0.868183 0.496243i \(-0.165288\pi\)
\(158\) −18.1544 + 9.21038i −1.44428 + 0.732738i
\(159\) 1.19905 0.0950905
\(160\) −12.3097 12.5257i −0.973170 0.990246i
\(161\) 0 0
\(162\) 0.639847 + 1.26119i 0.0502711 + 0.0990883i
\(163\) 6.22348i 0.487460i 0.969843 + 0.243730i \(0.0783711\pi\)
−0.969843 + 0.243730i \(0.921629\pi\)
\(164\) 9.43034 + 6.90179i 0.736386 + 0.538939i
\(165\) −16.5924 −1.29172
\(166\) −7.02446 13.8458i −0.545204 1.07464i
\(167\) 4.14549 0.320788 0.160394 0.987053i \(-0.448724\pi\)
0.160394 + 0.987053i \(0.448724\pi\)
\(168\) 0 0
\(169\) −2.42816 −0.186781
\(170\) 11.2865 + 22.2466i 0.865635 + 1.70623i
\(171\) −0.170813 −0.0130624
\(172\) −3.84576 2.81460i −0.293237 0.214611i
\(173\) 5.54634i 0.421681i 0.977521 + 0.210840i \(0.0676200\pi\)
−0.977521 + 0.210840i \(0.932380\pi\)
\(174\) 1.25933 + 2.48223i 0.0954693 + 0.188177i
\(175\) 0 0
\(176\) 20.3773 6.46462i 1.53600 0.487289i
\(177\) 10.9942 0.826376
\(178\) −7.33849 + 3.72308i −0.550043 + 0.279057i
\(179\) 1.27166i 0.0950483i −0.998870 0.0475242i \(-0.984867\pi\)
0.998870 0.0475242i \(-0.0151331\pi\)
\(180\) 5.01054 + 3.66707i 0.373464 + 0.273327i
\(181\) 0.386679i 0.0287416i −0.999897 0.0143708i \(-0.995425\pi\)
0.999897 0.0143708i \(-0.00457452\pi\)
\(182\) 0 0
\(183\) 6.58977i 0.487130i
\(184\) 2.80232 17.1147i 0.206589 1.26171i
\(185\) 27.7545i 2.04055i
\(186\) −0.979705 1.93107i −0.0718354 0.141593i
\(187\) −30.3666 −2.22062
\(188\) 2.71057 3.70362i 0.197689 0.270114i
\(189\) 0 0
\(190\) −0.668805 + 0.339309i −0.0485202 + 0.0246161i
\(191\) 6.59547i 0.477231i 0.971114 + 0.238616i \(0.0766936\pi\)
−0.971114 + 0.238616i \(0.923306\pi\)
\(192\) −7.58224 2.55140i −0.547201 0.184131i
\(193\) 1.95706 0.140872 0.0704362 0.997516i \(-0.477561\pi\)
0.0704362 + 0.997516i \(0.477561\pi\)
\(194\) −2.93436 + 1.48871i −0.210675 + 0.106883i
\(195\) −12.1943 −0.873250
\(196\) 0 0
\(197\) −0.362935 −0.0258580 −0.0129290 0.999916i \(-0.504116\pi\)
−0.0129290 + 0.999916i \(0.504116\pi\)
\(198\) −6.74049 + 3.41969i −0.479025 + 0.243027i
\(199\) 9.86333 0.699193 0.349597 0.936900i \(-0.386319\pi\)
0.349597 + 0.936900i \(0.386319\pi\)
\(200\) 12.9465 + 2.11983i 0.915457 + 0.149895i
\(201\) 9.64794i 0.680513i
\(202\) −9.38864 + 4.76320i −0.660583 + 0.335138i
\(203\) 0 0
\(204\) 9.17002 + 6.71127i 0.642030 + 0.469883i
\(205\) −18.1401 −1.26696
\(206\) 10.4269 + 20.5522i 0.726476 + 1.43194i
\(207\) 6.13153i 0.426171i
\(208\) 14.9759 4.75104i 1.03839 0.329425i
\(209\) 0.912919i 0.0631479i
\(210\) 0 0
\(211\) 25.7279i 1.77118i −0.464469 0.885589i \(-0.653755\pi\)
0.464469 0.885589i \(-0.346245\pi\)
\(212\) 1.41630 1.93518i 0.0972721 0.132909i
\(213\) 2.04649i 0.140223i
\(214\) 21.1113 10.7105i 1.44314 0.732156i
\(215\) 7.39767 0.504517
\(216\) 2.79126 + 0.457034i 0.189921 + 0.0310972i
\(217\) 0 0
\(218\) 4.94037 + 9.73785i 0.334604 + 0.659530i
\(219\) 10.2724i 0.694145i
\(220\) −19.5988 + 26.7791i −1.32135 + 1.80545i
\(221\) −22.3173 −1.50122
\(222\) −5.72019 11.2749i −0.383914 0.756724i
\(223\) 16.2449 1.08784 0.543919 0.839138i \(-0.316940\pi\)
0.543919 + 0.839138i \(0.316940\pi\)
\(224\) 0 0
\(225\) −4.63824 −0.309216
\(226\) −0.458031 0.902815i −0.0304678 0.0600544i
\(227\) 20.4484 1.35721 0.678603 0.734506i \(-0.262586\pi\)
0.678603 + 0.734506i \(0.262586\pi\)
\(228\) −0.201763 + 0.275681i −0.0133621 + 0.0182574i
\(229\) 3.38952i 0.223986i −0.993709 0.111993i \(-0.964277\pi\)
0.993709 0.111993i \(-0.0357234\pi\)
\(230\) 12.1799 + 24.0075i 0.803118 + 1.58301i
\(231\) 0 0
\(232\) 5.49366 + 0.899520i 0.360677 + 0.0590564i
\(233\) 1.90437 0.124759 0.0623796 0.998052i \(-0.480131\pi\)
0.0623796 + 0.998052i \(0.480131\pi\)
\(234\) −4.95378 + 2.51324i −0.323839 + 0.164295i
\(235\) 7.12425i 0.464735i
\(236\) 12.9863 17.7440i 0.845335 1.15503i
\(237\) 14.3947i 0.935034i
\(238\) 0 0
\(239\) 7.77419i 0.502871i 0.967874 + 0.251435i \(0.0809026\pi\)
−0.967874 + 0.251435i \(0.919097\pi\)
\(240\) 11.8368 3.75518i 0.764064 0.242396i
\(241\) 12.1107i 0.780119i 0.920790 + 0.390060i \(0.127546\pi\)
−0.920790 + 0.390060i \(0.872454\pi\)
\(242\) −11.2384 22.1518i −0.722433 1.42397i
\(243\) −1.00000 −0.0641500
\(244\) 10.6355 + 7.78379i 0.680866 + 0.498306i
\(245\) 0 0
\(246\) −7.36922 + 3.73867i −0.469844 + 0.238369i
\(247\) 0.670931i 0.0426903i
\(248\) −4.27385 0.699790i −0.271390 0.0444367i
\(249\) 10.9783 0.695724
\(250\) 1.41646 0.718623i 0.0895849 0.0454497i
\(251\) 7.89409 0.498271 0.249135 0.968469i \(-0.419854\pi\)
0.249135 + 0.968469i \(0.419854\pi\)
\(252\) 0 0
\(253\) −32.7703 −2.06025
\(254\) 19.4322 9.85868i 1.21929 0.618589i
\(255\) −17.6394 −1.10462
\(256\) −13.0739 + 9.22355i −0.817117 + 0.576472i
\(257\) 3.06316i 0.191074i 0.995426 + 0.0955372i \(0.0304569\pi\)
−0.995426 + 0.0955372i \(0.969543\pi\)
\(258\) 3.00522 1.52466i 0.187097 0.0949211i
\(259\) 0 0
\(260\) −14.4038 + 19.6808i −0.893284 + 1.22055i
\(261\) −1.96817 −0.121827
