Properties

Label 588.2.o.e.31.9
Level $588$
Weight $2$
Character 588.31
Analytic conductor $4.695$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(19,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,-4,-12,4,0,8,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.9
Character \(\chi\) \(=\) 588.31
Dual form 588.2.o.e.19.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.772298 - 1.18472i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(-0.807113 - 1.82991i) q^{4} +(2.68862 - 1.55228i) q^{5} +(0.639847 + 1.26119i) q^{6} +(-2.79126 - 0.457034i) q^{8} +(-0.500000 - 0.866025i) q^{9} +(0.237406 - 4.38407i) q^{10} +(-4.62852 - 2.67228i) q^{11} +(1.98830 + 0.215975i) q^{12} -3.92787i q^{13} +3.10455i q^{15} +(-2.69714 + 2.95389i) q^{16} +(4.92057 + 2.84089i) q^{17} +(-1.41214 - 0.0764704i) q^{18} +(-0.0854065 - 0.147928i) q^{19} +(-5.01054 - 3.66707i) q^{20} +(-6.74049 + 3.41969i) q^{22} +(5.31006 - 3.06576i) q^{23} +(1.79143 - 2.18878i) q^{24} +(2.31912 - 4.01683i) q^{25} +(-4.65342 - 3.03348i) q^{26} +1.00000 q^{27} -1.96817 q^{29} +(3.67802 + 2.39764i) q^{30} +(0.765577 - 1.32602i) q^{31} +(1.41653 + 5.47663i) q^{32} +(4.62852 - 2.67228i) q^{33} +(7.16580 - 3.63547i) q^{34} +(-1.18119 + 1.61393i) q^{36} +(-4.46997 - 7.74221i) q^{37} +(-0.241213 - 0.0130621i) q^{38} +(3.40163 + 1.96393i) q^{39} +(-8.21407 + 3.10401i) q^{40} +5.84308i q^{41} +2.38285i q^{43} +(-1.15429 + 10.6266i) q^{44} +(-2.68862 - 1.55228i) q^{45} +(0.468881 - 8.65860i) q^{46} +(-1.14739 - 1.98733i) q^{47} +(-1.20957 - 3.81273i) q^{48} +(-2.96776 - 5.84969i) q^{50} +(-4.92057 + 2.84089i) q^{51} +(-7.18765 + 3.17023i) q^{52} +(0.599523 - 1.03840i) q^{53} +(0.772298 - 1.18472i) q^{54} -16.5924 q^{55} +0.170813 q^{57} +(-1.52001 + 2.33172i) q^{58} +(-5.49711 + 9.52127i) q^{59} +(5.68105 - 2.50572i) q^{60} +(5.70691 - 3.29489i) q^{61} +(-0.979705 - 1.93107i) q^{62} +(7.58224 + 2.55140i) q^{64} +(-6.09713 - 10.5605i) q^{65} +(0.408700 - 7.54728i) q^{66} +(8.35536 + 4.82397i) q^{67} +(1.22712 - 11.2971i) q^{68} +6.13153i q^{69} +2.04649i q^{71} +(0.999826 + 2.64582i) q^{72} +(8.89617 + 5.13620i) q^{73} +(-12.6245 - 0.683641i) q^{74} +(2.31912 + 4.01683i) q^{75} +(-0.201763 + 0.275681i) q^{76} +(4.95378 - 2.51324i) q^{78} +(12.4661 - 7.19733i) q^{79} +(-2.66633 + 12.1286i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(6.92240 + 4.51259i) q^{82} +10.9783 q^{83} +17.6394 q^{85} +(2.82300 + 1.84027i) q^{86} +(0.984084 - 1.70448i) q^{87} +(11.6981 + 9.57440i) q^{88} +(-5.03915 + 2.90936i) q^{89} +(-3.91542 + 1.98644i) q^{90} +(-9.89588 - 7.24251i) q^{92} +(0.765577 + 1.32602i) q^{93} +(-3.24055 - 0.175482i) q^{94} +(-0.459251 - 0.265149i) q^{95} +(-5.45116 - 1.51156i) q^{96} -2.32666i q^{97} +5.34455i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{2} - 12 q^{3} + 4 q^{4} + 8 q^{6} + 8 q^{8} - 12 q^{9} + 4 q^{12} + 4 q^{16} - 4 q^{18} - 48 q^{20} - 4 q^{24} + 12 q^{25} - 24 q^{26} + 24 q^{27} + 64 q^{29} - 16 q^{31} - 4 q^{32} + 64 q^{34}+ \cdots - 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.772298 1.18472i 0.546097 0.837722i
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) −0.807113 1.82991i −0.403556 0.914955i
\(5\) 2.68862 1.55228i 1.20239 0.694199i 0.241302 0.970450i \(-0.422426\pi\)
0.961085 + 0.276251i \(0.0890923\pi\)
\(6\) 0.639847 + 1.26119i 0.261216 + 0.514878i
\(7\) 0 0
\(8\) −2.79126 0.457034i −0.986859 0.161586i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0.237406 4.38407i 0.0750745 1.38637i
\(11\) −4.62852 2.67228i −1.39555 0.805721i −0.401628 0.915803i \(-0.631555\pi\)
−0.993923 + 0.110082i \(0.964889\pi\)
\(12\) 1.98830 + 0.215975i 0.573974 + 0.0623465i
\(13\) 3.92787i 1.08939i −0.838633 0.544697i \(-0.816644\pi\)
0.838633 0.544697i \(-0.183356\pi\)
\(14\) 0 0
\(15\) 3.10455i 0.801592i
\(16\) −2.69714 + 2.95389i −0.674285 + 0.738472i
\(17\) 4.92057 + 2.84089i 1.19341 + 0.689017i 0.959079 0.283139i \(-0.0913758\pi\)
0.234334 + 0.972156i \(0.424709\pi\)
\(18\) −1.41214 0.0764704i −0.332846 0.0180243i
\(19\) −0.0854065 0.147928i −0.0195936 0.0339371i 0.856062 0.516873i \(-0.172904\pi\)
−0.875656 + 0.482935i \(0.839571\pi\)
\(20\) −5.01054 3.66707i −1.12039 0.819982i
\(21\) 0 0
\(22\) −6.74049 + 3.41969i −1.43708 + 0.729081i
\(23\) 5.31006 3.06576i 1.10722 0.639256i 0.169115 0.985596i \(-0.445909\pi\)
0.938109 + 0.346341i \(0.112576\pi\)
\(24\) 1.79143 2.18878i 0.365675 0.446783i
\(25\) 2.31912 4.01683i 0.463824 0.803366i
\(26\) −4.65342 3.03348i −0.912610 0.594915i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −1.96817 −0.365480 −0.182740 0.983161i \(-0.558497\pi\)
−0.182740 + 0.983161i \(0.558497\pi\)
\(30\) 3.67802 + 2.39764i 0.671511 + 0.437747i
\(31\) 0.765577 1.32602i 0.137502 0.238160i −0.789049 0.614331i \(-0.789426\pi\)
0.926550 + 0.376171i \(0.122759\pi\)
\(32\) 1.41653 + 5.47663i 0.250409 + 0.968140i
\(33\) 4.62852 2.67228i 0.805721 0.465183i
\(34\) 7.16580 3.63547i 1.22892 0.623478i
\(35\) 0 0
\(36\) −1.18119 + 1.61393i −0.196865 + 0.268989i
\(37\) −4.46997 7.74221i −0.734858 1.27281i −0.954786 0.297295i \(-0.903915\pi\)
0.219927 0.975516i \(-0.429418\pi\)
\(38\) −0.241213 0.0130621i −0.0391299 0.00211896i
\(39\) 3.40163 + 1.96393i 0.544697 + 0.314481i
\(40\) −8.21407 + 3.10401i −1.29876 + 0.490787i
\(41\) 5.84308i 0.912535i 0.889843 + 0.456268i \(0.150814\pi\)
−0.889843 + 0.456268i \(0.849186\pi\)
\(42\) 0 0
\(43\) 2.38285i 0.363381i 0.983356 + 0.181691i \(0.0581569\pi\)
−0.983356 + 0.181691i \(0.941843\pi\)
\(44\) −1.15429 + 10.6266i −0.174015 + 1.60202i
\(45\) −2.68862 1.55228i −0.400796 0.231400i
\(46\) 0.468881 8.65860i 0.0691327 1.27664i
\(47\) −1.14739 1.98733i −0.167364 0.289882i 0.770128 0.637889i \(-0.220192\pi\)
−0.937492 + 0.348006i \(0.886859\pi\)
\(48\) −1.20957 3.81273i −0.174587 0.550321i
\(49\) 0 0
\(50\) −2.96776 5.84969i −0.419705 0.827271i
\(51\) −4.92057 + 2.84089i −0.689017 + 0.397804i
\(52\) −7.18765 + 3.17023i −0.996747 + 0.439632i
\(53\) 0.599523 1.03840i 0.0823508 0.142636i −0.821908 0.569620i \(-0.807091\pi\)
0.904259 + 0.426984i \(0.140424\pi\)
\(54\) 0.772298 1.18472i 0.105096 0.161220i
\(55\) −16.5924 −2.23732
\(56\) 0 0
\(57\) 0.170813 0.0226247
\(58\) −1.52001 + 2.33172i −0.199587 + 0.306170i
\(59\) −5.49711 + 9.52127i −0.715663 + 1.23956i 0.247041 + 0.969005i \(0.420542\pi\)
−0.962703 + 0.270559i \(0.912791\pi\)
\(60\) 5.68105 2.50572i 0.733420 0.323487i
\(61\) 5.70691 3.29489i 0.730695 0.421867i −0.0879813 0.996122i \(-0.528042\pi\)
0.818676 + 0.574255i \(0.194708\pi\)
\(62\) −0.979705 1.93107i −0.124423 0.245247i
\(63\) 0 0
\(64\) 7.58224 + 2.55140i 0.947780 + 0.318925i
\(65\) −6.09713 10.5605i −0.756257 1.30987i
\(66\) 0.408700 7.54728i 0.0503075 0.929006i
\(67\) 8.35536 + 4.82397i 1.02077 + 0.589342i 0.914327 0.404977i \(-0.132720\pi\)
0.106443 + 0.994319i \(0.466054\pi\)
\(68\) 1.22712 11.2971i 0.148810 1.36998i
\(69\) 6.13153i 0.738149i
\(70\) 0 0
\(71\) 2.04649i 0.242873i 0.992599 + 0.121437i \(0.0387501\pi\)
−0.992599 + 0.121437i \(0.961250\pi\)
