Properties

Label 588.2.b.d.391.11
Level $588$
Weight $2$
Character 588.391
Analytic conductor $4.695$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [588,2,Mod(391,588)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(588, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("588.391"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 588 = 2^{2} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 588.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.69520363885\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.15911316233388032.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 10 x^{10} - 20 x^{9} + 35 x^{8} - 56 x^{7} + 84 x^{6} - 112 x^{5} + 140 x^{4} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 391.11
Root \(1.34902 - 0.424442i\) of defining polynomial
Character \(\chi\) \(=\) 588.391
Dual form 588.2.b.d.391.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.34902 - 0.424442i) q^{2} +1.00000 q^{3} +(1.63970 - 1.14516i) q^{4} -0.127929i q^{5} +(1.34902 - 0.424442i) q^{6} +(1.72593 - 2.24080i) q^{8} +1.00000 q^{9} +(-0.0542984 - 0.172579i) q^{10} -3.99455i q^{11} +(1.63970 - 1.14516i) q^{12} -0.891655i q^{13} -0.127929i q^{15} +(1.37722 - 3.75543i) q^{16} +5.82842i q^{17} +(1.34902 - 0.424442i) q^{18} -6.31490 q^{19} +(-0.146499 - 0.209765i) q^{20} +(-1.69545 - 5.38872i) q^{22} +6.60535i q^{23} +(1.72593 - 2.24080i) q^{24} +4.98363 q^{25} +(-0.378456 - 1.20286i) q^{26} +1.00000 q^{27} +2.82968 q^{29} +(-0.0542984 - 0.172579i) q^{30} +8.45337 q^{31} +(0.263934 - 5.65069i) q^{32} -3.99455i q^{33} +(2.47383 + 7.86264i) q^{34} +(1.63970 - 1.14516i) q^{36} -8.67912 q^{37} +(-8.51891 + 2.68031i) q^{38} -0.891655i q^{39} +(-0.286663 - 0.220796i) q^{40} +3.24650i q^{41} +0.881836i q^{43} +(-4.57439 - 6.54985i) q^{44} -0.127929i q^{45} +(2.80359 + 8.91074i) q^{46} -10.0136 q^{47} +(1.37722 - 3.75543i) q^{48} +(6.72301 - 2.11526i) q^{50} +5.82842i q^{51} +(-1.02109 - 1.46204i) q^{52} -7.53454 q^{53} +(1.34902 - 0.424442i) q^{54} -0.511019 q^{55} -6.31490 q^{57} +(3.81729 - 1.20104i) q^{58} -0.588819 q^{59} +(-0.146499 - 0.209765i) q^{60} -1.68795i q^{61} +(11.4037 - 3.58796i) q^{62} +(-2.04234 - 7.73491i) q^{64} -0.114069 q^{65} +(-1.69545 - 5.38872i) q^{66} +6.35238i q^{67} +(6.67447 + 9.55685i) q^{68} +6.60535i q^{69} +11.3856i q^{71} +(1.72593 - 2.24080i) q^{72} -15.5139i q^{73} +(-11.7083 + 3.68378i) q^{74} +4.98363 q^{75} +(-10.3545 + 7.23156i) q^{76} +(-0.378456 - 1.20286i) q^{78} +9.82324i q^{79} +(-0.480429 - 0.176187i) q^{80} +1.00000 q^{81} +(1.37795 + 4.37958i) q^{82} -1.48021 q^{83} +0.745624 q^{85} +(0.374288 + 1.18961i) q^{86} +2.82968 q^{87} +(-8.95097 - 6.89430i) q^{88} +0.449983i q^{89} +(-0.0542984 - 0.172579i) q^{90} +(7.56418 + 10.8308i) q^{92} +8.45337 q^{93} +(-13.5085 + 4.25018i) q^{94} +0.807859i q^{95} +(0.263934 - 5.65069i) q^{96} -16.2042i q^{97} -3.99455i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 12 q^{3} - 4 q^{4} + 4 q^{6} + 4 q^{8} + 12 q^{9} - 4 q^{12} - 4 q^{16} + 4 q^{18} - 24 q^{20} + 4 q^{24} - 12 q^{25} + 24 q^{26} + 12 q^{27} + 32 q^{29} + 16 q^{31} + 4 q^{32} + 32 q^{34}+ \cdots + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/588\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(295\) \(493\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.34902 0.424442i 0.953900 0.300126i
\(3\) 1.00000 0.577350
\(4\) 1.63970 1.14516i 0.819849 0.572580i
\(5\) 0.127929i 0.0572116i −0.999591 0.0286058i \(-0.990893\pi\)
0.999591 0.0286058i \(-0.00910675\pi\)
\(6\) 1.34902 0.424442i 0.550734 0.173278i
\(7\) 0 0
\(8\) 1.72593 2.24080i 0.610208 0.792241i
\(9\) 1.00000 0.333333
\(10\) −0.0542984 0.172579i −0.0171707 0.0545741i
\(11\) 3.99455i 1.20440i −0.798345 0.602201i \(-0.794291\pi\)
0.798345 0.602201i \(-0.205709\pi\)
\(12\) 1.63970 1.14516i 0.473340 0.330579i
\(13\) 0.891655i 0.247301i −0.992326 0.123650i \(-0.960540\pi\)
0.992326 0.123650i \(-0.0394601\pi\)
\(14\) 0 0
\(15\) 0.127929i 0.0330311i
\(16\) 1.37722 3.75543i 0.344305 0.938858i
\(17\) 5.82842i 1.41360i 0.707414 + 0.706800i \(0.249862\pi\)
−0.707414 + 0.706800i \(0.750138\pi\)
\(18\) 1.34902 0.424442i 0.317967 0.100042i
\(19\) −6.31490 −1.44874 −0.724368 0.689413i \(-0.757868\pi\)
−0.724368 + 0.689413i \(0.757868\pi\)
\(20\) −0.146499 0.209765i −0.0327582 0.0469049i
\(21\) 0 0
\(22\) −1.69545 5.38872i −0.361472 1.14888i