\(262\) −1.44553 2.84925i −0.0893051 0.176027i
\(263\) 10.6284i 0.655375i −0.944786 0.327687i \(-0.893731\pi\)
0.944786 0.327687i \(-0.106269\pi\)
\(264\) −2.44264 + 14.9180i −0.150334 + 0.918141i
\(265\) 3.72250i 0.228671i
\(266\) 0 0
\(267\) 5.81871i 0.356099i
\(268\) 15.5712 + 11.3961i 0.951159 + 0.696126i
\(269\) 2.51512i 0.153350i −0.997056 0.0766748i \(-0.975570\pi\)
0.997056 0.0766748i \(-0.0244303\pi\)
\(270\) −3.91542 + 1.98644i −0.238285 + 0.120891i
\(271\) 0.916212 0.0556559 0.0278279 0.999613i \(-0.491141\pi\)
0.0278279 + 0.999613i \(0.491141\pi\)
\(272\) 21.6631 6.87252i 1.31352 0.416708i
\(273\) 0 0
\(274\) 12.8437 + 25.3159i 0.775916 + 1.52939i
\(275\) 24.7893i 1.49485i
\(276\) 9.89588 + 7.24251i 0.595662 + 0.435948i
\(277\) 11.7658 0.706941 0.353470 0.935446i \(-0.385002\pi\)
0.353470 + 0.935446i \(0.385002\pi\)
\(278\) −5.10828 10.0688i −0.306374 0.603888i
\(279\) 1.53115 0.0916678
\(280\) 0 0
\(281\) −29.8347 −1.77979 −0.889895 0.456165i \(-0.849223\pi\)
−0.889895 + 0.456165i \(0.849223\pi\)
\(282\) 1.46830 + 2.89414i 0.0874363 + 0.172344i
\(283\) −4.82984 −0.287104 −0.143552 0.989643i \(-0.545852\pi\)
−0.143552 + 0.989643i \(0.545852\pi\)
\(284\) −3.30289 2.41729i −0.195991 0.143440i
\(285\) 0.530298i 0.0314121i
\(286\) −13.4321 26.4757i −0.794258 1.56554i
\(287\) 0 0
\(288\) 4.03463 3.96506i 0.237743 0.233644i
\(289\) −15.2826 −0.898979
\(290\) −7.70621 + 3.90964i −0.452524 + 0.229582i
\(291\) 2.32666i 0.136391i
\(292\) −16.5790 12.1337i −0.970213 0.710070i
\(293\) 22.4276i 1.31023i 0.755528 + 0.655116i \(0.227380\pi\)
−0.755528 + 0.655116i \(0.772620\pi\)
\(294\) 0 0
\(295\) 34.1321i 1.98725i
\(296\) −24.9537 4.08585i −1.45040 0.237485i
\(297\) 5.34455i 0.310122i
\(298\) −3.39228 6.68644i −0.196509 0.387335i
\(299\) −24.0838 −1.39280
\(300\) −5.47865 + 7.48581i −0.316310 + 0.432193i
\(301\) 0 0
\(302\) −1.92530 + 0.976774i −0.110788 + 0.0562071i
\(303\) 7.44428i 0.427663i
\(304\) 0.206611 + 0.651265i 0.0118499 + 0.0373526i
\(305\) −20.4583 −1.17144
\(306\) −7.16580 + 3.63547i −0.409641 + 0.207826i
\(307\) 31.3123 1.78709 0.893543 0.448978i \(-0.148212\pi\)
0.893543 + 0.448978i \(0.148212\pi\)
\(308\) 0 0
\(309\) −16.2959 −0.927042
\(310\) 5.99512 3.04154i 0.340500 0.172748i
\(311\) 15.4221 0.874507 0.437253 0.899338i \(-0.355951\pi\)
0.437253 + 0.899338i \(0.355951\pi\)
\(312\) −1.79517 + 10.9637i −0.101631 + 0.620697i
\(313\) 6.09799i 0.344679i −0.985038 0.172339i \(-0.944867\pi\)
0.985038 0.172339i \(-0.0551326\pi\)
\(314\) 15.6839 7.95703i 0.885095 0.449041i
\(315\) 0 0
\(316\) −23.2320 17.0029i −1.30690 0.956485i
\(317\) −29.7110 −1.66874 −0.834369 0.551206i \(-0.814168\pi\)
−0.834369 + 0.551206i \(0.814168\pi\)
\(318\) 0.767206 + 1.51222i 0.0430228 + 0.0848013i
\(319\) 10.5190i 0.588949i
\(320\) 7.92095 23.5394i 0.442794 1.31590i
\(321\) 16.7392i 0.934290i
\(322\) 0 0
\(323\) 0.970522i 0.0540013i
\(324\) −1.18119 + 1.61393i −0.0656218 + 0.0896631i
\(325\) 18.2184i 1.01057i
\(326\) −7.84898 + 3.98207i −0.434715 + 0.220547i
\(327\) −7.72117 −0.426982
\(328\) −2.67048 + 16.3095i −0.147453 + 0.900543i
\(329\) 0 0
\(330\) −10.6166 20.9262i −0.584425 1.15195i
\(331\) 20.1722i 1.10877i −0.832262 0.554383i \(-0.812954\pi\)
0.832262 0.554383i \(-0.187046\pi\)
\(332\) 12.9675 17.7183i 0.711686 0.972420i
\(333\) 8.93993 0.489905
\(334\) 2.65248 + 5.22824i 0.145137 + 0.286077i
\(335\) −29.9525 −1.63648
\(336\) 0 0
\(337\) 14.0021 0.762746 0.381373 0.924421i \(-0.375451\pi\)
0.381373 + 0.924421i \(0.375451\pi\)
\(338\) −1.55365 3.06236i −0.0845074 0.166571i
\(339\) 0.715845 0.0388794
\(340\) −20.8355 + 28.4688i −1.12996 + 1.54394i
\(341\) 8.18333i 0.443152i
\(342\) −0.109294 0.215427i −0.00590995 0.0116490i
\(343\) 0 0
\(344\) 1.08904 6.65115i 0.0587173 0.358606i
\(345\) −19.0356 −1.02484
\(346\) −6.99498 + 3.54881i −0.376053 + 0.190785i
\(347\) 11.9859i 0.643435i 0.946836 + 0.321718i \(0.104260\pi\)
−0.946836 + 0.321718i \(0.895740\pi\)
\(348\) −2.32478 + 3.17649i −0.124621 + 0.170278i
\(349\) 28.8227i 1.54284i 0.636324 + 0.771422i \(0.280454\pi\)
−0.636324 + 0.771422i \(0.719546\pi\)
\(350\) 0 0
\(351\) 3.92787i 0.209654i
\(352\) 21.1915 + 21.5633i 1.12951 + 1.14933i
\(353\) 0.114784i 0.00610936i −0.999995 0.00305468i \(-0.999028\pi\)
0.999995 0.00305468i \(-0.000972336\pi\)
\(354\) 7.03462 + 13.8658i 0.373886 + 0.736958i
\(355\) 6.35342 0.337204
\(356\) −9.39102 6.87301i −0.497723 0.364269i
\(357\) 0 0
\(358\) 1.60380 0.813668i 0.0847636 0.0430037i
\(359\) 1.97719i 0.104352i 0.998638 + 0.0521760i \(0.0166157\pi\)
−0.998638 + 0.0521760i \(0.983384\pi\)
\(360\) −1.41889 + 8.66560i −0.0747818 + 0.456717i
\(361\) −18.9708 −0.998464
\(362\) 0.487674 0.247415i 0.0256316 0.0130038i
\(363\) 17.5642 0.921883
\(364\) 0 0
\(365\) 31.8912 1.66926
\(366\) −8.31095 + 4.21645i −0.434420 + 0.220397i
\(367\) −26.7789 −1.39785 −0.698925 0.715195i \(-0.746338\pi\)