\(72\) 0.999826 + 2.64582i 0.117831 + 0.311813i
\(73\) 8.89617 + 5.13620i 1.04122 + 0.601147i 0.920178 0.391500i \(-0.128044\pi\)
0.121040 + 0.992648i \(0.461377\pi\)
\(74\) −12.6245 0.683641i −1.46757 0.0794716i
\(75\) 2.31912 + 4.01683i 0.267789 + 0.463824i
\(76\) −0.201763 + 0.275681i −0.0231438 + 0.0316228i
\(77\) 0 0
\(78\) 4.95378 2.51324i 0.560905 0.284568i
\(79\) 12.4661 7.19733i 1.40255 0.809763i 0.407897 0.913028i \(-0.366262\pi\)
0.994654 + 0.103265i \(0.0329290\pi\)
\(80\) −2.66633 + 12.1286i −0.298105 + 1.35602i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 6.92240 + 4.51259i 0.764451 + 0.498333i
\(83\) 10.9783 1.20503 0.602515 0.798108i \(-0.294165\pi\)
0.602515 + 0.798108i \(0.294165\pi\)
\(84\) 0 0
\(85\) 17.6394 1.91326
\(86\) 2.82300 + 1.84027i 0.304412 + 0.198441i
\(87\) 0.984084 1.70448i 0.105505 0.182740i
\(88\) 11.6981 + 9.57440i 1.24702 + 1.02063i
\(89\) −5.03915 + 2.90936i −0.534149 + 0.308391i −0.742704 0.669619i \(-0.766457\pi\)
0.208555 + 0.978011i \(0.433124\pi\)
\(90\) −3.91542 + 1.98644i −0.412722 + 0.209389i
\(91\) 0 0
\(92\) −9.89588 7.24251i −1.03172 0.755084i
\(93\) 0.765577 + 1.32602i 0.0793867 + 0.137502i
\(94\) −3.24055 0.175482i −0.334238 0.0180996i
\(95\) −0.459251 0.265149i −0.0471182 0.0272037i
\(96\) −5.45116 1.51156i −0.556357 0.154273i
\(97\) 2.32666i 0.236237i −0.993000 0.118118i \(-0.962314\pi\)
0.993000 0.118118i \(-0.0376862\pi\)
\(98\) 0 0
\(99\) 5.34455i 0.537148i
\(100\) −9.22222 1.00174i −0.922222 0.100174i
\(101\) 6.44694 + 3.72214i 0.641494 + 0.370367i 0.785190 0.619255i \(-0.212565\pi\)
−0.143696 + 0.989622i \(0.545899\pi\)
\(102\) −0.434488 + 8.02350i −0.0430208 + 0.794445i
\(103\) 8.14796 + 14.1127i 0.802842 + 1.39056i 0.917738 + 0.397186i \(0.130013\pi\)
−0.114896 + 0.993378i \(0.536653\pi\)
\(104\) −1.79517 + 10.9637i −0.176031 + 1.07508i
\(105\) 0 0
\(106\) −0.767206 1.51222i −0.0745176 0.146880i
\(107\) −14.4966 + 8.36959i −1.40143 + 0.809119i −0.994540 0.104356i \(-0.966722\pi\)
−0.406895 + 0.913475i \(0.633388\pi\)
\(108\) −0.807113 1.82991i −0.0776645 0.176083i
\(109\) −3.86058 + 6.68673i −0.369777 + 0.640472i −0.989530 0.144324i \(-0.953899\pi\)
0.619754 + 0.784796i \(0.287233\pi\)
\(110\) −12.8143 + 19.6573i −1.22180 + 1.87425i
\(111\) 8.93993 0.848541
\(112\) 0 0
\(113\) −0.715845 −0.0673410 −0.0336705 0.999433i \(-0.510720\pi\)
−0.0336705 + 0.999433i \(0.510720\pi\)
\(114\) 0.131918 0.202365i 0.0123553 0.0189532i
\(115\) 9.51782 16.4853i 0.887541 1.53727i
\(116\) 1.58853 + 3.60157i 0.147492 + 0.334397i
\(117\) −3.40163 + 1.96393i −0.314481 + 0.181566i
\(118\) 7.03462 + 13.8658i 0.647589 + 1.27645i
\(119\) 0 0
\(120\) 1.41889 8.66560i 0.129526 0.791058i
\(121\) 8.78211 + 15.2111i 0.798374 + 1.38282i
\(122\) 0.503923 9.30571i 0.0456230 0.842500i
\(123\) −5.06025 2.92154i −0.456268 0.263426i
\(124\) −3.04440 0.330691i −0.273395 0.0296969i
\(125\) 1.12312i 0.100455i
\(126\) 0 0
\(127\) 15.4079i 1.36723i −0.729844 0.683614i \(-0.760407\pi\)
0.729844 0.683614i \(-0.239593\pi\)
\(128\) 8.87843 7.01238i 0.784750 0.619812i
\(129\) −2.06361 1.19142i −0.181691 0.104899i
\(130\) −17.2201 0.932501i −1.51030 0.0817858i
\(131\) −1.12959 1.95651i −0.0986927 0.170941i 0.812451 0.583029i \(-0.198133\pi\)
−0.911144 + 0.412089i \(0.864799\pi\)
\(132\) −8.62576 6.31294i −0.750776 0.549471i
\(133\) 0 0
\(134\) 12.1679 6.17321i 1.05114 0.533284i
\(135\) 2.68862 1.55228i 0.231400 0.133599i
\(136\) −12.4362 10.1785i −1.06639 0.872801i
\(137\) −10.0365 + 17.3838i −0.857479 + 1.48520i 0.0168472 + 0.999858i \(0.494637\pi\)
−0.874326 + 0.485339i \(0.838696\pi\)
\(138\) 7.26413 + 4.73536i 0.618364 + 0.403101i
\(139\) 7.98360 0.677160 0.338580 0.940938i \(-0.390053\pi\)
0.338580 + 0.940938i \(0.390053\pi\)
\(140\) 0 0
\(141\) 2.29477 0.193255
\(142\) 2.42451 + 1.58050i 0.203460 + 0.132632i
\(143\) −10.4963 + 18.1802i −0.877749 + 1.52031i
\(144\) 3.90671 + 0.858847i 0.325559 + 0.0715706i
\(145\) −5.29165 + 3.05514i −0.439448 + 0.253715i
\(146\) 12.9554 6.57277i 1.07220 0.543966i
\(147\) 0 0
\(148\) −10.5598 + 14.4285i −0.868008 + 1.18601i
\(149\) 2.65085 + 4.59141i 0.217166 + 0.376143i 0.953940 0.299996i \(-0.0969854\pi\)
−0.736774 + 0.676139i \(0.763652\pi\)
\(150\) 6.54986 + 0.354688i 0.534794 + 0.0289601i
\(151\) −1.32205 0.763288i −0.107587 0.0621155i 0.445241 0.895411i \(-0.353118\pi\)
−0.552828 + 0.833295i \(0.686451\pi\)
\(152\) 0.170783 + 0.451940i 0.0138524 + 0.0366572i
\(153\) 5.68178i 0.459345i
\(154\) 0 0
\(155\) 4.75355i 0.381814i
\(156\) 0.848320 7.80980i 0.0679200 0.625284i
\(157\) −10.7697 6.21791i −0.859519 0.496243i 0.00433223 0.999991i \(-0.498621\pi\)
−0.863851 + 0.503747i \(0.831954\pi\)
\(158\) 1.10077 20.3273i 0.0875723 1.61716i
\(159\) 0.599523 + 1.03840i 0.0475453 + 0.0823508i
\(160\) 12.3097 + 12.5257i 0.973170 + 0.990246i
\(161\) 0 0
\(162\) 0.639847 + 1.26119i 0.0502711 + 0.0990883i
\(163\) 5.38969 3.11174i 0.422153 0.243730i −0.273845 0.961774i \(-0.588296\pi\)
0.695998 + 0.718044i \(0.254962\pi\)
\(164\) 10.6923 4.71602i 0.834928 0.368259i
\(165\) 8.29621 14.3695i 0.645859 1.11866i
\(166\) 8.47855 13.0062i 0.658063 1.00948i
\(167\) −4.14549 −0.320788 −0.160394 0.987053i \(-0.551276\pi\)
−0.160394 + 0.987053i \(0.551276\pi\)
\(168\) 0 0
\(169\) −2.42816 −0.186781
\(170\) 13.6228 20.8977i 1.04482 1.60278i
\(171\) −0.0854065 + 0.147928i −0.00653120 + 0.0113124i
\(172\) 4.36040 1.92323i 0.332477 0.146645i
\(173\) −4.80327 + 2.77317i −0.365186 + 0.210840i −0.671353 0.741137i \(-0.734287\pi\)
0.306167 + 0.951978i \(0.400953\pi\)
\(174\) −1.25933 2.48223i −0.0954693 0.188177i
\(175\) 0 0
\(176\) 20.3773 6.46462i 1.53600 0.487289i
\(177\) −5.49711 9.52127i −0.413188 0.715663i
\(178\) −0.444960 + 8.21686i −0.0333511 + 0.615880i
\(179\) 1.10129 + 0.635830i 0.0823143 + 0.0475242i 0.540592 0.841285i \(-0.318200\pi\)
−0.458278 + 0.888809i \(0.651534\pi\)
\(180\) −0.670504 + 6.17279i −0.0499764 + 0.460093i
\(181\) 0.386679i 0.0287416i 0.999897 + 0.0143708i \(0.00457452\pi\)
−0.999897 + 0.0143708i \(0.995425\pi\)
\(182\) 0 0
\(183\) 6.58977i 0.487130i
\(184\) −16.2229 + 6.13046i −1.19597 + 0.451943i
\(185\) −24.0361 13.8772i −1.76717 1.02028i
\(186\) 2.16221 + 0.117088i 0.158541 + 0.00858531i
\(187\) −15.1833 26.2982i −1.11031 1.92312i
\(188\) −2.71057 + 3.70362i −0.197689 + 0.270114i
\(189\) 0 0
\(190\) −0.668805 + 0.339309i −0.0485202 + 0.0246161i
\(191\) 5.71184 3.29773i 0.413295 0.238616i −0.278910 0.960317i \(-0.589973\pi\)
0.692204 + 0.721702i \(0.256640\pi\)
\(192\) −6.00070 + 5.29071i −0.433063 + 0.381824i
\(193\) −0.978531 + 1.69487i −0.0704362 + 0.121999i −0.899093 0.437759i \(-0.855772\pi\)
0.828656 + 0.559758i \(0.189106\pi\)
\(194\) −2.75644 1.79687i −0.197901 0.129008i
\(195\) 12.1943 0.873250
\(196\) 0 0
\(197\) −0.362935 −0.0258580 −0.0129290 0.999916i \(-0.504116\pi\)
−0.0129290 + 0.999916i \(0.504116\pi\)
\(198\) 6.33178 + 4.12758i 0.449980 + 0.293335i
\(199\) 4.93167 8.54190i 0.349597 0.605519i −0.636581 0.771210i \(-0.719652\pi\)
0.986178 + 0.165691i \(0.0529853\pi\)