\(23\) 6.60535i 1.37731i 0.725089 + 0.688656i \(0.241799\pi\)
−0.725089 + 0.688656i \(0.758201\pi\)
\(24\) 1.72593 2.24080i 0.352304 0.457401i
\(25\) 4.98363 0.996727
\(26\) −0.378456 1.20286i −0.0742212 0.235900i
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 2.82968 0.525459 0.262729 0.964870i \(-0.415377\pi\)
0.262729 + 0.964870i \(0.415377\pi\)
\(30\) −0.0542984 0.172579i −0.00991349 0.0315084i
\(31\) 8.45337 1.51827 0.759135 0.650934i \(-0.225622\pi\)
0.759135 + 0.650934i \(0.225622\pi\)
\(32\) 0.263934 5.65069i 0.0466573 0.998911i
\(33\) 3.99455i 0.695361i
\(34\) 2.47383 + 7.86264i 0.424258 + 1.34843i
\(35\) 0 0
\(36\) 1.63970 1.14516i 0.273283 0.190860i
\(37\) −8.67912 −1.42684 −0.713419 0.700737i \(-0.752854\pi\)
−0.713419 + 0.700737i \(0.752854\pi\)
\(38\) −8.51891 + 2.68031i −1.38195 + 0.434803i
\(39\) 0.891655i 0.142779i
\(40\) −0.286663 0.220796i −0.0453254 0.0349110i
\(41\) 3.24650i 0.507018i 0.967333 + 0.253509i \(0.0815847\pi\)
−0.967333 + 0.253509i \(0.918415\pi\)
\(42\) 0 0
\(43\) 0.881836i 0.134479i 0.997737 + 0.0672394i \(0.0214191\pi\)
−0.997737 + 0.0672394i \(0.978581\pi\)
\(44\) −4.57439 6.54985i −0.689616 0.987427i
\(45\) 0.127929i 0.0190705i
\(46\) 2.80359 + 8.91074i 0.413366 + 1.31382i
\(47\) −10.0136 −1.46063 −0.730314 0.683111i \(-0.760626\pi\)
−0.730314 + 0.683111i \(0.760626\pi\)
\(48\) 1.37722 3.75543i 0.198785 0.542050i
\(49\) 0 0
\(50\) 6.72301 2.11526i 0.950777 0.299143i
\(51\) 5.82842i 0.816142i
\(52\) −1.02109 1.46204i −0.141599 0.202749i
\(53\) −7.53454 −1.03495 −0.517474 0.855699i \(-0.673128\pi\)
−0.517474 + 0.855699i \(0.673128\pi\)
\(54\) 1.34902 0.424442i 0.183578 0.0577592i
\(55\) −0.511019 −0.0689057
\(56\) 0 0
\(57\) −6.31490 −0.836428
\(58\) 3.81729 1.20104i 0.501235 0.157704i
\(59\) −0.588819 −0.0766577 −0.0383288 0.999265i \(-0.512203\pi\)
−0.0383288 + 0.999265i \(0.512203\pi\)
\(60\) −0.146499 0.209765i −0.0189130 0.0270805i
\(61\) 1.68795i 0.216120i −0.994144 0.108060i \(-0.965536\pi\)
0.994144 0.108060i \(-0.0344638\pi\)
\(62\) 11.4037 3.58796i 1.44828 0.455672i
\(63\) 0 0
\(64\) −2.04234 7.73491i −0.255292 0.966864i
\(65\) −0.114069 −0.0141485
\(66\) −1.69545 5.38872i −0.208696 0.663305i
\(67\) 6.35238i 0.776067i 0.921645 + 0.388033i \(0.126846\pi\)
−0.921645 + 0.388033i \(0.873154\pi\)
\(68\) 6.67447 + 9.55685i 0.809398 + 1.15894i
\(69\) 6.60535i 0.795191i
\(70\) 0 0
\(71\) 11.3856i 1.35122i 0.737259 + 0.675610i \(0.236120\pi\)
−0.737259 + 0.675610i \(0.763880\pi\)
\(72\) 1.72593 2.24080i 0.203403 0.264080i
\(73\) 15.5139i 1.81577i −0.419223 0.907883i \(-0.637697\pi\)
0.419223 0.907883i \(-0.362303\pi\)
\(74\) −11.7083 + 3.68378i −1.36106 + 0.428231i
\(75\) 4.98363 0.575461
\(76\) −10.3545 + 7.23156i −1.18775 + 0.829517i
\(77\) 0 0
\(78\) −0.378456 1.20286i −0.0428517 0.136197i
\(79\) 9.82324i 1.10520i 0.833446 + 0.552601i \(0.186364\pi\)
−0.833446 + 0.552601i \(0.813636\pi\)
\(80\) −0.480429 0.176187i −0.0537136 0.0196983i
\(81\) 1.00000 0.111111
\(82\) 1.37795 + 4.37958i 0.152169 + 0.483644i
\(83\) −1.48021 −0.162474 −0.0812371 0.996695i \(-0.525887\pi\)
−0.0812371 + 0.996695i \(0.525887\pi\)
\(84\) 0 0
\(85\) 0.745624 0.0808743
\(86\) 0.374288 + 1.18961i 0.0403605 + 0.128279i
\(87\) 2.82968 0.303374
\(88\) −8.95097 6.89430i −0.954177 0.734935i
\(89\) 0.449983i 0.0476981i 0.999716 + 0.0238490i \(0.00759210\pi\)
−0.999716 + 0.0238490i \(0.992408\pi\)
\(90\) −0.0542984 0.172579i −0.00572356 0.0181914i
\(91\) 0 0
\(92\) 7.56418 + 10.8308i 0.788620 + 1.12919i
\(93\) 8.45337 0.876573
\(94\) −13.5085 + 4.25018i −1.39329 + 0.438372i
\(95\) 0.807859i 0.0828845i
\(96\) 0.263934 5.65069i 0.0269376 0.576722i
\(97\) 16.2042i 1.64529i −0.568555 0.822645i \(-0.692497\pi\)
0.568555 0.822645i \(-0.307503\pi\)
\(98\) 0 0
\(99\) 3.99455i 0.401467i
\(100\) 8.17166 5.70705i 0.817166 0.570705i
\(101\) 12.0661i 1.20062i 0.799767 + 0.600310i \(0.204956\pi\)
−0.799767 + 0.600310i \(0.795044\pi\)
\(102\) 2.47383 + 7.86264i 0.244945 + 0.778518i
\(103\) 3.28431 0.323612 0.161806 0.986823i \(-0.448268\pi\)
0.161806 + 0.986823i \(0.448268\pi\)
\(104\) −1.99802 1.53893i −0.195922 0.150905i
\(105\) 0 0
\(106\) −10.1642 + 3.19797i −0.987237 + 0.310615i
\(107\) 3.33543i 0.322449i −0.986918 0.161224i \(-0.948456\pi\)
0.986918 0.161224i \(-0.0515443\pi\)
\(108\) 1.63970 1.14516i 0.157780 0.110193i
\(109\) 4.46096 0.427283 0.213641 0.976912i \(-0.431468\pi\)
0.213641 + 0.976912i \(0.431468\pi\)