−0.698925 + 0.715195i \(0.746338\pi\)
\(368\) 23.3779 7.41652i 1.21866 0.386613i
\(369\) 5.84308i 0.304178i
\(370\) 35.0036 17.7586i 1.81975 0.923227i
\(371\) 0 0
\(372\) 1.80859 2.47118i 0.0937709 0.128125i
\(373\) 23.0396 1.19295 0.596474 0.802633i \(-0.296568\pi\)
0.596474 + 0.802633i \(0.296568\pi\)
\(374\) −19.4300 38.2980i −1.00470 1.98034i
\(375\) 1.12312i 0.0579975i
\(376\) 6.40531 + 1.04879i 0.330329 + 0.0540872i
\(377\) 7.73071i 0.398152i
\(378\) 0 0
\(379\) 22.3697i 1.14906i −0.818485 0.574528i \(-0.805186\pi\)
0.818485 0.574528i \(-0.194814\pi\)
\(380\) −0.855866 0.626383i −0.0439050 0.0321328i
\(381\) 15.4079i 0.789370i
\(382\) −8.31813 + 4.22009i −0.425592 + 0.215919i
\(383\) 28.7083 1.46693 0.733463 0.679730i \(-0.237903\pi\)
0.733463 + 0.679730i \(0.237903\pi\)
\(384\) −1.63368 11.1951i −0.0833683 0.571299i
\(385\) 0 0
\(386\) 1.25222 + 2.46822i 0.0637363 + 0.125629i
\(387\) 2.38285i 0.121127i
\(388\) −3.75508 2.74823i −0.190635 0.139520i
\(389\) 12.3494 0.626138 0.313069 0.949730i \(-0.398643\pi\)
0.313069 + 0.949730i \(0.398643\pi\)
\(390\) −7.80247 15.3793i −0.395093 0.778760i
\(391\) −34.8380 −1.76183
\(392\) 0 0
\(393\) 2.25918 0.113961
\(394\) −0.232223 0.457729i −0.0116992 0.0230601i
\(395\) 44.6890 2.24855
\(396\) −8.62576 6.31294i −0.433461 0.317237i
\(397\) 17.9991i 0.903349i 0.892183 + 0.451674i \(0.149173\pi\)
−0.892183 + 0.451674i \(0.850827\pi\)
\(398\) 6.31102 + 12.4395i 0.316343 + 0.623537i
\(399\) 0 0
\(400\) 5.61028 + 17.6844i 0.280514 + 0.884218i
\(401\) −0.0569723 −0.00284506 −0.00142253 0.999999i \(-0.500453\pi\)
−0.00142253 + 0.999999i \(0.500453\pi\)
\(402\) −12.1679 + 6.17321i −0.606878 + 0.307892i
\(403\) 6.01418i 0.299587i
\(404\) −12.0146 8.79313i −0.597748 0.437474i
\(405\) 3.10455i 0.154266i
\(406\) 0 0
\(407\) 47.7799i 2.36836i
\(408\) −2.59677 + 15.8593i −0.128559 + 0.785153i
\(409\) 35.0224i 1.73175i 0.500265 + 0.865873i \(0.333236\pi\)
−0.500265 + 0.865873i \(0.666764\pi\)
\(410\) −11.6069 22.8781i −0.573224 1.12987i
\(411\) −20.0731 −0.990131
\(412\) −19.2486 + 26.3005i −0.948311 + 1.29574i
\(413\) 0 0
\(414\) −7.73301 + 3.92324i −0.380057 + 0.192817i
\(415\) 34.0828i 1.67306i
\(416\) 15.5743 + 15.8475i 0.763591 + 0.776988i
\(417\) 7.98360 0.390958
\(418\) 1.15136 0.584128i 0.0563150 0.0285707i
\(419\) −17.9222 −0.875558 −0.437779 0.899083i \(-0.644235\pi\)
−0.437779 + 0.899083i \(0.644235\pi\)
\(420\) 0 0
\(421\) −8.47542 −0.413067 −0.206533 0.978440i \(-0.566218\pi\)
−0.206533 + 0.978440i \(0.566218\pi\)
\(422\) 32.4477 16.4619i 1.57953 0.801352i
\(423\) −2.29477 −0.111576
\(424\) 3.34685 + 0.548005i 0.162537 + 0.0266135i
\(425\) 26.3534i 1.27833i
\(426\) 2.58100 1.30944i 0.125050 0.0634424i
\(427\) 0 0
\(428\) 27.0159 + 19.7722i 1.30587 + 0.955725i
\(429\) 20.9927 1.01354
\(430\) 4.73338 + 9.32986i 0.228264 + 0.449926i
\(431\) 23.9988i 1.15598i 0.816044 + 0.577990i \(0.196163\pi\)
−0.816044 + 0.577990i \(0.803837\pi\)
\(432\) 1.20957 + 3.81273i 0.0581956 + 0.183440i
\(433\) 12.5505i 0.603137i −0.953445 0.301568i \(-0.902490\pi\)
0.953445 0.301568i \(-0.0975102\pi\)
\(434\) 0 0
\(435\) 6.11028i 0.292965i
\(436\) −9.12018 + 12.4615i −0.436777 + 0.596796i
\(437\) 1.04734i 0.0501013i
\(438\) 12.9554 6.57277i 0.619035 0.314059i
\(439\) −7.15150 −0.341323 −0.170661 0.985330i \(-0.554590\pi\)
−0.170661 + 0.985330i \(0.554590\pi\)
\(440\) −46.3137 7.58330i −2.20792 0.361520i
\(441\) 0 0
\(442\) −14.2797 28.1463i −0.679214 1.33878i
\(443\) 24.8722i 1.18172i 0.806776 + 0.590858i \(0.201211\pi\)
−0.806776 + 0.590858i \(0.798789\pi\)
\(444\) 10.5598 14.4285i 0.501145 0.684745i
\(445\) 18.0645 0.856339
\(446\) 10.3942 + 20.4879i 0.492182 + 0.970128i
\(447\) 5.30170 0.250762
\(448\) 0 0
\(449\) −9.93727 −0.468969 −0.234484 0.972120i \(-0.575340\pi\)
−0.234484 + 0.972120i \(0.575340\pi\)
\(450\) −2.96776 5.84969i −0.139902 0.275757i
\(451\) 31.2286 1.47050
\(452\) 0.845550 1.15533i 0.0397713 0.0543420i
\(453\) 1.52658i 0.0717248i
\(454\) 13.0838 + 25.7892i 0.614054 + 1.21035i
\(455\) 0 0
\(456\) −0.476783 0.0780674i −0.0223274 0.00365584i
\(457\) 26.0911 1.22049 0.610245 0.792213i \(-0.291071\pi\)
0.610245 + 0.792213i \(0.291071\pi\)
\(458\) 4.27482 2.16877i 0.199749 0.101340i
\(459\) 5.68178i 0.265203i
\(460\) −22.4847 + 30.7223i −1.04836 + 1.43243i
\(461\) 29.5120i 1.37451i −0.726417 0.687254i \(-0.758816\pi\)
0.726417 0.687254i \(-0.241184\pi\)
\(462\) 0 0
\(463\) 2.80479i 0.130350i −0.997874 0.0651748i \(-0.979239\pi\)
0.997874 0.0651748i \(-0.0207605\pi\)
\(464\) 2.38064 + 7.50410i 0.110518 + 0.348369i
\(465\) 4.75355i 0.220440i
\(466\) 1.21850 + 2.40177i 0.0564461 + 0.111260i
\(467\) 32.9710 1.52571 0.762857 0.646567i \(-0.223796\pi\)
0.762857 + 0.646567i \(0.223796\pi\)
\(468\) −6.33933 4.63957i −0.293035 0.214464i
\(469\) 0 0
\(470\) −8.98501 + 4.55843i −0.414448 + 0.210265i
\(471\) 12.4358i 0.573013i
\(472\) 30.6877 + 5.02473i 1.41252 + 0.231282i