\(200\) −8.30908 + 10.1521i −0.587541 + 0.717861i
\(201\) −8.35536 + 4.82397i −0.589342 + 0.340257i
\(202\) 9.38864 4.76320i 0.660583 0.335138i
\(203\) 0 0
\(204\) 9.17002 + 6.71127i 0.642030 + 0.469883i
\(205\) 9.07006 + 15.7098i 0.633481 + 1.09722i
\(206\) 23.0122 + 1.24616i 1.60334 + 0.0868238i
\(207\) −5.31006 3.06576i −0.369075 0.213085i
\(208\) 11.6025 + 10.5940i 0.804487 + 0.734562i
\(209\) 0.912919i 0.0631479i
\(210\) 0 0
\(211\) 25.7279i 1.77118i −0.464469 0.885589i \(-0.653755\pi\)
0.464469 0.885589i \(-0.346245\pi\)
\(212\) −2.38407 0.258964i −0.163739 0.0177857i
\(213\) −1.77231 1.02324i −0.121437 0.0701114i
\(214\) −1.28005 + 23.6381i −0.0875026 + 1.61587i
\(215\) 3.69884 + 6.40657i 0.252259 + 0.436925i
\(216\) −2.79126 0.457034i −0.189921 0.0310972i
\(217\) 0 0
\(218\) 4.94037 + 9.73785i 0.334604 + 0.659530i
\(219\) −8.89617 + 5.13620i −0.601147 + 0.347073i
\(220\) 13.3920 + 30.3626i 0.902886 + 2.04705i
\(221\) 11.1586 19.3273i 0.750612 1.30010i
\(222\) 6.90429 10.5913i 0.463386 0.710842i
\(223\) −16.2449 −1.08784 −0.543919 0.839138i \(-0.683060\pi\)
−0.543919 + 0.839138i \(0.683060\pi\)
\(224\) 0 0
\(225\) −4.63824 −0.309216
\(226\) −0.552845 + 0.848074i −0.0367747 + 0.0564131i
\(227\) 10.2242 17.7088i 0.678603 1.17537i −0.296799 0.954940i \(-0.595919\pi\)
0.975402 0.220434i \(-0.0707475\pi\)
\(228\) −0.137865 0.312572i −0.00913036 0.0207006i
\(229\) 2.93541 1.69476i 0.193977 0.111993i −0.399866 0.916574i \(-0.630943\pi\)
0.593843 + 0.804581i \(0.297610\pi\)
\(230\) −12.1799 24.0075i −0.803118 1.58301i
\(231\) 0 0
\(232\) 5.49366 + 0.899520i 0.360677 + 0.0590564i
\(233\) −0.952184 1.64923i −0.0623796 0.108045i 0.833149 0.553049i \(-0.186536\pi\)
−0.895529 + 0.445004i \(0.853202\pi\)
\(234\) −0.300366 + 5.54672i −0.0196355 + 0.362600i
\(235\) −6.16978 3.56212i −0.402472 0.232367i
\(236\) 21.8599 + 2.37447i 1.42296 + 0.154565i
\(237\) 14.3947i 0.935034i
\(238\) 0 0
\(239\) 7.77419i 0.502871i 0.967874 + 0.251435i \(0.0809026\pi\)
−0.967874 + 0.251435i \(0.919097\pi\)
\(240\) −9.17049 8.37340i −0.591953 0.540501i
\(241\) 10.4882 + 6.05535i 0.675603 + 0.390060i 0.798196 0.602397i \(-0.205788\pi\)
−0.122593 + 0.992457i \(0.539121\pi\)
\(242\) 24.8032 + 1.34314i 1.59441 + 0.0863406i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −10.6355 7.78379i −0.680866 0.498306i
\(245\) 0 0
\(246\) −7.36922 + 3.73867i −0.469844 + 0.238369i
\(247\) −0.581043 + 0.335466i −0.0369709 + 0.0213452i
\(248\) −2.74296 + 3.35137i −0.174178 + 0.212812i
\(249\) −5.48917 + 9.50752i −0.347862 + 0.602515i
\(250\) 1.33058 + 0.867380i 0.0841530 + 0.0548579i
\(251\) −7.89409 −0.498271 −0.249135 0.968469i \(-0.580146\pi\)
−0.249135 + 0.968469i \(0.580146\pi\)
\(252\) 0 0
\(253\) −32.7703 −2.06025
\(254\) −18.2540 11.8995i −1.14536 0.746639i
\(255\) −8.81969 + 15.2761i −0.552310 + 0.956630i
\(256\) −1.45089 15.9341i −0.0906808 0.995880i
\(257\) −2.65277 + 1.53158i −0.165475 + 0.0955372i −0.580451 0.814295i \(-0.697124\pi\)
0.414975 + 0.909833i \(0.363790\pi\)
\(258\) −3.00522 + 1.52466i −0.187097 + 0.0949211i
\(259\) 0 0
\(260\) −14.4038 + 19.6808i −0.893284 + 1.22055i
\(261\) 0.984084 + 1.70448i 0.0609133 + 0.105505i
\(262\) −3.19029 0.172760i −0.197097 0.0106732i
\(263\) 9.20446 + 5.31420i 0.567571 + 0.327687i 0.756179 0.654365i \(-0.227064\pi\)
−0.188607 + 0.982053i \(0.560397\pi\)
\(264\) −14.1407 + 5.34362i −0.870300 + 0.328877i
\(265\) 3.72250i 0.228671i
\(266\) 0 0
\(267\) 5.81871i 0.356099i
\(268\) 2.08371 19.1830i 0.127283 1.17179i
\(269\) −2.17816 1.25756i −0.132805 0.0766748i 0.432126 0.901813i \(-0.357764\pi\)
−0.564930 + 0.825139i \(0.691097\pi\)
\(270\) 0.237406 4.38407i 0.0144481 0.266806i
\(271\) 0.458106 + 0.793463i 0.0278279 + 0.0481994i 0.879604 0.475707i \(-0.157808\pi\)
−0.851776 + 0.523906i \(0.824474\pi\)
\(272\) −21.6631 + 6.87252i −1.31352 + 0.416708i
\(273\) 0 0
\(274\) 12.8437 + 25.3159i 0.775916 + 1.52939i
\(275\) −21.4682 + 12.3946i −1.29458 + 0.747425i
\(276\) 11.2201 4.94883i 0.675373 0.297885i
\(277\) −5.88292 + 10.1895i −0.353470 + 0.612229i −0.986855 0.161609i \(-0.948332\pi\)
0.633385 + 0.773837i \(0.281665\pi\)
\(278\) 6.16571 9.45831i 0.369795 0.567272i
\(279\) −1.53115 −0.0916678
\(280\) 0 0
\(281\) −29.8347 −1.77979 −0.889895 0.456165i \(-0.849223\pi\)
−0.889895 + 0.456165i \(0.849223\pi\)
\(282\) 1.77225 2.71866i 0.105536 0.161894i
\(283\) −2.41492 + 4.18276i −0.143552 + 0.248639i −0.928832 0.370502i \(-0.879186\pi\)
0.785280 + 0.619141i \(0.212519\pi\)
\(284\) 3.74488 1.65174i 0.222218 0.0980130i
\(285\) 0.459251 0.265149i 0.0272037 0.0157061i
\(286\) 13.4321 + 26.4757i 0.794258 + 1.56554i
\(287\) 0 0
\(288\) 4.03463 3.96506i 0.237743 0.233644i
\(289\) 7.64132 + 13.2352i 0.449489 + 0.778538i
\(290\) −0.467256 + 8.62859i −0.0274382 + 0.506688i
\(291\) 2.01495 + 1.16333i 0.118118 + 0.0681956i
\(292\) 2.21858 20.4247i 0.129833 1.19526i
\(293\) 22.4276i 1.31023i −0.755528 0.655116i \(-0.772620\pi\)
0.755528 0.655116i \(-0.227380\pi\)
\(294\) 0 0
\(295\) 34.1321i 1.98725i
\(296\) 8.93838 + 23.6534i 0.519533 + 1.37483i
\(297\) −4.62852 2.67228i −0.268574 0.155061i
\(298\) 7.48677 + 0.405423i 0.433697 + 0.0234855i
\(299\) −12.0419 20.8572i −0.696402 1.20620i
\(300\) 5.47865 7.48581i 0.316310 0.432193i
\(301\) 0 0
\(302\) −1.92530 + 0.976774i −0.110788 + 0.0562071i
\(303\) −6.44694 + 3.72214i −0.370367 + 0.213831i
\(304\) 0.667317 + 0.146702i 0.0382732 + 0.00841395i
\(305\) 10.2291 17.7174i 0.585719 1.01450i
\(306\) −6.73131 4.38803i −0.384803 0.250847i
\(307\) −31.3123 −1.78709 −0.893543 0.448978i \(-0.851788\pi\)
−0.893543 + 0.448978i \(0.851788\pi\)
\(308\) 0 0
\(309\) −16.2959 −0.927042
\(310\) −5.63161 3.67115i −0.319854 0.208507i
\(311\) 7.71105 13.3559i 0.437253 0.757345i −0.560223 0.828342i \(-0.689285\pi\)
0.997477 + 0.0709966i \(0.0226180\pi\)
\(312\) −8.59725 7.03651i −0.486724 0.398364i
\(313\) 5.28101 3.04900i 0.298501 0.172339i −0.343269 0.939237i \(-0.611534\pi\)
0.641769 + 0.766898i \(0.278201\pi\)
\(314\) −15.6839 + 7.95703i −0.885095 + 0.449041i
\(315\) 0 0
\(316\) −23.2320 17.0029i −1.30690 0.956485i
\(317\) 14.8555 + 25.7305i 0.834369 + 1.44517i 0.894543 + 0.446982i \(0.147501\pi\)
−0.0601742 + 0.998188i \(0.519166\pi\)
\(318\) 1.69323 + 0.0916916i 0.0949514 + 0.00514181i
\(319\) 9.10970 + 5.25949i 0.510045 + 0.294475i
\(320\) 24.3462 4.90998i 1.36100 0.274476i
\(321\) 16.7392i 0.934290i
\(322\) 0 0
\(323\) 0.970522i 0.0540013i
\(324\) 1.98830 + 0.215975i 0.110461 + 0.0119986i
\(325\) −15.7776 9.10919i −0.875183 0.505287i
\(326\) 0.475912 8.78845i 0.0263583 0.486747i
\(327\) −3.86058 6.68673i −0.213491 0.369777i
\(328\) 2.67048 16.3095i 0.147453 0.900543i
\(329\) 0 0
\(330\) −10.6166 20.9262i −0.584425 1.15195i
\(331\) −17.4697 + 10.0861i −0.960220 + 0.554383i −0.896241 0.443568i \(-0.853712\pi\)
−0.0639792 + 0.997951i \(0.520379\pi\)
\(332\) −8.86076 20.0894i −0.486297 1.10255i
\(333\) −4.46997 + 7.74221i −0.244953 + 0.424271i
\(334\) −3.20155 + 4.91123i −0.175181 + 0.268731i
\(335\) 29.9525 1.63648