\(110\) −0.689373 + 0.216898i −0.0657292 + 0.0206804i
\(111\) −8.67912 −0.823786
\(112\) 0 0
\(113\) −9.16272 −0.861956 −0.430978 0.902362i \(-0.641831\pi\)
−0.430978 + 0.902362i \(0.641831\pi\)
\(114\) −8.51891 + 2.68031i −0.797869 + 0.251034i
\(115\) 0.845016 0.0787982
\(116\) 4.63983 3.24044i 0.430797 0.300867i
\(117\) 0.891655i 0.0824335i
\(118\) −0.794327 + 0.249919i −0.0731237 + 0.0230069i
\(119\) 0 0
\(120\) −0.286663 0.220796i −0.0261686 0.0201559i
\(121\) −4.95641 −0.450583
\(122\) −0.716436 2.27707i −0.0648631 0.206157i
\(123\) 3.24650i 0.292727i
\(124\) 13.8610 9.68045i 1.24475 0.869330i
\(125\) 1.27720i 0.114236i
\(126\) 0 0
\(127\) 14.0775i 1.24917i 0.780955 + 0.624587i \(0.214733\pi\)
−0.780955 + 0.624587i \(0.785267\pi\)
\(128\) −6.03817 9.56768i −0.533704 0.845671i
\(129\) 0.881836i 0.0776414i
\(130\) −0.153880 + 0.0484155i −0.0134962 + 0.00424632i
\(131\) 9.76967 0.853580 0.426790 0.904351i \(-0.359644\pi\)
0.426790 + 0.904351i \(0.359644\pi\)
\(132\) −4.57439 6.54985i −0.398150 0.570092i
\(133\) 0 0
\(134\) 2.69622 + 8.56948i 0.232918 + 0.740290i
\(135\) 0.127929i 0.0110104i
\(136\) 13.0603 + 10.0594i 1.11991 + 0.862590i
\(137\) −3.96852 −0.339054 −0.169527 0.985526i \(-0.554224\pi\)
−0.169527 + 0.985526i \(0.554224\pi\)
\(138\) 2.80359 + 8.91074i 0.238657 + 0.758532i
\(139\) 0.262023 0.0222245 0.0111122 0.999938i \(-0.496463\pi\)
0.0111122 + 0.999938i \(0.496463\pi\)
\(140\) 0 0
\(141\) −10.0136 −0.843294
\(142\) 4.83252 + 15.3594i 0.405536 + 1.28893i
\(143\) −3.56176 −0.297849
\(144\) 1.37722 3.75543i 0.114768 0.312953i
\(145\) 0.361999i 0.0300623i
\(146\) −6.58476 20.9286i −0.544958 1.73206i
\(147\) 0 0
\(148\) −14.2311 + 9.93897i −1.16979 + 0.816979i
\(149\) 2.69549 0.220823 0.110411 0.993886i \(-0.464783\pi\)
0.110411 + 0.993886i \(0.464783\pi\)
\(150\) 6.72301 2.11526i 0.548932 0.172710i
\(151\) 4.31664i 0.351284i −0.984454 0.175642i \(-0.943800\pi\)
0.984454 0.175642i \(-0.0562000\pi\)
\(152\) −10.8991 + 14.1504i −0.884031 + 1.14775i
\(153\) 5.82842i 0.471200i
\(154\) 0 0
\(155\) 1.08143i 0.0868626i
\(156\) −1.02109 1.46204i −0.0817524 0.117057i
\(157\) 3.20616i 0.255879i −0.991782 0.127940i \(-0.959164\pi\)
0.991782 0.127940i \(-0.0408364\pi\)
\(158\) 4.16940 + 13.2517i 0.331699 + 1.05425i
\(159\) −7.53454 −0.597528
\(160\) −0.722888 0.0337648i −0.0571493 0.00266934i
\(161\) 0 0
\(162\) 1.34902 0.424442i 0.105989 0.0333473i
\(163\) 23.2619i 1.82201i −0.412393 0.911006i \(-0.635307\pi\)
0.412393 0.911006i \(-0.364693\pi\)
\(164\) 3.71776 + 5.32328i 0.290308 + 0.415678i
\(165\) −0.511019 −0.0397827
\(166\) −1.99683 + 0.628263i −0.154984 + 0.0487627i
\(167\) −9.66864 −0.748182 −0.374091 0.927392i \(-0.622045\pi\)
−0.374091 + 0.927392i \(0.622045\pi\)
\(168\) 0 0
\(169\) 12.2050 0.938842
\(170\) 1.00586 0.316474i 0.0771460 0.0242725i
\(171\) −6.31490 −0.482912
\(172\) 1.00984 + 1.44595i 0.0769998 + 0.110252i
\(173\) 20.7065i 1.57429i 0.616768 + 0.787145i \(0.288441\pi\)
−0.616768 + 0.787145i \(0.711559\pi\)
\(174\) 3.81729 1.20104i 0.289388 0.0910503i
\(175\) 0 0
\(176\) −15.0012 5.50137i −1.13076 0.414682i
\(177\) −0.588819 −0.0442583
\(178\) 0.190991 + 0.607035i 0.0143154 + 0.0454992i
\(179\) 1.46793i 0.109718i −0.998494 0.0548589i \(-0.982529\pi\)
0.998494 0.0548589i \(-0.0174709\pi\)
\(180\) −0.146499 0.209765i −0.0109194 0.0156350i
\(181\) 23.5472i 1.75025i −0.483898 0.875124i \(-0.660779\pi\)
0.483898 0.875124i \(-0.339221\pi\)
\(182\) 0 0
\(183\) 1.68795i 0.124777i
\(184\) 14.8013 + 11.4004i 1.09116 + 0.840446i
\(185\) 1.11031i 0.0816317i
\(186\) 11.4037 3.58796i 0.836163 0.263082i
\(187\) 23.2819 1.70254
\(188\) −16.4192 + 11.4671i −1.19749 + 0.836326i
\(189\) 0 0
\(190\) 0.342889 + 1.08982i 0.0248758 + 0.0790635i
\(191\) 3.69128i 0.267092i −0.991043 0.133546i \(-0.957364\pi\)
0.991043 0.133546i \(-0.0426364\pi\)
\(192\) −2.04234 7.73491i −0.147393 0.558219i
\(193\) −2.71674 −0.195555 −0.0977777 0.995208i \(-0.531173\pi\)
−0.0977777 + 0.995208i \(0.531173\pi\)
\(194\) −6.87775 21.8598i −0.493794 1.56944i
\(195\) −0.114069 −0.00816862
\(196\) 0 0
\(197\) 4.09843 0.292001 0.146001 0.989284i \(-0.453360\pi\)
0.146001 + 0.989284i \(0.453360\pi\)
\(198\) −1.69545 5.38872i −0.120491 0.382959i
\(199\) 0.208229 0.0147610 0.00738048 0.999973i \(-0.497651\pi\)
0.00738048 + 0.999973i \(0.497651\pi\)
\(200\) 8.60140 11.1673i 0.608211 0.789648i