\(473\) −12.7353 −0.585568
\(474\) 18.1544 9.21038i 0.833858 0.423047i
\(475\) 0.792271 0.0363519
\(476\) 0 0
\(477\) −1.19905 −0.0549006
\(478\) −9.80472 + 4.97429i −0.448457 + 0.227519i
\(479\) −23.9252 −1.09317 −0.546585 0.837403i \(-0.684073\pi\)
−0.546585 + 0.837403i \(0.684073\pi\)
\(480\) 12.3097 + 12.5257i 0.561860 + 0.571719i
\(481\) 35.1149i 1.60110i
\(482\) −15.2739 + 7.74900i −0.695706 + 0.352957i
\(483\) 0 0
\(484\) 20.7467 28.3475i 0.943033 1.28852i
\(485\) 7.22323 0.327990
\(486\) −0.639847 1.26119i −0.0290240 0.0572087i
\(487\) 0.822201i 0.0372575i 0.999826 + 0.0186287i \(0.00593006\pi\)
−0.999826 + 0.0186287i \(0.994070\pi\)
\(488\) −3.01175 + 18.3938i −0.136336 + 0.832646i
\(489\) 6.22348i 0.281435i
\(490\) 0 0
\(491\) 22.6377i 1.02163i −0.859692 0.510813i \(-0.829345\pi\)
0.859692 0.510813i \(-0.170655\pi\)
\(492\) −9.43034 6.90179i −0.425153 0.311157i
\(493\) 11.1827i 0.503643i
\(494\) 0.846171 0.429293i 0.0380710 0.0193148i
\(495\) 16.5924 0.745774
\(496\) −1.85204 5.83788i −0.0831591 0.262129i
\(497\) 0 0
\(498\) 7.02446 + 13.8458i 0.314774 + 0.620443i
\(499\) 29.9874i 1.34242i −0.741267 0.671211i \(-0.765775\pi\)
0.741267 0.671211i \(-0.234225\pi\)
\(500\) 1.81264 + 1.32662i 0.0810636 + 0.0593281i
\(501\) −4.14549 −0.185207
\(502\) 5.05101 + 9.95593i 0.225438 + 0.444355i
\(503\) 28.7539 1.28207 0.641037 0.767510i \(-0.278504\pi\)
0.641037 + 0.767510i \(0.278504\pi\)
\(504\) 0 0
\(505\) 23.1112 1.02843
\(506\) −20.9679 41.3295i −0.932139 1.83732i
\(507\) 2.42816 0.107838
\(508\) 24.8673 + 18.1997i 1.10331 + 0.807479i
\(509\) 41.0461i 1.81934i −0.415336 0.909668i \(-0.636336\pi\)
0.415336 0.909668i \(-0.363664\pi\)
\(510\) −11.2865 22.2466i −0.499775 0.985095i
\(511\) 0 0
\(512\) −19.9979 10.5870i −0.883791 0.467882i
\(513\) 0.170813 0.00754158
\(514\) −3.86322 + 1.95995i −0.170399 + 0.0864497i
\(515\) 50.5915i 2.22933i
\(516\) 3.84576 + 2.81460i 0.169300 + 0.123906i
\(517\) 12.2645i 0.539394i
\(518\) 0 0
\(519\) 5.54634i 0.243457i
\(520\) −34.0374 5.57320i −1.49264 0.244401i
\(521\) 20.4251i 0.894841i −0.894324 0.447420i \(-0.852343\pi\)
0.894324 0.447420i \(-0.147657\pi\)
\(522\) −1.25933 2.48223i −0.0551192 0.108644i
\(523\) 1.90741 0.0834053 0.0417026 0.999130i \(-0.486722\pi\)
0.0417026 + 0.999130i \(0.486722\pi\)
\(524\) 2.66852 3.64617i 0.116575 0.159284i
\(525\) 0 0
\(526\) 13.4044 6.80055i 0.584460 0.296518i
\(527\) 8.69968i 0.378964i
\(528\) −20.3773 + 6.46462i −0.886810 + 0.281336i
\(529\) −14.5956 −0.634592
\(530\) −4.69477 + 2.38183i −0.203928 + 0.103460i
\(531\) −10.9942 −0.477108
\(532\) 0 0
\(533\) 22.9508 0.994111
\(534\) 7.33849 3.72308i 0.317568 0.161114i
\(535\) −51.9676 −2.24676
\(536\) −4.40944 + 26.9299i −0.190459 + 1.16319i
\(537\) 1.27166i 0.0548762i
\(538\) 3.17204 1.60929i 0.136756 0.0693815i
\(539\) 0 0
\(540\) −5.01054 3.66707i −0.215619 0.157806i
\(541\) 35.5224 1.52723 0.763614 0.645673i \(-0.223423\pi\)
0.763614 + 0.645673i \(0.223423\pi\)
\(542\) 0.586235 + 1.15552i 0.0251810 + 0.0496336i
\(543\) 0.386679i 0.0165940i
\(544\) 22.5286 + 22.9239i 0.965907 + 0.982854i
\(545\) 23.9708i 1.02679i
\(546\) 0 0
\(547\) 9.02584i 0.385917i −0.981207 0.192959i \(-0.938192\pi\)
0.981207 0.192959i \(-0.0618083\pi\)
\(548\) −23.7101 + 32.3966i −1.01285 + 1.38392i
\(549\) 6.58977i 0.281245i
\(550\) 31.2640 15.8613i 1.33310 0.676330i
\(551\) 0.336189 0.0143221
\(552\) −2.80232 + 17.1147i −0.119274 + 0.728449i
\(553\) 0 0
\(554\) 7.52833 + 14.8389i 0.319848 + 0.630446i
\(555\) 27.7545i 1.17811i
\(556\) 9.43016 12.8850i 0.399928 0.546446i
\(557\) 33.9921 1.44029 0.720145 0.693823i \(-0.244075\pi\)
0.720145 + 0.693823i \(0.244075\pi\)
\(558\) 0.979705 + 1.93107i 0.0414742 + 0.0817489i
\(559\) −9.35952 −0.395865
\(560\) 0 0
\(561\) 30.3666 1.28208
\(562\) −19.0897 37.6272i −0.805249 1.58721i
\(563\) −12.8259 −0.540547 −0.270274 0.962784i \(-0.587114\pi\)
−0.270274 + 0.962784i \(0.587114\pi\)
\(564\) −2.71057 + 3.70362i −0.114136 + 0.155950i
\(565\) 2.22238i 0.0934961i
\(566\) −3.09036 6.09133i −0.129897 0.256038i
\(567\) 0 0
\(568\) 0.935313 5.71227i 0.0392449 0.239681i
\(569\) 17.6976 0.741923 0.370962 0.928648i \(-0.379028\pi\)
0.370962 + 0.928648i \(0.379028\pi\)
\(570\) 0.668805 0.339309i 0.0280132 0.0142121i
\(571\) 23.7859i 0.995410i 0.867346 + 0.497705i \(0.165824\pi\)
−0.867346 + 0.497705i \(0.834176\pi\)
\(572\) 24.7964 33.8808i 1.03679 1.41663i
\(573\) 6.59547i 0.275530i
\(574\) 0 0
\(575\) 28.4395i 1.18601i
\(576\) 7.58224 + 2.55140i 0.315927 + 0.106308i
\(577\) 40.5467i 1.68798i −0.536357 0.843991i \(-0.680200\pi\)
0.536357 0.843991i \(-0.319800\pi\)
\(578\) −9.77855 19.2743i −0.406734 0.801704i
\(579\) −1.95706 −0.0813327
\(580\) −9.86159 7.21741i −0.409480 0.299687i
\(581\) 0 0
\(582\) 2.93436 1.48871i 0.121633 0.0617089i
\(583\) 6.40836i 0.265407i
\(584\) 4.69484 28.6729i 0.194274 1.18649i
\(585\) 12.1943 0.504171