\(336\) 0 0
\(337\) 14.0021 0.762746 0.381373 0.924421i \(-0.375451\pi\)
0.381373 + 0.924421i \(0.375451\pi\)
\(338\) −1.87526 + 2.87668i −0.102001 + 0.156471i
\(339\) 0.357923 0.619940i 0.0194397 0.0336705i
\(340\) −14.2370 32.2785i −0.772108 1.75055i
\(341\) −7.08697 + 4.09167i −0.383781 + 0.221576i
\(342\) 0.109294 + 0.215427i 0.00590995 + 0.0116490i
\(343\) 0 0
\(344\) 1.08904 6.65115i 0.0587173 0.358606i
\(345\) 9.51782 + 16.4853i 0.512422 + 0.887541i
\(346\) −0.424131 + 7.83224i −0.0228014 + 0.421064i
\(347\) −10.3801 5.99294i −0.557231 0.321718i 0.194802 0.980843i \(-0.437594\pi\)
−0.752034 + 0.659125i \(0.770927\pi\)
\(348\) −3.91332 0.425074i −0.209776 0.0227864i
\(349\) 28.8227i 1.54284i −0.636324 0.771422i \(-0.719546\pi\)
0.636324 0.771422i \(-0.280454\pi\)
\(350\) 0 0
\(351\) 3.92787i 0.209654i
\(352\) 8.07863 29.1340i 0.430592 1.55285i
\(353\) −0.0994062 0.0573922i −0.00529086 0.00305468i 0.497352 0.867549i \(-0.334306\pi\)
−0.502643 + 0.864494i \(0.667639\pi\)
\(354\) −15.5254 0.840733i −0.825167 0.0446844i
\(355\) 3.17671 + 5.50222i 0.168602 + 0.292028i
\(356\) 9.39102 + 6.87301i 0.497723 + 0.364269i
\(357\) 0 0
\(358\) 1.60380 0.813668i 0.0847636 0.0430037i
\(359\) 1.71229 0.988594i 0.0903714 0.0521760i −0.454133 0.890934i \(-0.650051\pi\)
0.544505 + 0.838758i \(0.316718\pi\)
\(360\) 6.79519 + 5.56159i 0.358138 + 0.293122i
\(361\) 9.48541 16.4292i 0.499232 0.864696i
\(362\) 0.458105 + 0.298631i 0.0240775 + 0.0156957i
\(363\) −17.5642 −0.921883
\(364\) 0 0
\(365\) 31.8912 1.66926
\(366\) 7.80702 + 5.08927i 0.408080 + 0.266020i
\(367\) −13.3895 + 23.1912i −0.698925 + 1.21057i 0.269915 + 0.962884i \(0.413004\pi\)
−0.968840 + 0.247689i \(0.920329\pi\)
\(368\) −5.26604 + 23.9541i −0.274511 + 1.24869i
\(369\) 5.06025 2.92154i 0.263426 0.152089i
\(370\) −35.0036 + 17.7586i −1.81975 + 0.923227i
\(371\) 0 0
\(372\) 1.80859 2.47118i 0.0937709 0.128125i
\(373\) −11.5198 19.9529i −0.596474 1.03312i −0.993337 0.115245i \(-0.963235\pi\)
0.396863 0.917878i \(-0.370099\pi\)
\(374\) −42.8820 2.32215i −2.21737 0.120075i
\(375\) −0.972647 0.561558i −0.0502273 0.0289987i
\(376\) 2.29438 + 6.07155i 0.118323 + 0.313117i
\(377\) 7.73071i 0.398152i
\(378\) 0 0
\(379\) 22.3697i 1.14906i −0.818485 0.574528i \(-0.805186\pi\)
0.818485 0.574528i \(-0.194814\pi\)
\(380\) −0.114531 + 1.05439i −0.00587531 + 0.0540892i
\(381\) 13.3436 + 7.70394i 0.683614 + 0.394685i
\(382\) 0.504358 9.31376i 0.0258052 0.476533i
\(383\) 14.3541 + 24.8621i 0.733463 + 1.27039i 0.955395 + 0.295332i \(0.0954304\pi\)
−0.221932 + 0.975062i \(0.571236\pi\)
\(384\) 1.63368 + 11.1951i 0.0833683 + 0.571299i
\(385\) 0 0
\(386\) 1.25222 + 2.46822i 0.0637363 + 0.125629i
\(387\) 2.06361 1.19142i 0.104899 0.0605635i
\(388\) −4.25758 + 1.87788i −0.216146 + 0.0953348i
\(389\) −6.17469 + 10.6949i −0.313069 + 0.542252i −0.979025 0.203739i \(-0.934690\pi\)
0.665956 + 0.745991i \(0.268024\pi\)
\(390\) 9.41761 14.4468i 0.476879 0.731541i
\(391\) 34.8380 1.76183
\(392\) 0 0
\(393\) 2.25918 0.113961
\(394\) −0.280294 + 0.429976i −0.0141210 + 0.0216619i
\(395\) 22.3445 38.7018i 1.12427 1.94730i
\(396\) 9.78005 4.31366i 0.491466 0.216769i
\(397\) −15.5877 + 8.99955i −0.782323 + 0.451674i −0.837253 0.546816i \(-0.815840\pi\)
0.0549300 + 0.998490i \(0.482506\pi\)
\(398\) −6.31102 12.4395i −0.316343 0.623537i
\(399\) 0 0
\(400\) 5.61028 + 17.6844i 0.280514 + 0.884218i
\(401\) 0.0284861 + 0.0493394i 0.00142253 + 0.00246389i 0.866736 0.498768i \(-0.166214\pi\)
−0.865313 + 0.501231i \(0.832881\pi\)
\(402\) −0.737782 + 13.6243i −0.0367972 + 0.679518i
\(403\) −5.20843 3.00709i −0.259450 0.149794i
\(404\) 1.60778 14.8015i 0.0799899 0.736402i
\(405\) 3.10455i 0.154266i
\(406\) 0 0
\(407\) 47.7799i 2.36836i
\(408\) 15.0330 5.68079i 0.744242 0.281241i
\(409\) 30.3303 + 17.5112i 1.49974 + 0.865873i 1.00000 0.000305480i \(-9.72372e-5\pi\)
0.499735 + 0.866178i \(0.333431\pi\)
\(410\) 25.6165 + 1.38718i 1.26511 + 0.0685081i
\(411\) −10.0365 17.3838i −0.495066 0.857479i
\(412\) 19.2486 26.3005i 0.948311 1.29574i
\(413\) 0 0
\(414\) −7.73301 + 3.92324i −0.380057 + 0.192817i
\(415\) 29.5166 17.0414i 1.44891 0.836530i
\(416\) 21.5115 5.56394i 1.05469 0.272795i
\(417\) −3.99180 + 6.91400i −0.195479 + 0.338580i
\(418\) 1.08155 + 0.705045i 0.0529004 + 0.0344849i
\(419\) 17.9222 0.875558 0.437779 0.899083i \(-0.355765\pi\)
0.437779 + 0.899083i \(0.355765\pi\)
\(420\) 0 0
\(421\) −8.47542 −0.413067 −0.206533 0.978440i \(-0.566218\pi\)
−0.206533 + 0.978440i \(0.566218\pi\)
\(422\) −30.4802 19.8696i −1.48376 0.967235i
\(423\) −1.14739 + 1.98733i −0.0557879 + 0.0966275i
\(424\) −2.14801 + 2.62445i −0.104317 + 0.127455i
\(425\) 22.8227 13.1767i 1.10707 0.639165i
\(426\) −2.58100 + 1.30944i −0.125050 + 0.0634424i
\(427\) 0 0
\(428\) 27.0159 + 19.7722i 1.30587 + 0.955725i
\(429\) −10.4963 18.1802i −0.506769 0.877749i
\(430\) 10.4466 + 0.565704i 0.503779 + 0.0272806i
\(431\) −20.7836 11.9994i −1.00111 0.577990i −0.0925326 0.995710i \(-0.529496\pi\)
−0.908576 + 0.417719i \(0.862830\pi\)
\(432\) −2.69714 + 2.95389i −0.129766 + 0.142119i
\(433\) 12.5505i 0.603137i 0.953445 + 0.301568i \(0.0975102\pi\)
−0.953445 + 0.301568i \(0.902490\pi\)
\(434\) 0 0
\(435\) 6.11028i 0.292965i
\(436\) 15.3520 + 1.66758i 0.735229 + 0.0798624i
\(437\) −0.907027 0.523672i −0.0433890 0.0250506i
\(438\) −0.785536 + 14.5061i −0.0375343 + 0.693130i
\(439\) −3.57575 6.19338i −0.170661 0.295594i 0.767990 0.640462i \(-0.221257\pi\)
−0.938651 + 0.344868i \(0.887924\pi\)
\(440\) 46.3137 + 7.58330i 2.20792 + 0.361520i
\(441\) 0 0
\(442\) −14.2797 28.1463i −0.679214 1.33878i
\(443\) 21.5400 12.4361i 1.02340 0.590858i 0.108310 0.994117i \(-0.465456\pi\)
0.915086 + 0.403259i \(0.132123\pi\)
\(444\) −7.21554 16.3593i −0.342434 0.776377i
\(445\) −9.03224 + 15.6443i −0.428169 + 0.741611i
\(446\) −12.5459 + 19.2456i −0.594065 + 0.911306i
\(447\) −5.30170 −0.250762
\(448\) 0 0
\(449\) −9.93727 −0.468969 −0.234484 0.972120i \(-0.575340\pi\)
−0.234484 + 0.972120i \(0.575340\pi\)
\(450\) −3.58210 + 5.49500i −0.168862 + 0.259037i
\(451\) 15.6143 27.0448i 0.735249 1.27349i
\(452\) 0.577768 + 1.30993i 0.0271759 + 0.0616140i
\(453\) 1.32205 0.763288i 0.0621155 0.0358624i
\(454\) −13.0838 25.7892i −0.614054 1.21035i
\(455\) 0 0
\(456\) −0.476783 0.0780674i −0.0223274 0.00365584i
\(457\) −13.0455 22.5955i −0.610245 1.05698i −0.991199 0.132381i \(-0.957738\pi\)
0.380954 0.924594i \(-0.375596\pi\)
\(458\) 0.259198 4.78649i 0.0121115 0.223658i
\(459\) 4.92057 + 2.84089i 0.229672 + 0.132601i
\(460\) −37.8486 4.11121i −1.76470 0.191686i
\(461\) 29.5120i 1.37451i 0.726417 + 0.687254i \(0.241184\pi\)
−0.726417 + 0.687254i \(0.758816\pi\)
\(462\) 0 0
\(463\) 2.80479i 0.130350i −0.997874 0.0651748i \(-0.979239\pi\)
0.997874 0.0651748i \(-0.0207605\pi\)
\(464\) 5.30842 5.81374i 0.246437 0.269896i
\(465\) 4.11669 + 2.37677i 0.190907 + 0.110220i
\(466\) −2.68924 0.145628i −0.124577 0.00674608i
\(467\) 16.4855 + 28.5537i 0.762857 + 1.32131i 0.941372 + 0.337370i \(0.109537\pi\)