\(201\) 6.35238i 0.448062i
\(202\) 5.12135 + 16.2774i 0.360337 + 1.14527i
\(203\) 0 0
\(204\) 6.67447 + 9.55685i 0.467306 + 0.669114i
\(205\) 0.415321 0.0290073
\(206\) 4.43059 1.39400i 0.308694 0.0971243i
\(207\) 6.60535i 0.459104i
\(208\) −3.34855 1.22801i −0.232180 0.0851469i
\(209\) 25.2252i 1.74486i
\(210\) 0 0
\(211\) 16.5850i 1.14176i −0.821034 0.570880i \(-0.806602\pi\)
0.821034 0.570880i \(-0.193398\pi\)
\(212\) −12.3544 + 8.62825i −0.848502 + 0.592591i
\(213\) 11.3856i 0.780127i
\(214\) −1.41570 4.49956i −0.0967751 0.307584i
\(215\) 0.112812 0.00769375
\(216\) 1.72593 2.24080i 0.117435 0.152467i
\(217\) 0 0
\(218\) 6.01792 1.89342i 0.407585 0.128238i
\(219\) 15.5139i 1.04833i
\(220\) −0.837916 + 0.585198i −0.0564923 + 0.0394540i
\(221\) 5.19694 0.349584
\(222\) −11.7083 + 3.68378i −0.785809 + 0.247239i
\(223\) 21.3432 1.42925 0.714624 0.699509i \(-0.246598\pi\)
0.714624 + 0.699509i \(0.246598\pi\)
\(224\) 0 0
\(225\) 4.98363 0.332242
\(226\) −12.3607 + 3.88904i −0.822220 + 0.258695i
\(227\) −26.9972 −1.79187 −0.895935 0.444185i \(-0.853493\pi\)
−0.895935 + 0.444185i \(0.853493\pi\)
\(228\) −10.3545 + 7.23156i −0.685745 + 0.478922i
\(229\) 2.91694i 0.192757i 0.995345 + 0.0963783i \(0.0307259\pi\)
−0.995345 + 0.0963783i \(0.969274\pi\)
\(230\) 1.13994 0.358660i 0.0751656 0.0236494i
\(231\) 0 0
\(232\) 4.88383 6.34074i 0.320639 0.416290i
\(233\) 20.3989 1.33638 0.668189 0.743991i \(-0.267070\pi\)
0.668189 + 0.743991i \(0.267070\pi\)
\(234\) −0.378456 1.20286i −0.0247404 0.0786333i
\(235\) 1.28103i 0.0835649i
\(236\) −0.965485 + 0.674291i −0.0628477 + 0.0438926i
\(237\) 9.82324i 0.638088i
\(238\) 0 0
\(239\) 25.2554i 1.63364i −0.576895 0.816818i \(-0.695736\pi\)
0.576895 0.816818i \(-0.304264\pi\)
\(240\) −0.480429 0.176187i −0.0310115 0.0113728i
\(241\) 8.20938i 0.528813i −0.964411 0.264406i \(-0.914824\pi\)
0.964411 0.264406i \(-0.0851760\pi\)
\(242\) −6.68629 + 2.10371i −0.429811 + 0.135231i
\(243\) 1.00000 0.0641500
\(244\) −1.93297 2.76773i −0.123746 0.177186i
\(245\) 0 0
\(246\) 1.37795 + 4.37958i 0.0878548 + 0.279232i
\(247\) 5.63071i 0.358273i
\(248\) 14.5899 18.9423i 0.926460 1.20284i
\(249\) −1.48021 −0.0938045
\(250\) −0.542096 1.72296i −0.0342851 0.108970i
\(251\) 6.55180 0.413546 0.206773 0.978389i \(-0.433704\pi\)
0.206773 + 0.978389i \(0.433704\pi\)
\(252\) 0 0
\(253\) 26.3854 1.65884
\(254\) 5.97507 + 18.9908i 0.374909 + 1.19159i
\(255\) 0.745624 0.0466928
\(256\) −12.2065 10.3441i −0.762908 0.646507i
\(257\) 18.7522i 1.16973i −0.811130 0.584866i \(-0.801147\pi\)
0.811130 0.584866i \(-0.198853\pi\)
\(258\) 0.374288 + 1.18961i 0.0233022 + 0.0740621i
\(259\) 0 0
\(260\) −0.187038 + 0.130627i −0.0115996 + 0.00810112i
\(261\) 2.82968 0.175153
\(262\) 13.1795 4.14666i 0.814229 0.256181i
\(263\) 2.10526i 0.129816i 0.997891 + 0.0649079i \(0.0206754\pi\)
−0.997891 + 0.0649079i \(0.979325\pi\)
\(264\) −8.95097 6.89430i −0.550894 0.424315i
\(265\) 0.963886i 0.0592111i
\(266\) 0 0
\(267\) 0.449983i 0.0275385i
\(268\) 7.27449 + 10.4160i 0.444360 + 0.636258i
\(269\) 11.8021i 0.719586i −0.933032 0.359793i \(-0.882847\pi\)
0.933032 0.359793i \(-0.117153\pi\)
\(270\) −0.0542984 0.172579i −0.00330450 0.0105028i
\(271\) −11.3243 −0.687900 −0.343950 0.938988i \(-0.611765\pi\)
−0.343950 + 0.938988i \(0.611765\pi\)
\(272\) 21.8882 + 8.02702i 1.32717 + 0.486710i
\(273\) 0 0
\(274\) −5.35361 + 1.68441i −0.323423 + 0.101759i
\(275\) 19.9074i 1.20046i
\(276\) 7.56418 + 10.8308i 0.455310 + 0.651937i
\(277\) −11.7638 −0.706821 −0.353410 0.935468i \(-0.614978\pi\)
−0.353410 + 0.935468i \(0.614978\pi\)
\(278\) 0.353473 0.111213i 0.0211999 0.00667014i
\(279\) 8.45337 0.506090
\(280\) 0 0
\(281\) −9.80481 −0.584906 −0.292453 0.956280i \(-0.594471\pi\)
−0.292453 + 0.956280i \(0.594471\pi\)
\(282\) −13.5085 + 4.25018i −0.804418 + 0.253094i
\(283\) −24.6465 −1.46508 −0.732542 0.680722i \(-0.761666\pi\)
−0.732542 + 0.680722i \(0.761666\pi\)
\(284\) 13.0383 + 18.6689i 0.773681 + 1.10780i
\(285\) 0.807859i 0.0478534i
\(286\) −4.80487 + 1.51176i −0.284118 + 0.0893922i
\(287\) 0 0
\(288\) 0.263934 5.65069i 0.0155524 0.332970i
\(289\) −16.9705 −0.998264
\(290\) −0.153647 0.488343i −0.00902248 0.0286765i
\(291\) 16.2042i 0.949909i
\(292\) −17.7659 25.4381i −1.03967 1.48865i
\(293\) 2.41042i 0.140818i −0.997518 0.0704091i \(-0.977570\pi\)
0.997518 0.0704091i \(-0.0224305\pi\)
\(294\) 0 0
\(295\) 0.0753270i 0.00438571i