\(586\) −28.2854 + 14.3502i −1.16846 + 0.592801i
\(587\) 26.0331 1.07450 0.537251 0.843422i \(-0.319463\pi\)
0.537251 + 0.843422i \(0.319463\pi\)
\(588\) 0 0
\(589\) −0.261541 −0.0107766
\(590\) −43.0470 + 21.8393i −1.77222 + 0.899111i
\(591\) 0.362935 0.0149291
\(592\) −10.8135 34.0856i −0.444432 1.40091i
\(593\) 11.2192i 0.460719i 0.973106 + 0.230359i \(0.0739901\pi\)
−0.973106 + 0.230359i \(0.926010\pi\)
\(594\) 6.74049 3.41969i 0.276565 0.140312i
\(595\) 0 0
\(596\) 6.26232 8.55660i 0.256515 0.350492i
\(597\) −9.86333 −0.403679
\(598\) −15.4100 30.3743i −0.630160 1.24210i
\(599\) 17.3998i 0.710935i −0.934689 0.355467i \(-0.884322\pi\)
0.934689 0.355467i \(-0.115678\pi\)
\(600\) −12.9465 2.11983i −0.528539 0.0865417i
\(601\) 18.1962i 0.742237i −0.928585 0.371119i \(-0.878974\pi\)
0.928585 0.371119i \(-0.121026\pi\)
\(602\) 0 0
\(603\) 9.64794i 0.392895i
\(604\) −2.46379 1.80318i −0.100250 0.0733703i
\(605\) 54.5290i 2.21692i
\(606\) 9.38864 4.76320i 0.381388 0.193492i
\(607\) 5.45708 0.221496 0.110748 0.993849i \(-0.464675\pi\)
0.110748 + 0.993849i \(0.464675\pi\)
\(608\) −0.689168 + 0.677284i −0.0279495 + 0.0274675i
\(609\) 0 0
\(610\) −13.0902 25.8018i −0.530006 1.04468i
\(611\) 9.01358i 0.364650i
\(612\) −9.17002 6.71127i −0.370676 0.271287i
\(613\) −30.1051 −1.21593 −0.607967 0.793962i \(-0.708015\pi\)
−0.607967 + 0.793962i \(0.708015\pi\)
\(614\) 20.0351 + 39.4907i 0.808549 + 1.59371i
\(615\) 18.1401 0.731480
\(616\) 0 0
\(617\) 38.4324 1.54723 0.773616 0.633655i \(-0.218446\pi\)
0.773616 + 0.633655i \(0.218446\pi\)
\(618\) −10.4269 20.5522i −0.419431 0.826732i
\(619\) −18.3356 −0.736970 −0.368485 0.929634i \(-0.620123\pi\)
−0.368485 + 0.929634i \(0.620123\pi\)
\(620\) 7.67192 + 5.61485i 0.308112 + 0.225498i
\(621\) 6.13153i 0.246050i
\(622\) 9.86778 + 19.4502i 0.395662 + 0.779881i
\(623\) 0 0
\(624\) −14.9759 + 4.75104i −0.599517 + 0.190194i
\(625\) −26.6779 −1.06712
\(626\) 7.69071 3.90178i 0.307383 0.155947i
\(627\) 0.912919i 0.0364585i
\(628\) 20.0706 + 14.6891i 0.800905 + 0.586159i
\(629\) 50.7948i 2.02532i
\(630\) 0 0
\(631\) 44.4442i 1.76930i 0.466259 + 0.884648i \(0.345601\pi\)
−0.466259 + 0.884648i \(0.654399\pi\)
\(632\) 6.57885 40.1792i 0.261693 1.59824i
\(633\) 25.7279i 1.02259i
\(634\) −19.0105 37.4712i −0.755004 1.48817i
\(635\) −47.8345 −1.89826
\(636\) −1.41630 + 1.93518i −0.0561601 + 0.0767350i
\(637\) 0 0
\(638\) 13.2664 6.73053i 0.525222 0.266464i
\(639\) 2.04649i 0.0809577i
\(640\) 34.7559 5.07184i 1.37385 0.200482i
\(641\) 0.827523 0.0326852 0.0163426 0.999866i \(-0.494798\pi\)
0.0163426 + 0.999866i \(0.494798\pi\)
\(642\) −21.1113 + 10.7105i −0.833195 + 0.422710i
\(643\) −50.0469 −1.97366 −0.986829 0.161764i \(-0.948282\pi\)
−0.986829 + 0.161764i \(0.948282\pi\)
\(644\) 0 0
\(645\) −7.39767 −0.291283
\(646\) 1.22401 0.620986i 0.0481581 0.0244324i
\(647\) −17.3220 −0.680998 −0.340499 0.940245i \(-0.610596\pi\)
−0.340499 + 0.940245i \(0.610596\pi\)
\(648\) −2.79126 0.457034i −0.109651 0.0179540i
\(649\) 58.7592i 2.30650i
\(650\) 22.9768 11.6570i 0.901225 0.457224i
\(651\) 0 0
\(652\) −10.0443 7.35112i −0.393365 0.287892i
\(653\) 6.96007 0.272368 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(654\) −4.94037 9.73785i −0.193184 0.380780i
\(655\) 7.01374i 0.274049i
\(656\) −22.2781 + 7.06762i −0.869813 + 0.275944i
\(657\) 10.2724i 0.400765i
\(658\) 0 0
\(659\) 20.5979i 0.802381i −0.915995 0.401191i \(-0.868596\pi\)
0.915995 0.401191i \(-0.131404\pi\)
\(660\) 19.5988 26.7791i 0.762884 1.04238i
\(661\) 43.7552i 1.70188i 0.525262 + 0.850940i \(0.323967\pi\)
−0.525262 + 0.850940i \(0.676033\pi\)
\(662\) 25.4410 12.9071i 0.988792 0.501650i
\(663\) 22.3173 0.866732
\(664\) 30.6434 + 5.01748i 1.18919 + 0.194716i
\(665\) 0 0
\(666\) 5.72019 + 11.2749i 0.221653 + 0.436895i
\(667\) 12.0679i 0.467270i
\(668\) −4.89662 + 6.69055i −0.189456 + 0.258865i
\(669\) −16.2449 −0.628064
\(670\) −19.1650 37.7758i −0.740410 1.45941i
\(671\) 35.2194 1.35963
\(672\) 0 0
\(673\) 5.42765 0.209220 0.104610 0.994513i \(-0.466641\pi\)
0.104610 + 0.994513i \(0.466641\pi\)
\(674\) 8.95923 + 17.6593i 0.345097 + 0.680213i
\(675\) 4.63824 0.178526
\(676\) 2.86812 3.91889i 0.110312 0.150726i
\(677\) 33.9056i 1.30310i 0.758607 + 0.651549i \(0.225880\pi\)
−0.758607 + 0.651549i \(0.774120\pi\)
\(678\) 0.458031 + 0.902815i 0.0175906 + 0.0346724i
\(679\) 0 0
\(680\) −49.2361 8.06180i −1.88812 0.309156i
\(681\) −20.4484 −0.783583
\(682\) −10.3207 + 5.23608i −0.395201 + 0.200500i
\(683\) 5.89787i 0.225676i 0.993613 + 0.112838i \(0.0359941\pi\)
−0.993613 + 0.112838i \(0.964006\pi\)
\(684\) 0.201763 0.275681i 0.00771460 0.0105409i
\(685\) 62.3179i 2.38104i
\(686\) 0 0
\(687\) 3.38952i 0.129318i
\(688\) 9.08517 2.88223i 0.346369 0.109884i
\(689\) 4.70970i 0.179425i
\(690\) −12.1799 24.0075i −0.463681 0.913951i
\(691\) 43.3271 1.64824 0.824119 0.566416i \(-0.191671\pi\)
0.824119 + 0.566416i \(0.191671\pi\)