−0.178515 + 0.983937i \(0.557129\pi\)
\(468\) 6.33933 + 4.63957i 0.293035 + 0.214464i
\(469\) 0 0
\(470\) −8.98501 + 4.55843i −0.414448 + 0.210265i
\(471\) 10.7697 6.21791i 0.496243 0.286506i
\(472\) 19.6954 24.0640i 0.906554 1.10763i
\(473\) 6.36763 11.0291i 0.292784 0.507117i
\(474\) 17.0536 + 11.1170i 0.783298 + 0.510619i
\(475\) −0.792271 −0.0363519
\(476\) 0 0
\(477\) −1.19905 −0.0549006
\(478\) 9.21022 + 6.00399i 0.421266 + 0.274616i
\(479\) −11.9626 + 20.7198i −0.546585 + 0.946713i 0.451920 + 0.892058i \(0.350739\pi\)
−0.998505 + 0.0546549i \(0.982594\pi\)
\(480\) −17.0025 + 4.39769i −0.776053 + 0.200726i
\(481\) −30.4104 + 17.5574i −1.38659 + 0.800551i
\(482\) 15.2739 7.74900i 0.695706 0.352957i
\(483\) 0 0
\(484\) 20.7467 28.3475i 0.943033 1.28852i
\(485\) −3.61162 6.25550i −0.163995 0.284048i
\(486\) −1.41214 0.0764704i −0.0640562 0.00346877i
\(487\) −0.712047 0.411101i −0.0322659 0.0186287i 0.483780 0.875189i \(-0.339263\pi\)
−0.516046 + 0.856561i \(0.672597\pi\)
\(488\) −17.4353 + 6.58863i −0.789261 + 0.298253i
\(489\) 6.22348i 0.281435i
\(490\) 0 0
\(491\) 22.6377i 1.02163i −0.859692 0.510813i \(-0.829345\pi\)
0.859692 0.510813i \(-0.170655\pi\)
\(492\) −1.26196 + 11.6178i −0.0568934 + 0.523771i
\(493\) −9.68450 5.59135i −0.436168 0.251822i
\(494\) −0.0513064 + 0.947452i −0.00230838 + 0.0426279i
\(495\) 8.29621 + 14.3695i 0.372887 + 0.645859i
\(496\) 1.85204 + 5.83788i 0.0831591 + 0.262129i
\(497\) 0 0
\(498\) 7.02446 + 13.8458i 0.314774 + 0.620443i
\(499\) −25.9699 + 14.9937i −1.16257 + 0.671211i −0.951919 0.306350i \(-0.900892\pi\)
−0.210652 + 0.977561i \(0.567559\pi\)
\(500\) 2.05520 0.906482i 0.0919114 0.0405391i
\(501\) 2.07274 3.59010i 0.0926034 0.160394i
\(502\) −6.09659 + 9.35227i −0.272104 + 0.417412i
\(503\) −28.7539 −1.28207 −0.641037 0.767510i \(-0.721496\pi\)
−0.641037 + 0.767510i \(0.721496\pi\)
\(504\) 0 0
\(505\) 23.1112 1.02843
\(506\) −25.3084 + 38.8235i −1.12510 + 1.72592i
\(507\) 1.21408 2.10285i 0.0539191 0.0933907i
\(508\) −28.1950 + 12.4359i −1.25095 + 0.551754i
\(509\) 35.5470 20.5230i 1.57559 0.909668i 0.580128 0.814526i \(-0.303003\pi\)
0.995464 0.0951425i \(-0.0303307\pi\)
\(510\) 11.2865 + 22.2466i 0.499775 + 0.985095i
\(511\) 0 0
\(512\) −19.9979 10.5870i −0.883791 0.467882i
\(513\) −0.0854065 0.147928i −0.00377079 0.00653120i
\(514\) −0.234241 + 4.32562i −0.0103319 + 0.190795i
\(515\) 43.8135 + 25.2958i 1.93065 + 1.11466i
\(516\) −0.514635 + 4.73783i −0.0226555 + 0.208571i
\(517\) 12.2645i 0.539394i
\(518\) 0 0
\(519\) 5.54634i 0.243457i
\(520\) 12.1921 + 32.2638i 0.534661 + 1.41486i
\(521\) −17.6887 10.2126i −0.774955 0.447420i 0.0596846 0.998217i \(-0.480991\pi\)
−0.834639 + 0.550797i \(0.814324\pi\)
\(522\) 2.77934 + 0.150507i 0.121648 + 0.00658750i
\(523\) 0.953706 + 1.65187i 0.0417026 + 0.0722311i 0.886123 0.463449i \(-0.153388\pi\)
−0.844421 + 0.535681i \(0.820055\pi\)
\(524\) −2.66852 + 3.64617i −0.116575 + 0.159284i
\(525\) 0 0
\(526\) 13.4044 6.80055i 0.584460 0.296518i
\(527\) 7.53415 4.34984i 0.328193 0.189482i
\(528\) −4.59015 + 20.8796i −0.199761 + 0.908668i
\(529\) 7.29781 12.6402i 0.317296 0.549573i
\(530\) −4.41011 2.87488i −0.191563 0.124877i
\(531\) 10.9942 0.477108
\(532\) 0 0
\(533\) 22.9508 0.994111
\(534\) −6.89353 4.49378i −0.298312 0.194465i
\(535\) −25.9838 + 45.0053i −1.12338 + 1.94575i
\(536\) −21.1173 17.2836i −0.912126 0.746539i
\(537\) −1.10129 + 0.635830i −0.0475242 + 0.0274381i
\(538\) −3.17204 + 1.60929i −0.136756 + 0.0693815i
\(539\) 0 0
\(540\) −5.01054 3.66707i −0.215619 0.157806i
\(541\) −17.7612 30.7633i −0.763614 1.32262i −0.940976 0.338472i \(-0.890090\pi\)
0.177363 0.984146i \(-0.443243\pi\)
\(542\) 1.29382 + 0.0700631i 0.0555745 + 0.00300947i
\(543\) −0.334873 0.193339i −0.0143708 0.00829698i
\(544\) −8.58837 + 30.9723i −0.368223 + 1.32793i
\(545\) 23.9708i 1.02679i
\(546\) 0 0
\(547\) 9.02584i 0.385917i −0.981207 0.192959i \(-0.938192\pi\)
0.981207 0.192959i \(-0.0618083\pi\)
\(548\) 39.9114 + 4.33527i 1.70493 + 0.185194i
\(549\) −5.70691 3.29489i −0.243565 0.140622i
\(550\) −1.89565 + 35.0061i −0.0808307 + 1.49266i
\(551\) 0.168094 + 0.291148i 0.00716106 + 0.0124033i
\(552\) 2.80232 17.1147i 0.119274 0.728449i
\(553\) 0 0
\(554\) 7.52833 + 14.8389i 0.319848 + 0.630446i
\(555\) 24.0361 13.8772i 1.02028 0.589056i
\(556\) −6.44366 14.6093i −0.273272 0.619571i
\(557\) −16.9960 + 29.4380i −0.720145 + 1.24733i 0.240796 + 0.970576i \(0.422591\pi\)
−0.960941 + 0.276752i \(0.910742\pi\)
\(558\) −1.18251 + 1.81399i −0.0500595 + 0.0767922i
\(559\) 9.35952 0.395865
\(560\) 0 0
\(561\) 30.3666 1.28208
\(562\) −23.0413 + 35.3457i −0.971938 + 1.49097i
\(563\) −6.41295 + 11.1076i −0.270274 + 0.468128i −0.968932 0.247328i \(-0.920447\pi\)
0.698658 + 0.715456i \(0.253781\pi\)
\(564\) −1.85214 4.19923i −0.0779892 0.176820i
\(565\) −1.92464 + 1.11119i −0.0809700 + 0.0467481i
\(566\) 3.09036 + 6.09133i 0.129897 + 0.256038i
\(567\) 0 0
\(568\) 0.935313 5.71227i 0.0392449 0.239681i
\(569\) −8.84882 15.3266i −0.370962 0.642525i 0.618752 0.785586i \(-0.287639\pi\)
−0.989714 + 0.143062i \(0.954305\pi\)
\(570\) 0.0405521 0.748857i 0.00169854 0.0313662i
\(571\) −20.5992 11.8930i −0.862050 0.497705i 0.00264805 0.999996i \(-0.499157\pi\)
−0.864698 + 0.502292i \(0.832490\pi\)
\(572\) 41.7399 + 4.53389i 1.74523 + 0.189572i
\(573\) 6.59547i 0.275530i
\(574\) 0 0
\(575\) 28.4395i 1.18601i
\(576\) −1.58154 7.84211i −0.0658976 0.326755i
\(577\) −35.1145 20.2734i −1.46184 0.843991i −0.462740 0.886494i \(-0.653134\pi\)
−0.999096 + 0.0425027i \(0.986467\pi\)
\(578\) 21.5813 + 1.16867i 0.897663 + 0.0486103i
\(579\) −0.978531 1.69487i −0.0406664 0.0704362i
\(580\) 9.86159 + 7.21741i 0.409480 + 0.299687i
\(581\) 0 0
\(582\) 2.93436 1.48871i 0.121633 0.0617089i
\(583\) −5.54981 + 3.20418i −0.229849 + 0.132704i
\(584\) −22.4841 18.4023i −0.930398 0.761493i
\(585\) −6.09713 + 10.5605i −0.252086 + 0.436625i
\(586\) −26.5703 17.3207i −1.09761 0.715513i
\(587\) −26.0331 −1.07450 −0.537251 0.843422i \(-0.680537\pi\)
−0.537251 + 0.843422i \(0.680537\pi\)
\(588\) 0 0
\(589\) −0.261541 −0.0107766
\(590\) 40.4369 + 26.3601i 1.66476 + 1.08523i
\(591\) 0.181467 0.314311i 0.00746457 0.0129290i
\(592\) 34.9257 + 7.67803i 1.43544 + 0.315565i
\(593\) −9.71614 + 5.60962i −0.398994 + 0.230359i −0.686050 0.727555i \(-0.740657\pi\)
0.287056 + 0.957914i \(0.407323\pi\)
\(594\) −6.74049 + 3.41969i −0.276565 + 0.140312i
\(595\) 0 0
\(596\) 6.26232 8.55660i 0.256515 0.350492i
\(597\) 4.93167 + 8.54190i 0.201840 + 0.349597i
\(598\) −34.0099 1.84170i −1.39077 0.0753128i
\(599\) 15.0686 + 8.69988i 0.615688 + 0.355467i 0.775188 0.631730i \(-0.217655\pi\)
−0.159501 + 0.987198i \(0.550988\pi\)
\(600\) −4.63743 12.2719i −0.189322 0.500999i
\(601\) 18.1962i 0.742237i 0.928585 + 0.371119i \(0.121026\pi\)
−0.928585 + 0.371119i \(0.878974\pi\)
\(602\) 0 0
\(603\) 9.64794i 0.392895i
\(604\) −0.329702 + 3.03530i −0.0134154 + 0.123504i
\(605\) 47.2235 + 27.2645i 1.91991 + 1.10846i
\(606\) −0.569268 + 10.5124i −0.0231249 + 0.427037i
