L(s) = 1 | + (0.639 + 1.26i)2-s + 3-s + (−1.18 + 1.61i)4-s + 3.10i·5-s + (0.639 + 1.26i)6-s + (−2.79 − 0.457i)8-s + 9-s + (−3.91 + 1.98i)10-s + 5.34i·11-s + (−1.18 + 1.61i)12-s − 3.92i·13-s + 3.10i·15-s + (−1.20 − 3.81i)16-s − 5.68i·17-s + (0.639 + 1.26i)18-s + 0.170·19-s + ⋯ |
L(s) = 1 | + (0.452 + 0.891i)2-s + 0.577·3-s + (−0.590 + 0.806i)4-s + 1.38i·5-s + (0.261 + 0.514i)6-s + (−0.986 − 0.161i)8-s + 0.333·9-s + (−1.23 + 0.628i)10-s + 1.61i·11-s + (−0.340 + 0.465i)12-s − 1.08i·13-s + 0.801i·15-s + (−0.302 − 0.953i)16-s − 1.37i·17-s + (0.150 + 0.297i)18-s + 0.0391·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.889 - 0.456i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 588 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.889 - 0.456i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.454424 + 1.87892i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.454424 + 1.87892i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.639 - 1.26i)T \) |
| 3 | \( 1 - T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 - 3.10iT - 5T^{2} \) |
| 11 | \( 1 - 5.34iT - 11T^{2} \) |
| 13 | \( 1 + 3.92iT - 13T^{2} \) |
| 17 | \( 1 + 5.68iT - 17T^{2} \) |
| 19 | \( 1 - 0.170T + 19T^{2} \) |
| 23 | \( 1 - 6.13iT - 23T^{2} \) |
| 29 | \( 1 + 1.96T + 29T^{2} \) |
| 31 | \( 1 + 1.53T + 31T^{2} \) |
| 37 | \( 1 - 8.93T + 37T^{2} \) |
| 41 | \( 1 - 5.84iT - 41T^{2} \) |
| 43 | \( 1 - 2.38iT - 43T^{2} \) |
| 47 | \( 1 - 2.29T + 47T^{2} \) |
| 53 | \( 1 + 1.19T + 53T^{2} \) |
| 59 | \( 1 - 10.9T + 59T^{2} \) |
| 61 | \( 1 - 6.58iT - 61T^{2} \) |
| 67 | \( 1 + 9.64iT - 67T^{2} \) |
| 71 | \( 1 - 2.04iT - 71T^{2} \) |
| 73 | \( 1 + 10.2iT - 73T^{2} \) |
| 79 | \( 1 - 14.3iT - 79T^{2} \) |
| 83 | \( 1 - 10.9T + 83T^{2} \) |
| 89 | \( 1 + 5.81iT - 89T^{2} \) |
| 97 | \( 1 + 2.32iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.08577504654003959542494174223, −9.834248448298831343304024128675, −9.473570113447444353083442077763, −7.973050071475679424202122128044, −7.37610650352963955077030897025, −6.86088307241409991113457894937, −5.65277757225727405926306917259, −4.56202324418564071408411569413, −3.35610605715024885322895864928, −2.54417186647354953063277071120,
0.926183751250272192020558030601, 2.20528143873944627441766394952, 3.68662746564805681775306864138, 4.36755446180014705832123709125, 5.49384348273927912630392646595, 6.38838274303896857315292377486, 8.199825405194030919207891737261, 8.741541413193852640976534200098, 9.292760585778762930772931925037, 10.42751302866121898129240293547