\(692\) −8.95144 6.55129i −0.340283 0.249043i
\(693\) 0 0
\(694\) −15.1164 + 7.66913i −0.573812 + 0.291116i
\(695\) 24.7855i 0.940167i
\(696\) −5.49366 0.899520i −0.208237 0.0340962i
\(697\) 33.1991 1.25750
\(698\) −36.3509 + 18.4421i −1.37590 + 0.698045i
\(699\) −1.90437 −0.0720298
\(700\) 0 0
\(701\) 28.9345 1.09284 0.546420 0.837511i \(-0.315990\pi\)
0.546420 + 0.837511i \(0.315990\pi\)
\(702\) 4.95378 2.51324i 0.186968 0.0948559i
\(703\) −1.52706 −0.0575941
\(704\) −13.6361 + 40.5237i −0.513929 + 1.52729i
\(705\) 7.12425i 0.268315i
\(706\) 0.144765 0.0734444i 0.00544829 0.00276412i
\(707\) 0 0
\(708\) −12.9863 + 17.7440i −0.488054 + 0.666859i
\(709\) 16.7583 0.629373 0.314686 0.949196i \(-0.398101\pi\)
0.314686 + 0.949196i \(0.398101\pi\)
\(710\) 4.06521 + 8.01286i 0.152565 + 0.300717i
\(711\) 14.3947i 0.539842i
\(712\) 2.65935 16.2415i 0.0996633 0.608677i
\(713\) 9.38831i 0.351595i
\(714\) 0 0
\(715\) 65.1729i 2.43733i
\(716\) 2.05238 + 1.50207i 0.0767009 + 0.0561352i
\(717\) 7.77419i 0.290333i
\(718\) −2.49361 + 1.26510i −0.0930605 + 0.0472130i
\(719\) 30.8239 1.14954 0.574768 0.818316i \(-0.305092\pi\)
0.574768 + 0.818316i \(0.305092\pi\)
\(720\) −11.8368 + 3.75518i −0.441132 + 0.139947i
\(721\) 0 0
\(722\) −12.1384 23.9258i −0.451745 0.890425i
\(723\) 12.1107i 0.450402i
\(724\) 0.624074 + 0.456742i 0.0231935 + 0.0169747i
\(725\) 9.12883 0.339036
\(726\) 11.2384 + 22.1518i 0.417097 + 0.822130i
\(727\) −20.6890 −0.767313 −0.383657 0.923476i \(-0.625335\pi\)
−0.383657 + 0.923476i \(0.625335\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 20.4055 + 40.2208i 0.755241 + 1.48864i
\(731\) −13.5388 −0.500752
\(732\) −10.6355 7.78379i −0.393098 0.287697i
\(733\) 25.2113i 0.931201i −0.884995 0.465601i \(-0.845838\pi\)
0.884995 0.465601i \(-0.154162\pi\)
\(734\) −17.1344 33.7733i −0.632443 1.24660i
\(735\) 0 0
\(736\) 24.3119 + 24.7385i 0.896148 + 0.911872i
\(737\) 51.5639 1.89938
\(738\) 7.36922 3.73867i 0.271265 0.137622i
\(739\) 29.1040i 1.07061i −0.844659 0.535305i \(-0.820197\pi\)
0.844659 0.535305i \(-0.179803\pi\)
\(740\) 44.7939 + 32.7834i 1.64666 + 1.20514i
\(741\) 0.670931i 0.0246473i
\(742\) 0 0
\(743\) 4.72777i 0.173445i 0.996233 + 0.0867226i \(0.0276394\pi\)
−0.996233 + 0.0867226i \(0.972361\pi\)
\(744\) 4.27385 + 0.699790i 0.156687 + 0.0256555i
\(745\) 16.4594i 0.603026i
\(746\) 14.7418 + 29.0573i 0.539737 + 1.06386i
\(747\) −10.9783 −0.401677
\(748\) 35.8687 49.0097i 1.31149 1.79197i
\(749\) 0 0
\(750\) −1.41646 + 0.718623i −0.0517219 + 0.0262404i
\(751\) 7.35651i 0.268443i 0.990951 + 0.134221i \(0.0428533\pi\)
−0.990951 + 0.134221i \(0.957147\pi\)
\(752\) 2.77570 + 8.74937i 0.101219 + 0.319057i
\(753\) −7.89409 −0.287677
\(754\) 9.74988 4.94647i 0.355070 0.180140i
\(755\) 4.73933 0.172482
\(756\) 0 0
\(757\) 6.36602 0.231377 0.115688 0.993286i \(-0.463093\pi\)
0.115688 + 0.993286i \(0.463093\pi\)
\(758\) 28.2125 14.3132i 1.02472 0.519879i
\(759\) 32.7703 1.18948
\(760\) 0.242364 1.48020i 0.00879147 0.0536924i
\(761\) 2.01702i 0.0731167i −0.999332 0.0365584i \(-0.988361\pi\)
0.999332 0.0365584i \(-0.0116395\pi\)
\(762\) −19.4322 + 9.85868i −0.703956 + 0.357142i
\(763\) 0 0
\(764\) −10.6447 7.79051i −0.385110 0.281851i
\(765\) 17.6394 0.637753
\(766\) 18.3689 + 36.2066i 0.663696 + 1.30820i
\(767\) 43.1839i 1.55928i
\(768\) 13.0739 9.22355i 0.471763 0.332826i
\(769\) 52.1122i 1.87922i 0.342253 + 0.939608i \(0.388810\pi\)
−0.342253 + 0.939608i \(0.611190\pi\)
\(770\) 0 0
\(771\) 3.06316i 0.110317i
\(772\) −2.31167 + 3.15857i −0.0831987 + 0.113679i
\(773\) 25.2185i 0.907045i 0.891245 + 0.453523i \(0.149833\pi\)
−0.891245 + 0.453523i \(0.850167\pi\)
\(774\) −3.00522 + 1.52466i −0.108020 + 0.0548027i
\(775\) −7.10186 −0.255106
\(776\) 1.06336 6.49431i 0.0381725 0.233132i
\(777\) 0 0
\(778\) 7.90171 + 15.5749i 0.283290 + 0.558387i
\(779\) 0.998073i 0.0357597i
\(780\) 14.4038 19.6808i 0.515738 0.704684i
\(781\) −10.9375 −0.391376
\(782\) −22.2910 43.9373i −0.797124 1.57119i
\(783\) 1.96817 0.0703366
\(784\) 0 0
\(785\) −38.6077 −1.37797
\(786\) 1.44553 + 2.84925i 0.0515603 + 0.101629i
\(787\) −23.4850 −0.837148 −0.418574 0.908183i \(-0.637470\pi\)
−0.418574 + 0.908183i \(0.637470\pi\)
\(788\) 0.428696 0.585753i 0.0152717 0.0208666i
\(789\) 10.6284i 0.378381i
\(790\) 28.5941 + 56.3612i 1.01733 + 2.00524i
\(791\) 0 0
\(792\) 2.44264 14.9180i 0.0867955 0.530089i
\(793\) 25.8838 0.919160
\(794\) −22.7002 + 11.5167i −0.805602 + 0.408711i
\(795\) 3.72250i 0.132023i
\(796\) −11.6505 + 15.9188i −0.412941 + 0.564226i
\(797\) 44.2469i 1.56730i 0.621200 + 0.783652i \(0.286646\pi\)
−0.621200 + 0.783652i \(0.713354\pi\)
\(798\) 0 0
\(799\) 13.0384i 0.461266i
\(800\) −18.7136 + 18.3909i −0.661625 + 0.650216i
\(801\) 5.81871i 0.205594i
\(802\) −0.0364535 0.0718528i −0.00128722 0.00253721i
\(803\) −54.9014 −1.93743
\(804\) −15.5712 11.3961i −0.549152 0.401908i
\(805\) 0 0