\(296\) −14.9795 + 19.4481i −0.870668 + 1.13040i
\(297\) 3.99455i 0.231787i
\(298\) 3.63626 1.14408i 0.210643 0.0662746i
\(299\) 5.88969 0.340610
\(300\) 8.17166 5.70705i 0.471791 0.329497i
\(301\) 0 0
\(302\) −1.83216 5.82323i −0.105429 0.335089i
\(303\) 12.0661i 0.693178i
\(304\) −8.69701 + 23.7152i −0.498808 + 1.36016i
\(305\) −0.215938 −0.0123646
\(306\) 2.47383 + 7.86264i 0.141419 + 0.449477i
\(307\) 24.4054 1.39289 0.696446 0.717609i \(-0.254764\pi\)
0.696446 + 0.717609i \(0.254764\pi\)
\(308\) 0 0
\(309\) 3.28431 0.186838
\(310\) −0.459004 1.45887i −0.0260697 0.0828582i
\(311\) 31.1866 1.76843 0.884215 0.467079i \(-0.154694\pi\)
0.884215 + 0.467079i \(0.154694\pi\)
\(312\) −1.99802 1.53893i −0.113115 0.0871249i
\(313\) 2.53807i 0.143460i −0.997424 0.0717302i \(-0.977148\pi\)
0.997424 0.0717302i \(-0.0228521\pi\)
\(314\) −1.36083 4.32516i −0.0767959 0.244083i
\(315\) 0 0
\(316\) 11.2492 + 16.1072i 0.632816 + 0.906098i
\(317\) −18.2520 −1.02514 −0.512568 0.858646i \(-0.671306\pi\)
−0.512568 + 0.858646i \(0.671306\pi\)
\(318\) −10.1642 + 3.19797i −0.569982 + 0.179333i
\(319\) 11.3033i 0.632864i
\(320\) −0.989520 + 0.261274i −0.0553158 + 0.0146057i
\(321\) 3.33543i 0.186166i
\(322\) 0 0
\(323\) 36.8059i 2.04793i
\(324\) 1.63970 1.14516i 0.0910943 0.0636200i
\(325\) 4.44368i 0.246491i
\(326\) −9.87332 31.3807i −0.546832 1.73802i
\(327\) 4.46096 0.246692
\(328\) 7.27474 + 5.60322i 0.401680 + 0.309386i
\(329\) 0 0
\(330\) −0.689373 + 0.216898i −0.0379487 + 0.0119398i
\(331\) 20.7274i 1.13928i −0.821895 0.569639i \(-0.807083\pi\)
0.821895 0.569639i \(-0.192917\pi\)
\(332\) −2.42710 + 1.69508i −0.133204 + 0.0930294i
\(333\) −8.67912 −0.475613
\(334\) −13.0432 + 4.10378i −0.713690 + 0.224549i
\(335\) 0.812654 0.0444000
\(336\) 0 0
\(337\) −0.330532 −0.0180052 −0.00900261 0.999959i \(-0.502866\pi\)
−0.00900261 + 0.999959i \(0.502866\pi\)
\(338\) 16.4647 5.18029i 0.895561 0.281771i
\(339\) −9.16272 −0.497651
\(340\) 1.22260 0.853858i 0.0663047 0.0463070i
\(341\) 33.7674i 1.82861i
\(342\) −8.51891 + 2.68031i −0.460650 + 0.144934i
\(343\) 0 0
\(344\) 1.97602 + 1.52199i 0.106540 + 0.0820600i
\(345\) 0.845016 0.0454941
\(346\) 8.78872 + 27.9335i 0.472485 + 1.50171i
\(347\) 21.9951i 1.18076i 0.807127 + 0.590378i \(0.201021\pi\)
−0.807127 + 0.590378i \(0.798979\pi\)
\(348\) 4.63983 3.24044i 0.248721 0.173706i
\(349\) 26.6709i 1.42766i 0.700318 + 0.713831i \(0.253041\pi\)
−0.700318 + 0.713831i \(0.746959\pi\)
\(350\) 0 0
\(351\) 0.891655i 0.0475930i
\(352\) −22.5720 1.05430i −1.20309 0.0561941i
\(353\) 7.77165i 0.413643i −0.978379 0.206822i \(-0.933688\pi\)
0.978379 0.206822i \(-0.0663120\pi\)
\(354\) −0.794327 + 0.249919i −0.0422180 + 0.0132831i
\(355\) 1.45655 0.0773055
\(356\) 0.515302 + 0.737836i 0.0273109 + 0.0391052i
\(357\) 0 0
\(358\) −0.623049 1.98026i −0.0329292 0.104660i
\(359\) 16.7870i 0.885984i 0.896526 + 0.442992i \(0.146083\pi\)
−0.896526 + 0.442992i \(0.853917\pi\)
\(360\) −0.286663 0.220796i −0.0151085 0.0116370i
\(361\) 20.8779 1.09884
\(362\) −9.99441 31.7656i −0.525295 1.66956i
\(363\) −4.95641 −0.260144
\(364\) 0 0
\(365\) −1.98468 −0.103883
\(366\) −0.716436 2.27707i −0.0374487 0.119025i
\(367\) 4.03640 0.210698 0.105349 0.994435i \(-0.466404\pi\)
0.105349 + 0.994435i \(0.466404\pi\)
\(368\) 24.8059 + 9.09703i 1.29310 + 0.474215i
\(369\) 3.24650i 0.169006i
\(370\) 0.471263 + 1.49783i 0.0244998 + 0.0778685i
\(371\) 0 0
\(372\) 13.8610 9.68045i 0.718658 0.501908i
\(373\) 20.7790 1.07590 0.537948 0.842978i \(-0.319200\pi\)
0.537948 + 0.842978i \(0.319200\pi\)
\(374\) 31.4077 9.88181i 1.62405 0.510976i
\(375\) 1.27720i 0.0659541i
\(376\) −17.2827 + 22.4384i −0.891287 + 1.15717i
\(377\) 2.52310i 0.129946i
\(378\) 0 0
\(379\) 10.7800i 0.553732i −0.960909 0.276866i \(-0.910704\pi\)
0.960909 0.276866i \(-0.0892958\pi\)
\(380\) 0.925127 + 1.32464i 0.0474580 + 0.0679528i
\(381\) 14.0775i 0.721211i
\(382\) −1.56673 4.97960i −0.0801611 0.254779i
\(383\) 6.52981 0.333658 0.166829 0.985986i \(-0.446647\pi\)
0.166829 + 0.985986i \(0.446647\pi\)
\(384\) −6.03817 9.56768i −0.308134 0.488249i
\(385\) 0 0
\(386\) −3.66493 + 1.15310i −0.186540 + 0.0586912i
\(387\) 0.881836i 0.0448263i
\(388\) −18.5564 26.5701i −0.942060 1.34889i
\(389\) 31.8697 1.61586 0.807928 0.589281i \(-0.200589\pi\)
0.807928 + 0.589281i \(0.200589\pi\)
\(390\) −0.153880 + 0.0484155i −0.00779204 + 0.00245161i