\(607\) 2.72854 + 4.72597i 0.110748 + 0.191821i 0.916072 0.401014i \(-0.131342\pi\)
−0.805324 + 0.592835i \(0.798009\pi\)
\(608\) 0.689168 0.677284i 0.0279495 0.0274675i
\(609\) 0 0
\(610\) −13.0902 25.8018i −0.530006 1.04468i
\(611\) −7.80599 + 4.50679i −0.315796 + 0.182325i
\(612\) −10.3971 + 4.58584i −0.420280 + 0.185372i
\(613\) 15.0526 26.0718i 0.607967 1.05303i −0.383608 0.923496i \(-0.625319\pi\)
0.991575 0.129534i \(-0.0413480\pi\)
\(614\) −24.1824 + 37.0962i −0.975922 + 1.49708i
\(615\) −18.1401 −0.731480
\(616\) 0 0
\(617\) 38.4324 1.54723 0.773616 0.633655i \(-0.218446\pi\)
0.773616 + 0.633655i \(0.218446\pi\)
\(618\) −12.5853 + 19.3061i −0.506255 + 0.776604i
\(619\) −9.16780 + 15.8791i −0.368485 + 0.638235i −0.989329 0.145700i \(-0.953457\pi\)
0.620844 + 0.783934i \(0.286790\pi\)
\(620\) −8.69856 + 3.83665i −0.349343 + 0.154084i
\(621\) 5.31006 3.06576i 0.213085 0.123025i
\(622\) −9.86778 19.4502i −0.395662 0.779881i
\(623\) 0 0
\(624\) −14.9759 + 4.75104i −0.599517 + 0.190194i
\(625\) 13.3390 + 23.1038i 0.533559 + 0.924151i
\(626\) 0.466316 8.61124i 0.0186377 0.344175i
\(627\) −0.790611 0.456459i −0.0315740 0.0182292i
\(628\) −2.68582 + 24.7262i −0.107176 + 0.986683i
\(629\) 50.7948i 2.02532i
\(630\) 0 0
\(631\) 44.4442i 1.76930i 0.466259 + 0.884648i \(0.345601\pi\)
−0.466259 + 0.884648i \(0.654399\pi\)
\(632\) −38.0856 + 14.3922i −1.51497 + 0.572489i
\(633\) 22.2810 + 12.8639i 0.885589 + 0.511295i
\(634\) 41.9563 + 2.27202i 1.66630 + 0.0902333i
\(635\) −23.9173 41.4259i −0.949128 1.64394i
\(636\) 1.41630 1.93518i 0.0561601 0.0767350i
\(637\) 0 0
\(638\) 13.2664 6.73053i 0.525222 0.266464i
\(639\) 1.77231 1.02324i 0.0701114 0.0404789i
\(640\) 12.9856 32.6354i 0.513301 1.29003i
\(641\) −0.413761 + 0.716656i −0.0163426 + 0.0283062i −0.874081 0.485780i \(-0.838536\pi\)
0.857738 + 0.514086i \(0.171869\pi\)
\(642\) −19.8312 12.9276i −0.782675 0.510213i
\(643\) 50.0469 1.97366 0.986829 0.161764i \(-0.0517183\pi\)
0.986829 + 0.161764i \(0.0517183\pi\)
\(644\) 0 0
\(645\) −7.39767 −0.291283
\(646\) −1.14979 0.749532i −0.0452381 0.0294899i
\(647\) −8.66100 + 15.0013i −0.340499 + 0.589761i −0.984525 0.175242i \(-0.943929\pi\)
0.644026 + 0.765003i \(0.277263\pi\)
\(648\) 1.79143 2.18878i 0.0703741 0.0859835i
\(649\) 50.8869 29.3796i 1.99749 1.15325i
\(650\) −22.9768 + 11.6570i −0.901225 + 0.457224i
\(651\) 0 0
\(652\) −10.0443 7.35112i −0.393365 0.287892i
\(653\) −3.48003 6.02759i −0.136184 0.235878i 0.789865 0.613281i \(-0.210151\pi\)
−0.926049 + 0.377403i \(0.876817\pi\)
\(654\) −10.9034 0.590441i −0.426357 0.0230881i
\(655\) −6.07407 3.50687i −0.237334 0.137025i
\(656\) −17.2598 15.7596i −0.673881 0.615308i
\(657\) 10.2724i 0.400765i
\(658\) 0 0
\(659\) 20.5979i 0.802381i −0.915995 0.401191i \(-0.868596\pi\)
0.915995 0.401191i \(-0.131404\pi\)
\(660\) −32.9908 3.58354i −1.28417 0.139489i
\(661\) 37.8931 + 21.8776i 1.47387 + 0.850940i 0.999567 0.0294204i \(-0.00936616\pi\)
0.474305 + 0.880361i \(0.342699\pi\)
\(662\) −1.54258 + 28.4861i −0.0599541 + 1.10714i
\(663\) 11.1586 + 19.3273i 0.433366 + 0.750612i
\(664\) −30.6434 5.01748i −1.18919 0.194716i
\(665\) 0 0
\(666\) 5.72019 + 11.2749i 0.221653 + 0.436895i
\(667\) −10.4511 + 6.03394i −0.404668 + 0.233635i
\(668\) 3.34588 + 7.58587i 0.129456 + 0.293506i
\(669\) 8.12244 14.0685i 0.314032 0.543919i
\(670\) 23.1323 35.4853i 0.893677 1.37092i
\(671\) −35.2194 −1.35963
\(672\) 0 0
\(673\) 5.42765 0.209220 0.104610 0.994513i \(-0.466641\pi\)
0.104610 + 0.994513i \(0.466641\pi\)
\(674\) 10.8138 16.5886i 0.416533 0.638969i
\(675\) 2.31912 4.01683i 0.0892629 0.154608i
\(676\) 1.95980 + 4.44331i 0.0753768 + 0.170897i
\(677\) −29.3631 + 16.9528i −1.12852 + 0.651549i −0.943561 0.331198i \(-0.892547\pi\)
−0.184955 + 0.982747i \(0.559214\pi\)
\(678\) −0.458031 0.902815i −0.0175906 0.0346724i
\(679\) 0 0
\(680\) −49.2361 8.06180i −1.88812 0.309156i
\(681\) 10.2242 + 17.7088i 0.391791 + 0.678603i
\(682\) −0.625783 + 11.5561i −0.0239625 + 0.442504i
\(683\) −5.10771 2.94894i −0.195441 0.112838i 0.399086 0.916913i \(-0.369327\pi\)
−0.594527 + 0.804076i \(0.702661\pi\)
\(684\) 0.339628 + 0.0368913i 0.0129860 + 0.00141057i
\(685\) 62.3179i 2.38104i
\(686\) 0 0
\(687\) 3.38952i 0.129318i
\(688\) −7.03867 6.42687i −0.268347 0.245022i
\(689\) −4.07872 2.35485i −0.155387 0.0897126i
\(690\) 26.8811 + 1.45566i 1.02334 + 0.0554162i
\(691\) 21.6635 + 37.5223i 0.824119 + 1.42742i 0.902590 + 0.430500i \(0.141663\pi\)
−0.0784711 + 0.996916i \(0.525004\pi\)
\(692\) 8.95144 + 6.55129i 0.340283 + 0.249043i
\(693\) 0 0
\(694\) −15.1164 + 7.66913i −0.573812 + 0.291116i
\(695\) 21.4649 12.3927i 0.814209 0.470084i
\(696\) −3.52584 + 4.30789i −0.133647 + 0.163290i
\(697\) −16.5995 + 28.7512i −0.628752 + 1.08903i
\(698\) −34.1468 22.2597i −1.29247 0.842543i
\(699\) 1.90437 0.0720298
\(700\) 0 0
\(701\) 28.9345 1.09284 0.546420 0.837511i \(-0.315990\pi\)
0.546420 + 0.837511i \(0.315990\pi\)
\(702\) −4.65342 3.03348i −0.175632 0.114491i
\(703\) −0.763529 + 1.32247i −0.0287970 + 0.0498779i
\(704\) −28.2765 32.0710i −1.06571 1.20872i
\(705\) 6.16978 3.56212i 0.232367 0.134157i
\(706\) −0.144765 + 0.0734444i −0.00544829 + 0.00276412i
\(707\) 0 0
\(708\) −12.9863 + 17.7440i −0.488054 + 0.666859i
\(709\) −8.37917 14.5131i −0.314686 0.545053i 0.664684 0.747124i \(-0.268566\pi\)
−0.979371 + 0.202072i \(0.935233\pi\)
\(710\) 8.97194 + 0.485849i 0.336711 + 0.0182336i
\(711\) −12.4661 7.19733i −0.467517 0.269921i
\(712\) 15.3952 5.81770i 0.576961 0.218027i
\(713\) 9.38831i 0.351595i
\(714\) 0 0
\(715\) 65.1729i 2.43733i
\(716\) 0.274646 2.52845i 0.0102640 0.0944925i
\(717\) −6.73265 3.88710i −0.251435 0.145166i
\(718\) 0.151196 2.79207i 0.00564260 0.104199i
\(719\) 15.4119 + 26.6943i 0.574768 + 0.995528i 0.996067 + 0.0886057i \(0.0282411\pi\)
−0.421299 + 0.906922i \(0.638426\pi\)
\(720\) 11.8368 3.75518i 0.441132 0.139947i
\(721\) 0 0
\(722\) −12.1384 23.9258i −0.451745 0.890425i
\(723\) −10.4882 + 6.05535i −0.390060 + 0.225201i
\(724\) 0.707587 0.312093i 0.0262973 0.0115989i
\(725\) −4.56441 + 7.90579i −0.169518 + 0.293614i
\(726\) −13.5648 + 20.8087i −0.503437 + 0.772281i
\(727\) 20.6890 0.767313 0.383657 0.923476i \(-0.374665\pi\)
0.383657 + 0.923476i \(0.374665\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 24.6295 37.7821i 0.911579 1.39838i
\(731\) −6.76941 + 11.7250i −0.250376 + 0.433664i
\(732\) 12.0587 5.31869i 0.445702 0.196584i
\(733\) 21.8336 12.6057i 0.806444 0.465601i −0.0392754 0.999228i \(-0.512505\pi\)
0.845719 + 0.533628i \(0.179172\pi\)
\(734\) 17.1344 + 33.7733i 0.632443 + 1.24660i
\(735\) 0 0
\(736\) 24.3119 + 24.7385i 0.896148 + 0.911872i
\(737\) −25.7820 44.6557i −0.949691 1.64491i
\(738\) 0.446823 8.25127i 0.0164478 0.303733i
\(739\) 25.2048 + 14.5520i 0.927175 + 0.535305i 0.885917 0.463844i \(-0.153530\pi\)
0.0412579 + 0.999149i \(0.486863\pi\)
\(740\) −5.99426 + 55.1844i −0.220354 + 2.02862i
\(741\) 0.670931i 0.0246473i
\(742\) 0 0
\(743\) 4.72777i 0.173445i 0.996233 + 0.0867226i \(0.0276394\pi\)