\(806\) −7.58501 + 3.84815i −0.267170 + 0.135545i
\(807\) 2.51512i 0.0885364i
\(808\) 3.40229 20.7789i 0.119692 0.731000i
\(809\) −29.9743 −1.05384 −0.526920 0.849915i \(-0.676653\pi\)
−0.526920 + 0.849915i \(0.676653\pi\)
\(810\) 3.91542 1.98644i 0.137574 0.0697963i
\(811\) −8.74124 −0.306946 −0.153473 0.988153i \(-0.549046\pi\)
−0.153473 + 0.988153i \(0.549046\pi\)
\(812\) 0 0
\(813\) −0.916212 −0.0321329
\(814\) −60.2595 + 30.5718i −2.11209 + 1.07154i
\(815\) 19.3211 0.676789
\(816\) −21.6631 + 6.87252i −0.758361 + 0.240586i
\(817\) 0.407022i 0.0142399i
\(818\) −44.1698 + 22.4090i −1.54436 + 0.783511i
\(819\) 0 0
\(820\) 21.4270 29.2770i 0.748262 1.02240i
\(821\) −48.0127 −1.67566 −0.837828 0.545935i \(-0.816175\pi\)
−0.837828 + 0.545935i \(0.816175\pi\)
\(822\) −12.8437 25.3159i −0.447975 0.882994i
\(823\) 20.1297i 0.701676i 0.936436 + 0.350838i \(0.114103\pi\)
−0.936436 + 0.350838i \(0.885897\pi\)
\(824\) −45.4861 7.44779i −1.58458 0.259456i
\(825\) 24.7893i 0.863052i
\(826\) 0 0
\(827\) 24.4464i 0.850084i 0.905174 + 0.425042i \(0.139741\pi\)
−0.905174 + 0.425042i \(0.860259\pi\)
\(828\) −9.89588 7.24251i −0.343906 0.251695i
\(829\) 10.8168i 0.375682i −0.982199 0.187841i \(-0.939851\pi\)
0.982199 0.187841i \(-0.0601490\pi\)
\(830\) −42.9849 + 21.8078i −1.49203 + 0.756959i
\(831\) −11.7658 −0.408152
\(832\) −10.0216 + 29.7820i −0.347435 + 1.03251i
\(833\) 0 0
\(834\) 5.10828 + 10.0688i 0.176885 + 0.348655i
\(835\) 12.8699i 0.445381i
\(836\) 1.47339 + 1.07833i 0.0509583 + 0.0372949i
\(837\) −1.53115 −0.0529244
\(838\) −11.4675 22.6033i −0.396137 0.780818i
\(839\) 10.6831 0.368821 0.184410 0.982849i \(-0.440962\pi\)
0.184410 + 0.982849i \(0.440962\pi\)
\(840\) 0 0
\(841\) −25.1263 −0.866425
\(842\) −5.42297 10.6891i −0.186888 0.368371i
\(843\) 29.8347 1.02756
\(844\) 41.5231 + 30.3895i 1.42928 + 1.04605i
\(845\) 7.53834i 0.259327i
\(846\) −1.46830 2.89414i −0.0504814 0.0995027i
\(847\) 0 0
\(848\) 1.45033 + 4.57164i 0.0498046 + 0.156991i
\(849\) 4.82984 0.165760
\(850\) 33.2366 16.8622i 1.14001 0.578368i
\(851\) 54.8154i 1.87905i
\(852\) 3.30289 + 2.41729i 0.113155 + 0.0828150i
\(853\) 47.6336i 1.63094i −0.578796 0.815472i \(-0.696477\pi\)
0.578796 0.815472i \(-0.303523\pi\)
\(854\) 0 0
\(855\) 0.530298i 0.0181358i
\(856\) −7.65037 + 46.7234i −0.261484 + 1.59697i
\(857\) 17.9251i 0.612311i −0.951981 0.306156i \(-0.900957\pi\)
0.951981 0.306156i \(-0.0990428\pi\)
\(858\) 13.4321 + 26.4757i 0.458565 + 0.903867i
\(859\) −19.2616 −0.657199 −0.328599 0.944469i \(-0.606577\pi\)
−0.328599 + 0.944469i \(0.606577\pi\)
\(860\) −8.73807 + 11.9394i −0.297966 + 0.407129i
\(861\) 0 0
\(862\) −30.2670 + 15.3555i −1.03090 + 0.523012i
\(863\) 7.57076i 0.257712i 0.991663 + 0.128856i \(0.0411305\pi\)
−0.991663 + 0.128856i \(0.958870\pi\)
\(864\) −4.03463 + 3.96506i −0.137261 + 0.134894i
\(865\) 17.2189 0.585460
\(866\) 15.8285 8.03038i 0.537874 0.272883i
\(867\) 15.2826 0.519026
\(868\) 0 0
\(869\) −76.9330 −2.60977
\(870\) 7.70621 3.90964i 0.261265 0.132549i
\(871\) 37.8959 1.28405
\(872\) −21.5518 3.52884i −0.729835 0.119501i
\(873\) 2.32666i 0.0787455i
\(874\) 1.32090 0.670140i 0.0446801 0.0226678i
\(875\) 0 0
\(876\) 16.5790 + 12.1337i 0.560152 + 0.409959i
\(877\) −23.0973 −0.779939 −0.389969 0.920828i \(-0.627514\pi\)
−0.389969 + 0.920828i \(0.627514\pi\)
\(878\) −4.57587 9.01939i −0.154428 0.304390i
\(879\) 22.4276i 0.756463i
\(880\) −20.0697 63.2625i −0.676551 2.13258i
\(881\) 26.0108i 0.876325i −0.898896 0.438163i \(-0.855629\pi\)
0.898896 0.438163i \(-0.144371\pi\)
\(882\) 0 0
\(883\) 13.5662i 0.456539i −0.973598 0.228270i \(-0.926693\pi\)
0.973598 0.228270i \(-0.0733068\pi\)
\(884\) 26.3610 36.0187i 0.886617 1.21144i
\(885\) 34.1321i 1.14734i
\(886\) −31.3686 + 15.9144i −1.05385 + 0.534656i
\(887\) −1.15898 −0.0389147 −0.0194573 0.999811i \(-0.506194\pi\)
−0.0194573 + 0.999811i \(0.506194\pi\)
\(888\) 24.9537 + 4.08585i 0.837390 + 0.137112i
\(889\) 0 0
\(890\) 11.5585 + 22.7827i 0.387442 + 0.763678i
\(891\) 5.34455i 0.179049i
\(892\) −19.1883 + 26.2182i −0.642473 + 0.877850i
\(893\) 0.391977 0.0131170
\(894\) 3.39228 + 6.68644i 0.113455 + 0.223628i
\(895\) −3.94793 −0.131965
\(896\) 0 0
\(897\) 24.0838 0.804136
\(898\) −6.35833 12.5328i −0.212180 0.418224i
\(899\) −3.01357 −0.100508
\(900\) 5.47865 7.48581i 0.182622 0.249527i
\(901\) 6.81272i 0.226965i
\(902\) 19.9815 + 39.3852i 0.665312 + 1.31138i
\(903\) 0 0
\(904\) 1.99811 + 0.327166i 0.0664561 + 0.0108814i
\(905\) −1.20046 −0.0399047
\(906\) 1.92530 0.976774i 0.0639638 0.0324512i
\(907\) 37.1328i 1.23298i 0.787364 + 0.616488i \(0.211445\pi\)
−0.787364 + 0.616488i \(0.788555\pi\)
\(908\) −24.1534 + 33.0023i −0.801560 + 1.09522i
\(909\) 7.44428i 0.246911i
\(910\) 0 0
\(911\) 27.9490i 0.925992i −0.886360 0.462996i \(-0.846774\pi\)
0.886360 0.462996i \(-0.153226\pi\)
\(912\) −0.206611 0.651265i −0.00684156 0.0215655i
\(913\) 58.6743i 1.94184i