\(391\) −38.4988 −1.94697
\(392\) 0 0
\(393\) 9.76967 0.492814
\(394\) 5.52886 1.73955i 0.278540 0.0876371i
\(395\) 1.25668 0.0632303
\(396\) −4.57439 6.54985i −0.229872 0.329142i
\(397\) 15.4218i 0.773997i 0.922080 + 0.386999i \(0.126488\pi\)
−0.922080 + 0.386999i \(0.873512\pi\)
\(398\) 0.280905 0.0883811i 0.0140805 0.00443015i
\(399\) 0 0
\(400\) 6.86357 18.7157i 0.343178 0.935785i
\(401\) 27.6959 1.38307 0.691533 0.722345i \(-0.256936\pi\)
0.691533 + 0.722345i \(0.256936\pi\)
\(402\) 2.69622 + 8.56948i 0.134475 + 0.427407i
\(403\) 7.53748i 0.375469i
\(404\) 13.8176 + 19.7847i 0.687450 + 0.984327i
\(405\) 0.127929i 0.00635684i
\(406\) 0 0
\(407\) 34.6692i 1.71849i
\(408\) 13.0603 + 10.0594i 0.646582 + 0.498017i
\(409\) 24.8476i 1.22864i 0.789058 + 0.614319i \(0.210569\pi\)
−0.789058 + 0.614319i \(0.789431\pi\)
\(410\) 0.560276 0.176280i 0.0276700 0.00870583i
\(411\) −3.96852 −0.195753
\(412\) 5.38527 3.76105i 0.265313 0.185294i
\(413\) 0 0
\(414\) 2.80359 + 8.91074i 0.137789 + 0.437939i
\(415\) 0.189362i 0.00929541i
\(416\) −5.03847 0.235338i −0.247031 0.0115384i
\(417\) 0.262023 0.0128313
\(418\) 10.7066 + 34.0292i 0.523677 + 1.66442i
\(419\) 21.9087 1.07031 0.535155 0.844754i \(-0.320253\pi\)
0.535155 + 0.844754i \(0.320253\pi\)
\(420\) 0 0
\(421\) −18.8226 −0.917357 −0.458679 0.888602i \(-0.651677\pi\)
−0.458679 + 0.888602i \(0.651677\pi\)
\(422\) −7.03938 22.3735i −0.342671 1.08912i
\(423\) −10.0136 −0.486876
\(424\) −13.0041 + 16.8834i −0.631534 + 0.819929i
\(425\) 29.0467i 1.40897i
\(426\) 4.83252 + 15.3594i 0.234136 + 0.744163i
\(427\) 0 0
\(428\) −3.81960 5.46911i −0.184628 0.264359i
\(429\) −3.56176 −0.171963
\(430\) 0.152186 0.0478823i 0.00733906 0.00230909i
\(431\) 21.8458i 1.05227i −0.850400 0.526137i \(-0.823640\pi\)
0.850400 0.526137i \(-0.176360\pi\)
\(432\) 1.37722 3.75543i 0.0662616 0.180683i
\(433\) 23.7440i 1.14107i −0.821275 0.570533i \(-0.806737\pi\)
0.821275 0.570533i \(-0.193263\pi\)
\(434\) 0 0
\(435\) 0.361999i 0.0173565i
\(436\) 7.31463 5.10851i 0.350307 0.244653i
\(437\) 41.7121i 1.99536i
\(438\) −6.58476 20.9286i −0.314632 1.00000i
\(439\) −31.8858 −1.52183 −0.760914 0.648852i \(-0.775249\pi\)
−0.760914 + 0.648852i \(0.775249\pi\)
\(440\) −0.881982 + 1.14509i −0.0420468 + 0.0545900i
\(441\) 0 0
\(442\) 7.01076 2.20580i 0.333468 0.104919i
\(443\) 15.6824i 0.745095i −0.928013 0.372548i \(-0.878484\pi\)
0.928013 0.372548i \(-0.121516\pi\)
\(444\) −14.2311 + 9.93897i −0.675380 + 0.471683i
\(445\) 0.0575658 0.00272888
\(446\) 28.7924 9.05895i 1.36336 0.428954i
\(447\) 2.69549 0.127492
\(448\) 0 0
\(449\) −9.72484 −0.458943 −0.229472 0.973315i \(-0.573700\pi\)
−0.229472 + 0.973315i \(0.573700\pi\)
\(450\) 6.72301 2.11526i 0.316926 0.0997144i
\(451\) 12.9683 0.610653
\(452\) −15.0241 + 10.4928i −0.706674 + 0.493539i
\(453\) 4.31664i 0.202814i
\(454\) −36.4198 + 11.4588i −1.70926 + 0.537786i
\(455\) 0 0
\(456\) −10.8991 + 14.1504i −0.510395 + 0.662653i
\(457\) −11.4077 −0.533628 −0.266814 0.963748i \(-0.585971\pi\)
−0.266814 + 0.963748i \(0.585971\pi\)
\(458\) 1.23807 + 3.93500i 0.0578512 + 0.183870i
\(459\) 5.82842i 0.272047i
\(460\) 1.38557 0.967678i 0.0646026 0.0451182i
\(461\) 19.6446i 0.914940i −0.889225 0.457470i \(-0.848756\pi\)
0.889225 0.457470i \(-0.151244\pi\)
\(462\) 0 0
\(463\) 6.73057i 0.312796i 0.987694 + 0.156398i \(0.0499883\pi\)
−0.987694 + 0.156398i \(0.950012\pi\)
\(464\) 3.89710 10.6267i 0.180918 0.493331i
\(465\) 1.08143i 0.0501502i
\(466\) 27.5185 8.65816i 1.27477 0.401082i
\(467\) 22.1216 1.02367 0.511833 0.859085i \(-0.328966\pi\)
0.511833 + 0.859085i \(0.328966\pi\)
\(468\) −1.02109 1.46204i −0.0471997 0.0675830i
\(469\) 0 0
\(470\) 0.543721 + 1.72813i 0.0250800 + 0.0797125i
\(471\) 3.20616i 0.147732i
\(472\) −1.01626 + 1.31942i −0.0467771 + 0.0607314i
\(473\) 3.52254 0.161966
\(474\) 4.16940 + 13.2517i 0.191507 + 0.608672i
\(475\) −31.4711 −1.44399
\(476\) 0 0
\(477\) −7.53454 −0.344983
\(478\) −10.7194 34.0700i −0.490296 1.55832i
\(479\) 21.2649 0.971618 0.485809 0.874065i \(-0.338525\pi\)
0.485809 + 0.874065i \(0.338525\pi\)
\(480\) −0.722888 0.0337648i −0.0329952 0.00154114i
\(481\) 7.73878i 0.352858i
\(482\) −3.48441 11.0746i −0.158710 0.504434i
\(483\) 0 0
\(484\) −8.12702 + 5.67588i −0.369410 + 0.257995i
\(485\) −2.07299 −0.0941297
\(486\) 1.34902 0.424442i 0.0611927 0.0192531i
\(487\) 35.4341i 1.60567i 0.596200 + 0.802836i \(0.296677\pi\)