−0.996233 + 0.0867226i \(0.972361\pi\)
\(744\) −1.53089 4.05115i −0.0561251 0.148523i
\(745\) 14.2543 + 8.22970i 0.522235 + 0.301513i
\(746\) −32.5353 1.76185i −1.19120 0.0645060i
\(747\) −5.48917 9.50752i −0.200838 0.347862i
\(748\) −35.8687 + 49.0097i −1.31149 + 1.79197i
\(749\) 0 0
\(750\) −1.41646 + 0.718623i −0.0517219 + 0.0262404i
\(751\) 6.37092 3.67825i 0.232478 0.134221i −0.379237 0.925300i \(-0.623813\pi\)
0.611715 + 0.791078i \(0.290480\pi\)
\(752\) 8.96502 + 1.97086i 0.326921 + 0.0718699i
\(753\) 3.94704 6.83648i 0.143838 0.249135i
\(754\) 9.15871 + 5.97041i 0.333540 + 0.217429i
\(755\) −4.73933 −0.172482
\(756\) 0 0
\(757\) 6.36602 0.231377 0.115688 0.993286i \(-0.463093\pi\)
0.115688 + 0.993286i \(0.463093\pi\)
\(758\) −26.5018 17.2761i −0.962590 0.627496i
\(759\) 16.3851 28.3799i 0.594742 1.03012i
\(760\) 1.16071 + 0.949992i 0.0421033 + 0.0344598i
\(761\) 1.74679 1.00851i 0.0633210 0.0365584i −0.468005 0.883726i \(-0.655027\pi\)
0.531326 + 0.847167i \(0.321694\pi\)
\(762\) 19.4322 9.85868i 0.703956 0.357142i
\(763\) 0 0
\(764\) −10.6447 7.79051i −0.385110 0.281851i
\(765\) −8.81969 15.2761i −0.318877 0.552310i
\(766\) 40.5403 + 2.19534i 1.46478 + 0.0793207i
\(767\) 37.3983 + 21.5919i 1.35037 + 0.779639i
\(768\) 14.5248 + 6.71053i 0.524117 + 0.242145i
\(769\) 52.1122i 1.87922i −0.342253 0.939608i \(-0.611190\pi\)
0.342253 0.939608i \(-0.388810\pi\)
\(770\) 0 0
\(771\) 3.06316i 0.110317i
\(772\) 3.89124 + 0.422676i 0.140049 + 0.0152124i
\(773\) 21.8398 + 12.6092i 0.785524 + 0.453523i 0.838385 0.545079i \(-0.183500\pi\)
−0.0528601 + 0.998602i \(0.516834\pi\)
\(774\) 0.182218 3.36493i 0.00654967 0.120950i
\(775\) −3.55093 6.15039i −0.127553 0.220928i
\(776\) −1.06336 + 6.49431i −0.0381725 + 0.233132i
\(777\) 0 0
\(778\) 7.90171 + 15.5749i 0.283290 + 0.558387i
\(779\) 0.864357 0.499037i 0.0309688 0.0178798i
\(780\) −9.84215 22.3144i −0.352406 0.798984i
\(781\) 5.46877 9.47219i 0.195688 0.338942i
\(782\) 26.9053 41.2732i 0.962132 1.47593i
\(783\) −1.96817 −0.0703366
\(784\) 0 0
\(785\) −38.6077 −1.37797
\(786\) 1.74476 2.67649i 0.0622335 0.0954672i
\(787\) −11.7425 + 20.3386i −0.418574 + 0.724992i −0.995796 0.0915954i \(-0.970803\pi\)
0.577222 + 0.816587i \(0.304137\pi\)
\(788\) 0.292929 + 0.664138i 0.0104352 + 0.0236589i
\(789\) −9.20446 + 5.31420i −0.327687 + 0.189190i
\(790\) −28.5941 56.3612i −1.01733 2.00524i
\(791\) 0 0
\(792\) 2.44264 14.9180i 0.0867955 0.530089i
\(793\) −12.9419 22.4160i −0.459580 0.796016i
\(794\) −1.37640 + 25.4173i −0.0488466 + 0.902027i
\(795\) 3.22378 + 1.86125i 0.114336 + 0.0660117i
\(796\) −19.6113 2.13023i −0.695104 0.0755040i
\(797\) 44.2469i 1.56730i −0.621200 0.783652i \(-0.713354\pi\)
0.621200 0.783652i \(-0.286646\pi\)
\(798\) 0 0
\(799\) 13.0384i 0.461266i
\(800\) 25.2838 + 7.01099i 0.893916 + 0.247876i
\(801\) 5.03915 + 2.90936i 0.178050 + 0.102797i
\(802\) 0.0804531 + 0.00435670i 0.00284090 + 0.000153840i
\(803\) −27.4507 47.5460i −0.968714 1.67786i
\(804\) 15.5712 + 11.3961i 0.549152 + 0.401908i
\(805\) 0 0
\(806\) −7.58501 + 3.84815i −0.267170 + 0.135545i
\(807\) 2.17816 1.25756i 0.0766748 0.0442682i
\(808\) −16.2939 13.3359i −0.573218 0.469156i
\(809\) 14.9871 25.9585i 0.526920 0.912652i −0.472588 0.881284i \(-0.656680\pi\)
0.999508 0.0313688i \(-0.00998663\pi\)
\(810\) 3.67802 + 2.39764i 0.129232 + 0.0842444i
\(811\) 8.74124 0.306946 0.153473 0.988153i \(-0.450954\pi\)
0.153473 + 0.988153i \(0.450954\pi\)
\(812\) 0 0
\(813\) −0.916212 −0.0321329
\(814\) 56.6057 + 36.9003i 1.98403 + 1.29336i
\(815\) 9.66055 16.7326i 0.338394 0.586116i
\(816\) 4.87978 22.1971i 0.170826 0.777053i
\(817\) 0.352491 0.203511i 0.0123321 0.00711994i
\(818\) 44.1698 22.4090i 1.54436 0.783511i
\(819\) 0 0
\(820\) 21.4270 29.2770i 0.748262 1.02240i
\(821\) 24.0064 + 41.5802i 0.837828 + 1.45116i 0.891707 + 0.452613i \(0.149508\pi\)
−0.0538792 + 0.998547i \(0.517159\pi\)
\(822\) −28.3461 1.53500i −0.988683 0.0535391i
\(823\) −17.4328 10.0648i −0.607669 0.350838i 0.164384 0.986396i \(-0.447436\pi\)
−0.772053 + 0.635559i \(0.780770\pi\)
\(824\) −16.2931 43.1160i −0.567596 1.50202i
\(825\) 24.7893i 0.863052i
\(826\) 0 0
\(827\) 24.4464i 0.850084i 0.905174 + 0.425042i \(0.139741\pi\)
−0.905174 + 0.425042i \(0.860259\pi\)
\(828\) −1.32425 + 12.1913i −0.0460210 + 0.423678i
\(829\) −9.36761 5.40839i −0.325350 0.187841i 0.328425 0.944530i \(-0.393482\pi\)
−0.653775 + 0.756689i \(0.726816\pi\)
\(830\) 2.60633 48.1299i 0.0904670 1.67061i
\(831\) −5.88292 10.1895i −0.204076 0.353470i
\(832\) 10.0216 29.7820i 0.347435 1.03251i
\(833\) 0 0
\(834\) 5.10828 + 10.0688i 0.176885 + 0.348655i
\(835\) −11.1456 + 6.43494i −0.385711 + 0.222690i
\(836\) 1.67056 0.736828i 0.0577775 0.0254837i
\(837\) 0.765577 1.32602i 0.0264622 0.0458339i
\(838\) 13.8413 21.2328i 0.478139 0.733474i
\(839\) −10.6831 −0.368821 −0.184410 0.982849i \(-0.559038\pi\)
−0.184410 + 0.982849i \(0.559038\pi\)
\(840\) 0 0
\(841\) −25.1263 −0.866425
\(842\) −6.54555 + 10.0410i −0.225574 + 0.346035i
\(843\) 14.9174 25.8376i 0.513781 0.889895i
\(844\) −47.0796 + 20.7653i −1.62055 + 0.714770i
\(845\) −6.52839 + 3.76917i −0.224584 + 0.129663i
\(846\) 1.46830 + 2.89414i 0.0504814 + 0.0995027i
\(847\) 0 0
\(848\) 1.45033 + 4.57164i 0.0498046 + 0.156991i
\(849\) −2.41492 4.18276i −0.0828798 0.143552i
\(850\) 2.01526 37.2149i 0.0691228 1.27646i
\(851\) −47.4716 27.4077i −1.62730 0.939525i
\(852\) −0.441989 + 4.06904i −0.0151423 + 0.139403i
\(853\) 47.6336i 1.63094i 0.578796 + 0.815472i \(0.303523\pi\)
−0.578796 + 0.815472i \(0.696477\pi\)
\(854\) 0 0
\(855\) 0.530298i 0.0181358i
\(856\) 44.2888 16.7363i 1.51376 0.572034i
\(857\) −15.5236 8.96257i −0.530277 0.306156i 0.210852 0.977518i \(-0.432376\pi\)
−0.741129 + 0.671362i \(0.765709\pi\)
\(858\) −29.6447 1.60532i −1.01205 0.0548048i
\(859\) −9.63082 16.6811i −0.328599 0.569151i 0.653635 0.756810i \(-0.273243\pi\)
−0.982234 + 0.187659i \(0.939910\pi\)
\(860\) 8.73807 11.9394i 0.297966 0.407129i
\(861\) 0 0
\(862\) −30.2670 + 15.3555i −1.03090 + 0.523012i
\(863\) 6.55647 3.78538i 0.223185 0.128856i −0.384239 0.923234i \(-0.625536\pi\)
0.607424 + 0.794378i \(0.292203\pi\)
\(864\) 1.41653 + 5.47663i 0.0481913 + 0.186319i
\(865\) −8.60945 + 14.9120i −0.292730 + 0.507023i
\(866\) 14.8688 + 9.69270i 0.505261 + 0.329371i
\(867\) −15.2826 −0.519026
\(868\) 0 0
\(869\) −76.9330 −2.60977
\(870\) −7.23895 4.71895i −0.245424 0.159987i
\(871\) 18.9479 32.8188i 0.642026 1.11202i
\(872\) 13.8319 16.9000i 0.468409 0.572305i
\(873\) −2.01495 + 1.16333i −0.0681956 + 0.0393728i
\(874\) −1.32090 + 0.670140i −0.0446801 + 0.0226678i
\(875\) 0 0
\(876\) 16.5790 + 12.1337i 0.560152 + 0.409959i
\(877\) 11.5486 + 20.0028i 0.389969 + 0.675447i 0.992445 0.122690i \(-0.0391522\pi\)
−0.602476 + 0.798137i \(0.705819\pi\)
\(878\) −10.0990 0.546879i −0.340823 0.0184563i
\(879\) 19.4228 + 11.2138i 0.655116 + 0.378231i
\(880\) 44.7521 49.0122i 1.50859 1.65220i
\(881\) 26.0108i 0.876325i 0.898896 + 0.438163i \(0.144371\pi\)
−0.898896 + 0.438163i \(0.855629\pi\)