\(914\) 16.6943 + 32.9058i 0.552198 + 1.08843i
\(915\) 20.4583 0.676330
\(916\) 5.47046 + 4.00367i 0.180749 + 0.132285i
\(917\) 0 0
\(918\) 7.16580 3.63547i 0.236507 0.119988i
\(919\) 8.62097i 0.284380i 0.989839 + 0.142190i \(0.0454143\pi\)
−0.989839 + 0.142190i \(0.954586\pi\)
\(920\) −53.1334 8.69993i −1.75176 0.286828i
\(921\) −31.3123 −1.03177
\(922\) 37.2201 18.8831i 1.22578 0.621883i
\(923\) −8.03833 −0.264585
\(924\) 0 0
\(925\) −41.4655 −1.36338
\(926\) 3.53737 1.79464i 0.116245 0.0589754i
\(927\) 16.2959 0.535228
\(928\) −7.94084 + 7.80391i −0.260671 + 0.256176i
\(929\) 22.7403i 0.746086i −0.927814 0.373043i \(-0.878314\pi\)
0.927814 0.373043i \(-0.121686\pi\)
\(930\) −5.99512 + 3.04154i −0.196588 + 0.0997361i
\(931\) 0 0
\(932\) −2.24942 + 3.07353i −0.0736823 + 0.100677i
\(933\) −15.4221 −0.504897
\(934\) 21.0964 + 41.5826i 0.690294 + 1.36062i
\(935\) 94.2746i 3.08311i
\(936\) 1.79517 10.9637i 0.0586770 0.358360i
\(937\) 0.364981i 0.0119234i −0.999982 0.00596171i \(-0.998102\pi\)
0.999982 0.00596171i \(-0.00189768\pi\)
\(938\) 0 0
\(939\) 6.09799i 0.199000i
\(940\) −11.4981 8.41510i −0.375026 0.274470i
\(941\) 18.7799i 0.612207i 0.951998 + 0.306104i \(0.0990254\pi\)
−0.951998 + 0.306104i \(0.900975\pi\)
\(942\) −15.6839 + 7.95703i −0.511010 + 0.259254i
\(943\) 35.8270 1.16669
\(944\) 13.2983 + 41.9180i 0.432823 + 1.36432i
\(945\) 0 0
\(946\) −8.14861 16.0616i −0.264934 0.522206i
\(947\) 4.20227i 0.136555i 0.997666 + 0.0682776i \(0.0217504\pi\)
−0.997666 + 0.0682776i \(0.978250\pi\)
\(948\) 23.2320 + 17.0029i 0.754542 + 0.552227i
\(949\) −40.3487 −1.30977
\(950\) 0.506932 + 0.999203i 0.0164471 + 0.0324184i
\(951\) 29.7110 0.963446
\(952\) 0 0
\(953\) −24.9457 −0.808072 −0.404036 0.914743i \(-0.632393\pi\)
−0.404036 + 0.914743i \(0.632393\pi\)
\(954\) −0.767206 1.51222i −0.0248392 0.0489600i
\(955\) 20.4760 0.662587
\(956\) −12.5470 9.18281i −0.405800 0.296993i
\(957\) 10.5190i 0.340030i
\(958\) −15.3085 30.1742i −0.494594 0.974884i
\(959\) 0 0
\(960\) −7.92095 + 23.5394i −0.255648 + 0.759732i
\(961\) −28.6556 −0.924373
\(962\) −44.2865 + 22.4682i −1.42785 + 0.724402i
\(963\) 16.7392i 0.539413i
\(964\) −19.5459 14.3051i −0.629531 0.460735i
\(965\) 6.07580i 0.195587i
\(966\) 0 0
\(967\) 45.6476i 1.46793i 0.679188 + 0.733964i \(0.262332\pi\)
−0.679188 + 0.733964i \(0.737668\pi\)
\(968\) 49.0263 + 8.02745i 1.57576 + 0.258012i
\(969\) 0.970522i 0.0311777i
\(970\) 4.62176 + 9.10986i 0.148396 + 0.292500i
\(971\) 50.6854 1.62657 0.813286 0.581864i \(-0.197676\pi\)
0.813286 + 0.581864i \(0.197676\pi\)
\(972\) 1.18119 1.61393i 0.0378867 0.0517670i
\(973\) 0 0
\(974\) −1.03695 + 0.526083i −0.0332260 + 0.0168568i
\(975\) 18.2184i 0.583455i
\(976\) −25.1251 + 7.97080i −0.804233 + 0.255139i
\(977\) 30.6897 0.981850 0.490925 0.871202i \(-0.336659\pi\)
0.490925 + 0.871202i \(0.336659\pi\)
\(978\) 7.84898 3.98207i 0.250983 0.127333i
\(979\) −31.0984 −0.993909
\(980\) 0 0
\(981\) 7.72117 0.246518
\(982\) 28.5504 14.4847i 0.911080 0.462224i
\(983\) 24.6949 0.787646 0.393823 0.919186i \(-0.371152\pi\)
0.393823 + 0.919186i \(0.371152\pi\)
\(984\) 2.67048 16.3095i 0.0851319 0.519929i
\(985\) 1.12675i 0.0359012i
\(986\) 14.1035 7.15522i 0.449147 0.227868i
\(987\) 0 0
\(988\) 1.08284 + 0.792498i 0.0344497 + 0.0252127i
\(989\) −14.6105 −0.464587
\(990\) 10.6166 + 20.9262i 0.337418 + 0.665078i
\(991\) 58.9597i 1.87292i −0.350778 0.936459i \(-0.614083\pi\)
0.350778 0.936459i \(-0.385917\pi\)
\(992\) 6.17765 6.07113i 0.196141 0.192758i
\(993\) 20.1722i 0.640147i
\(994\) 0 0
\(995\) 30.6212i 0.970758i
\(996\) −12.9675 + 17.7183i −0.410892 + 0.561427i
\(997\) 25.6594i 0.812640i −0.913731 0.406320i \(-0.866812\pi\)
0.913731 0.406320i \(-0.133188\pi\)
\(998\) 37.8198 19.1874i 1.19716 0.607365i
\(999\) −8.93993 −0.282847
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.b.c.391.8 yes 12
3.2 odd 2 1764.2.b.l.1567.5 12
4.3 odd 2 588.2.b.d.391.7 yes 12
7.2 even 3 588.2.o.f.31.9 24
7.3 odd 6 588.2.o.e.19.1 24
7.4 even 3 588.2.o.f.19.1 24
7.5 odd 6 588.2.o.e.31.9 24
7.6 odd 2 588.2.b.d.391.8 yes 12
12.11 even 2 1764.2.b.m.1567.6 12
21.20 even 2 1764.2.b.m.1567.5 12
28.3 even 6 588.2.o.f.19.9 24
28.11 odd 6 588.2.o.e.19.9 24
28.19 even 6 588.2.o.f.31.1 24
28.23 odd 6 588.2.o.e.31.1 24
28.27 even 2 inner 588.2.b.c.391.7 12
84.83 odd 2 1764.2.b.l.1567.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.7 12 28.27 even 2 inner
588.2.b.c.391.8 yes 12 1.1 even 1 trivial
588.2.b.d.391.7 yes 12 4.3 odd 2
588.2.b.d.391.8 yes 12 7.6 odd 2
588.2.o.e.19.1 24 7.3 odd 6
588.2.o.e.19.9 24 28.11 odd 6
588.2.o.e.31.1 24 28.23 odd 6
588.2.o.e.31.9 24 7.5 odd 6
588.2.o.f.19.1 24 7.4 even 3
588.2.o.f.19.9 24 28.3 even 6
588.2.o.f.31.1 24 28.19 even 6
588.2.o.f.31.9 24 7.2 even 3
1764.2.b.l.1567.5 12 3.2 odd 2
1764.2.b.l.1567.6 12 84.83 odd 2
1764.2.b.m.1567.5 12 21.20 even 2
1764.2.b.m.1567.6 12 12.11 even 2