−0.596200 + 0.802836i \(0.703323\pi\)
\(488\) −3.78235 2.91328i −0.171219 0.131878i
\(489\) 23.2619i 1.05194i
\(490\) 0 0
\(491\) 15.1925i 0.685628i 0.939403 + 0.342814i \(0.111380\pi\)
−0.939403 + 0.342814i \(0.888620\pi\)
\(492\) 3.71776 + 5.32328i 0.167609 + 0.239992i
\(493\) 16.4926i 0.742789i
\(494\) 2.38991 + 7.59592i 0.107527 + 0.341757i
\(495\) −0.511019 −0.0229686
\(496\) 11.6422 31.7460i 0.522748 1.42544i
\(497\) 0 0
\(498\) −1.99683 + 0.628263i −0.0894801 + 0.0281532i
\(499\) 11.0894i 0.496431i 0.968705 + 0.248216i \(0.0798442\pi\)
−0.968705 + 0.248216i \(0.920156\pi\)
\(500\) −1.46259 2.09422i −0.0654092 0.0936562i
\(501\) −9.66864 −0.431963
\(502\) 8.83849 2.78086i 0.394481 0.124116i
\(503\) −5.67396 −0.252989 −0.126495 0.991967i \(-0.540373\pi\)
−0.126495 + 0.991967i \(0.540373\pi\)
\(504\) 0 0
\(505\) 1.54360 0.0686894
\(506\) 35.5944 11.1991i 1.58236 0.497859i
\(507\) 12.2050 0.542041
\(508\) 16.1210 + 23.0828i 0.715252 + 1.02413i
\(509\) 12.7986i 0.567288i −0.958930 0.283644i \(-0.908457\pi\)
0.958930 0.283644i \(-0.0915435\pi\)
\(510\) 1.00586 0.316474i 0.0445402 0.0140137i
\(511\) 0 0
\(512\) −20.8573 8.77344i −0.921771 0.387735i
\(513\) −6.31490 −0.278809
\(514\) −7.95924 25.2971i −0.351067 1.11581i
\(515\) 0.420158i 0.0185144i
\(516\) 1.00984 + 1.44595i 0.0444559 + 0.0636542i
\(517\) 39.9997i 1.75918i
\(518\) 0 0
\(519\) 20.7065i 0.908916i
\(520\) −0.196874 + 0.255604i −0.00863350 + 0.0112090i
\(521\) 28.2632i 1.23823i 0.785299 + 0.619117i \(0.212509\pi\)
−0.785299 + 0.619117i \(0.787491\pi\)
\(522\) 3.81729 1.20104i 0.167078 0.0525679i
\(523\) 10.7622 0.470599 0.235300 0.971923i \(-0.424393\pi\)
0.235300 + 0.971923i \(0.424393\pi\)
\(524\) 16.0193 11.1878i 0.699807 0.488742i
\(525\) 0 0
\(526\) 0.893560 + 2.84003i 0.0389611 + 0.123831i
\(527\) 49.2698i 2.14623i
\(528\) −15.0012 5.50137i −0.652846 0.239417i
\(529\) −20.6307 −0.896986
\(530\) 0.409114 + 1.30030i 0.0177708 + 0.0564814i
\(531\) −0.588819 −0.0255526
\(532\) 0 0
\(533\) 2.89475 0.125386
\(534\) 0.190991 + 0.607035i 0.00826501 + 0.0262690i
\(535\) −0.426699 −0.0184478
\(536\) 14.2344 + 10.9638i 0.614832 + 0.473562i
\(537\) 1.46793i 0.0633457i
\(538\) −5.00930 15.9212i −0.215966 0.686413i
\(539\) 0 0
\(540\) −0.146499 0.209765i −0.00630432 0.00902685i
\(541\) −5.32590 −0.228978 −0.114489 0.993424i \(-0.536523\pi\)
−0.114489 + 0.993424i \(0.536523\pi\)
\(542\) −15.2766 + 4.80649i −0.656187 + 0.206456i
\(543\) 23.5472i 1.01051i
\(544\) 32.9346 + 1.53832i 1.41206 + 0.0659548i
\(545\) 0.570686i 0.0244455i
\(546\) 0 0
\(547\) 18.5001i 0.791007i 0.918465 + 0.395503i \(0.129430\pi\)
−0.918465 + 0.395503i \(0.870570\pi\)
\(548\) −6.50718 + 4.54459i −0.277973 + 0.194135i
\(549\) 1.68795i 0.0720399i
\(550\) −8.44952 26.8554i −0.360289 1.14512i
\(551\) −17.8692 −0.761252
\(552\) 14.8013 + 11.4004i 0.629983 + 0.485232i
\(553\) 0 0
\(554\) −15.8696 + 4.99307i −0.674236 + 0.212135i
\(555\) 1.11031i 0.0471301i
\(556\) 0.429638 0.300058i 0.0182207 0.0127253i
\(557\) −29.9362 −1.26844 −0.634219 0.773153i \(-0.718678\pi\)
−0.634219 + 0.773153i \(0.718678\pi\)
\(558\) 11.4037 3.58796i 0.482759 0.151891i
\(559\) 0.786294 0.0332567
\(560\) 0 0
\(561\) 23.2819 0.982963
\(562\) −13.2269 + 4.16157i −0.557941 + 0.175545i
\(563\) 12.3772 0.521635 0.260818 0.965388i \(-0.416008\pi\)
0.260818 + 0.965388i \(0.416008\pi\)
\(564\) −16.4192 + 11.4671i −0.691374 + 0.482853i
\(565\) 1.17218i 0.0493139i
\(566\) −33.2486 + 10.4610i −1.39754 + 0.439709i
\(567\) 0 0
\(568\) 25.5128 + 19.6507i 1.07049 + 0.824525i
\(569\) −36.7233 −1.53952 −0.769761 0.638332i \(-0.779625\pi\)
−0.769761 + 0.638332i \(0.779625\pi\)
\(570\) 0.342889 + 1.08982i 0.0143620 + 0.0456474i
\(571\) 6.32118i 0.264533i −0.991214 0.132267i \(-0.957775\pi\)
0.991214 0.132267i \(-0.0422255\pi\)
\(572\) −5.84021 + 4.07878i −0.244191 + 0.170542i
\(573\) 3.69128i 0.154206i
\(574\) 0 0
\(575\) 32.9187i 1.37280i
\(576\) −2.04234 7.73491i −0.0850975 0.322288i
\(577\) 5.08565i 0.211718i 0.994381 + 0.105859i \(0.0337593\pi\)
−0.994381 + 0.105859i \(0.966241\pi\)
\(578\) −22.8935 + 7.20299i −0.952244 + 0.299605i
\(579\) −2.71674 −0.112904
\(580\) −0.414546 0.593569i −0.0172131 0.0246466i
\(581\) 0 0
\(582\) −6.87775 21.8598i −0.285092 0.906118i
\(583\) 30.0971i 1.24649i
\(584\) −34.7635 26.7759i −1.43853 1.10800i
\(585\) −0.114069 −0.00471615
\(586\) −1.02308 3.25170i −0.0422631 0.134326i