\(882\) 0 0
\(883\) 13.5662i 0.456539i −0.973598 0.228270i \(-0.926693\pi\)
0.973598 0.228270i \(-0.0733068\pi\)
\(884\) −44.3736 4.81997i −1.49244 0.162113i
\(885\) −29.5593 17.0661i −0.993624 0.573669i
\(886\) 1.90199 35.1232i 0.0638987 1.17999i
\(887\) −0.579489 1.00370i −0.0194573 0.0337011i 0.856133 0.516756i \(-0.172861\pi\)
−0.875590 + 0.483055i \(0.839527\pi\)
\(888\) −24.9537 4.08585i −0.837390 0.137112i
\(889\) 0 0
\(890\) 11.5585 + 22.7827i 0.387442 + 0.763678i
\(891\) 4.62852 2.67228i 0.155061 0.0895246i
\(892\) 13.1115 + 29.7267i 0.439004 + 0.995323i
\(893\) −0.195989 + 0.339462i −0.00655851 + 0.0113597i
\(894\) −4.09449 + 6.28102i −0.136940 + 0.210069i
\(895\) 3.94793 0.131965
\(896\) 0 0
\(897\) 24.0838 0.804136
\(898\) −7.67453 + 11.7729i −0.256102 + 0.392866i
\(899\) −1.50678 + 2.60983i −0.0502541 + 0.0870426i
\(900\) 3.74358 + 8.48755i 0.124786 + 0.282918i
\(901\) 5.89999 3.40636i 0.196557 0.113482i
\(902\) −19.9815 39.3852i −0.665312 1.31138i
\(903\) 0 0
\(904\) 1.99811 + 0.327166i 0.0664561 + 0.0108814i
\(905\) 0.600232 + 1.03963i 0.0199524 + 0.0345585i
\(906\) 0.116738 2.15574i 0.00387836 0.0716198i
\(907\) −32.1580 18.5664i −1.06779 0.616488i −0.140212 0.990122i \(-0.544778\pi\)
−0.927576 + 0.373634i \(0.878112\pi\)
\(908\) −40.6576 4.41633i −1.34927 0.146561i
\(909\) 7.44428i 0.246911i
\(910\) 0 0
\(911\) 27.9490i 0.925992i −0.886360 0.462996i \(-0.846774\pi\)
0.886360 0.462996i \(-0.153226\pi\)
\(912\) −0.460706 + 0.504562i −0.0152555 + 0.0167077i
\(913\) −50.8134 29.3372i −1.68168 0.970918i
\(914\) −36.8444 1.99520i −1.21870 0.0659953i
\(915\) 10.2291 + 17.7174i 0.338165 + 0.585719i
\(916\) −5.47046 4.00367i −0.180749 0.132285i
\(917\) 0 0
\(918\) 7.16580 3.63547i 0.236507 0.119988i
\(919\) 7.46598 4.31048i 0.246280 0.142190i −0.371780 0.928321i \(-0.621252\pi\)
0.618060 + 0.786131i \(0.287919\pi\)
\(920\) −34.1010 + 41.6649i −1.12428 + 1.37365i
\(921\) 15.6561 27.1172i 0.515887 0.893543i
\(922\) 34.9633 + 22.7920i 1.15146 + 0.750615i
\(923\) 8.03833 0.264585
\(924\) 0 0
\(925\) −41.4655 −1.36338
\(926\) −3.32288 2.16613i −0.109197 0.0711835i
\(927\) 8.14796 14.1127i 0.267614 0.463521i
\(928\) −2.78797 10.7789i −0.0915195 0.353835i
\(929\) 19.6937 11.3702i 0.646129 0.373043i −0.140842 0.990032i \(-0.544981\pi\)
0.786972 + 0.616989i \(0.211648\pi\)
\(930\) 5.99512 3.04154i 0.196588 0.0997361i
\(931\) 0 0
\(932\) −2.24942 + 3.07353i −0.0736823 + 0.100677i
\(933\) 7.71105 + 13.3559i 0.252448 + 0.437253i
\(934\) 46.5598 + 2.52130i 1.52348 + 0.0824996i
\(935\) −81.6442 47.1373i −2.67005 1.54155i
\(936\) 10.3924 3.92719i 0.339687 0.128364i
\(937\) 0.364981i 0.0119234i 0.999982 + 0.00596171i \(0.00189768\pi\)
−0.999982 + 0.00596171i \(0.998102\pi\)
\(938\) 0 0
\(939\) 6.09799i 0.199000i
\(940\) −1.53866 + 14.1652i −0.0501854 + 0.462017i
\(941\) 16.2639 + 9.38995i 0.530187 + 0.306104i 0.741093 0.671403i \(-0.234308\pi\)
−0.210906 + 0.977506i \(0.567641\pi\)
\(942\) 0.950973 17.5612i 0.0309844 0.572174i
\(943\) 17.9135 + 31.0271i 0.583343 + 1.01038i
\(944\) −13.2983 41.9180i −0.432823 1.36432i
\(945\) 0 0
\(946\) −8.14861 16.0616i −0.264934 0.522206i
\(947\) 3.63927 2.10113i 0.118260 0.0682776i −0.439703 0.898143i \(-0.644916\pi\)
0.557963 + 0.829866i \(0.311583\pi\)
\(948\) 26.3409 11.6181i 0.855514 0.377339i
\(949\) 20.1743 34.9430i 0.654887 1.13430i
\(950\) −0.611869 + 0.938618i −0.0198517 + 0.0304528i
\(951\) −29.7110 −0.963446
\(952\) 0 0
\(953\) −24.9457 −0.808072 −0.404036 0.914743i \(-0.632393\pi\)
−0.404036 + 0.914743i \(0.632393\pi\)
\(954\) −0.926021 + 1.42053i −0.0299810 + 0.0459914i
\(955\) 10.2380 17.7327i 0.331293 0.573817i
\(956\) 14.2261 6.27465i 0.460104 0.202937i
\(957\) −9.10970 + 5.25949i −0.294475 + 0.170015i
\(958\) 15.3085 + 30.1742i 0.494594 + 0.974884i
\(959\) 0 0
\(960\) −7.92095 + 23.5394i −0.255648 + 0.759732i
\(961\) 14.3278 + 24.8164i 0.462187 + 0.800531i
\(962\) −2.68525 + 49.5873i −0.0865760 + 1.59876i
\(963\) 14.4966 + 8.36959i 0.467145 + 0.269706i
\(964\) 2.61561 24.0798i 0.0842430 0.775557i
\(965\) 6.07580i 0.195587i
\(966\) 0 0
\(967\) 45.6476i 1.46793i 0.679188 + 0.733964i \(0.262332\pi\)
−0.679188 + 0.733964i \(0.737668\pi\)
\(968\) −17.5612 46.4717i −0.564437 1.49366i
\(969\) 0.840497 + 0.485261i 0.0270006 + 0.0155888i
\(970\) −10.2003 0.552364i −0.327510 0.0177353i
\(971\) 25.3427 + 43.8949i 0.813286 + 1.40865i 0.910552 + 0.413395i \(0.135657\pi\)
−0.0972657 + 0.995258i \(0.531010\pi\)
\(972\) −1.18119 + 1.61393i −0.0378867 + 0.0517670i
\(973\) 0 0
\(974\) −1.03695 + 0.526083i −0.0332260 + 0.0168568i
\(975\) 15.7776 9.10919i 0.505287 0.291728i
\(976\) −5.65961 + 25.7443i −0.181160 + 0.824056i
\(977\) −15.3448 + 26.5780i −0.490925 + 0.850307i −0.999945 0.0104476i \(-0.996674\pi\)
0.509021 + 0.860754i \(0.330008\pi\)
\(978\) 7.37306 + 4.80638i 0.235765 + 0.153691i
\(979\) 31.0984 0.993909
\(980\) 0 0
\(981\) 7.72117 0.246518
\(982\) −26.8193 17.4831i −0.855838 0.557907i
\(983\) 12.3475 21.3864i 0.393823 0.682122i −0.599127 0.800654i \(-0.704486\pi\)
0.992950 + 0.118532i \(0.0378189\pi\)
\(984\) 12.7892 + 10.4675i 0.407706 + 0.333691i
\(985\) −0.975794 + 0.563375i −0.0310914 + 0.0179506i
\(986\) −14.1035 + 7.15522i −0.449147 + 0.227868i
\(987\) 0 0
\(988\) 1.08284 + 0.792498i 0.0344497 + 0.0252127i
\(989\) 7.30525 + 12.6531i 0.232293 + 0.402344i
\(990\) 23.4309 + 1.26883i 0.744683 + 0.0403261i
\(991\) 51.0606 + 29.4799i 1.62199 + 0.936459i 0.986386 + 0.164447i \(0.0525839\pi\)
0.635608 + 0.772012i \(0.280749\pi\)
\(992\) 8.34657 + 2.31444i 0.265004 + 0.0734835i
\(993\) 20.1722i 0.640147i
\(994\) 0 0
\(995\) 30.6212i 0.970758i
\(996\) 21.8283 + 2.37104i 0.691656 + 0.0751294i
\(997\) −22.2217 12.8297i −0.703767 0.406320i 0.104982 0.994474i \(-0.466522\pi\)
−0.808749 + 0.588154i \(0.799855\pi\)
\(998\) −2.29315 + 42.3466i −0.0725885 + 1.34046i
\(999\) −4.46997 7.74221i −0.141424 0.244953i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.o.e.31.9 24
4.3 odd 2 588.2.o.f.31.1 24
7.2 even 3 inner 588.2.o.e.19.1 24
7.3 odd 6 588.2.b.c.391.8 yes 12
7.4 even 3 588.2.b.d.391.8 yes 12
7.5 odd 6 588.2.o.f.19.1 24
7.6 odd 2 588.2.o.f.31.9 24
21.11 odd 6 1764.2.b.m.1567.5 12
21.17 even 6 1764.2.b.l.1567.5 12
28.3 even 6 588.2.b.d.391.7 yes 12
28.11 odd 6 588.2.b.c.391.7 12
28.19 even 6 inner 588.2.o.e.19.9 24
28.23 odd 6 588.2.o.f.19.9 24
28.27 even 2 inner 588.2.o.e.31.1 24
84.11 even 6 1764.2.b.l.1567.6 12
84.59 odd 6 1764.2.b.m.1567.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.7 12 28.11 odd 6
588.2.b.c.391.8 yes 12 7.3 odd 6
588.2.b.d.391.7 yes 12 28.3 even 6
588.2.b.d.391.8 yes 12 7.4 even 3
588.2.o.e.19.1 24 7.2 even 3 inner
588.2.o.e.19.9 24 28.19 even 6 inner
588.2.o.e.31.1 24 28.27 even 2 inner
588.2.o.e.31.9 24 1.1 even 1 trivial
588.2.o.f.19.1 24 7.5 odd 6
588.2.o.f.19.9 24 28.23 odd 6
588.2.o.f.31.1 24 4.3 odd 2
588.2.o.f.31.9 24 7.6 odd 2
1764.2.b.l.1567.5 12 21.17 even 6
1764.2.b.l.1567.6 12 84.11 even 6
1764.2.b.m.1567.5 12 21.11 odd 6
1764.2.b.m.1567.6 12 84.59 odd 6