\(587\) −30.0719 −1.24120 −0.620601 0.784127i \(-0.713111\pi\)
−0.620601 + 0.784127i \(0.713111\pi\)
\(588\) 0 0
\(589\) −53.3821 −2.19957
\(590\) 0.0319719 + 0.101617i 0.00131626 + 0.00418353i
\(591\) 4.09843 0.168587
\(592\) −11.9531 + 32.5938i −0.491268 + 1.33960i
\(593\) 21.5543i 0.885130i −0.896736 0.442565i \(-0.854069\pi\)
0.896736 0.442565i \(-0.145931\pi\)
\(594\) −1.69545 5.38872i −0.0695653 0.221102i
\(595\) 0 0
\(596\) 4.41978 3.08676i 0.181041 0.126439i
\(597\) 0.208229 0.00852225
\(598\) 7.94530 2.49983i 0.324908 0.102226i
\(599\) 18.3543i 0.749936i 0.927038 + 0.374968i \(0.122346\pi\)
−0.927038 + 0.374968i \(0.877654\pi\)
\(600\) 8.60140 11.1673i 0.351151 0.455904i
\(601\) 12.2204i 0.498482i 0.968441 + 0.249241i \(0.0801812\pi\)
−0.968441 + 0.249241i \(0.919819\pi\)
\(602\) 0 0
\(603\) 6.35238i 0.258689i
\(604\) −4.94325 7.07799i −0.201138 0.288000i
\(605\) 0.634069i 0.0257786i
\(606\) 5.12135 + 16.2774i 0.208041 + 0.661222i
\(607\) −26.5749 −1.07864 −0.539322 0.842100i \(-0.681319\pi\)
−0.539322 + 0.842100i \(0.681319\pi\)
\(608\) −1.66671 + 35.6835i −0.0675942 + 1.44716i
\(609\) 0 0
\(610\) −0.291304 + 0.0916530i −0.0117945 + 0.00371092i
\(611\) 8.92864i 0.361214i
\(612\) 6.67447 + 9.55685i 0.269799 + 0.386313i
\(613\) −19.1590 −0.773824 −0.386912 0.922117i \(-0.626458\pi\)
−0.386912 + 0.922117i \(0.626458\pi\)
\(614\) 32.9234 10.3587i 1.32868 0.418043i
\(615\) 0.415321 0.0167474
\(616\) 0 0
\(617\) −14.7860 −0.595263 −0.297632 0.954681i \(-0.596197\pi\)
−0.297632 + 0.954681i \(0.596197\pi\)
\(618\) 4.43059 1.39400i 0.178224 0.0560748i
\(619\) −25.3494 −1.01888 −0.509439 0.860507i \(-0.670147\pi\)
−0.509439 + 0.860507i \(0.670147\pi\)
\(620\) −1.23841 1.77322i −0.0497358 0.0712142i
\(621\) 6.60535i 0.265064i
\(622\) 42.0713 13.2369i 1.68691 0.530751i
\(623\) 0 0
\(624\) −3.34855 1.22801i −0.134049 0.0491596i
\(625\) 24.7548 0.990191
\(626\) −1.07726 3.42391i −0.0430561 0.136847i
\(627\) 25.2252i 1.00740i
\(628\) −3.67156 5.25713i −0.146511 0.209782i
\(629\) 50.5856i 2.01698i
\(630\) 0 0
\(631\) 36.7075i 1.46130i 0.682752 + 0.730650i \(0.260783\pi\)
−0.682752 + 0.730650i \(0.739217\pi\)
\(632\) 22.0119 + 16.9542i 0.875586 + 0.674403i
\(633\) 16.5850i 0.659195i
\(634\) −24.6223 + 7.74693i −0.977878 + 0.307670i
\(635\) 1.80092 0.0714673
\(636\) −12.3544 + 8.62825i −0.489883 + 0.342132i
\(637\) 0 0
\(638\) −4.79760 15.2484i −0.189939 0.603688i
\(639\) 11.3856i 0.450407i
\(640\) −1.22398 + 0.772457i −0.0483822 + 0.0305341i
\(641\) −7.29371 −0.288084 −0.144042 0.989572i \(-0.546010\pi\)
−0.144042 + 0.989572i \(0.546010\pi\)
\(642\) −1.41570 4.49956i −0.0558731 0.177584i
\(643\) 20.6956 0.816155 0.408077 0.912947i \(-0.366199\pi\)
0.408077 + 0.912947i \(0.366199\pi\)
\(644\) 0 0
\(645\) 0.112812 0.00444199
\(646\) −15.6220 49.6518i −0.614638 1.95352i
\(647\) −15.8548 −0.623315 −0.311658 0.950194i \(-0.600884\pi\)
−0.311658 + 0.950194i \(0.600884\pi\)
\(648\) 1.72593 2.24080i 0.0678009 0.0880268i
\(649\) 2.35206i 0.0923266i
\(650\) −1.88608 5.99461i −0.0739783 0.235128i
\(651\) 0 0
\(652\) −26.6386 38.1425i −1.04325 1.49377i
\(653\) −28.8161 −1.12766 −0.563831 0.825890i \(-0.690673\pi\)
−0.563831 + 0.825890i \(0.690673\pi\)
\(654\) 6.01792 1.89342i 0.235319 0.0740385i
\(655\) 1.24982i 0.0488347i
\(656\) 12.1920 + 4.47114i 0.476017 + 0.174569i
\(657\) 15.5139i 0.605256i
\(658\) 0 0
\(659\) 20.6316i 0.803693i −0.915707 0.401846i \(-0.868369\pi\)
0.915707 0.401846i \(-0.131631\pi\)
\(660\) −0.837916 + 0.585198i −0.0326158 + 0.0227788i
\(661\) 23.9517i 0.931611i 0.884887 + 0.465806i \(0.154235\pi\)
−0.884887 + 0.465806i \(0.845765\pi\)
\(662\) −8.79756 27.9616i −0.341927 1.08676i
\(663\) 5.19694 0.201832
\(664\) −2.55474 + 3.31685i −0.0991431 + 0.128719i
\(665\) 0 0
\(666\) −11.7083 + 3.68378i −0.453687 + 0.142744i
\(667\) 18.6911i 0.723721i
\(668\) −15.8537 + 11.0721i −0.613396 + 0.428394i
\(669\) 21.3432 0.825176
\(670\) 1.09628 0.344924i 0.0423532 0.0133256i
\(671\) −6.74259 −0.260295
\(672\) 0 0
\(673\) 3.43936 0.132577 0.0662887 0.997800i \(-0.478884\pi\)
0.0662887 + 0.997800i \(0.478884\pi\)
\(674\) −0.445894 + 0.140292i −0.0171752 + 0.00540383i
\(675\) 4.98363 0.191820
\(676\) 20.0124 13.9766i 0.769709 0.537562i
\(677\) 33.1949i 1.27579i 0.770125 + 0.637893i \(0.220194\pi\)
−0.770125 + 0.637893i \(0.779806\pi\)
\(678\) −12.3607 + 3.88904i −0.474709 + 0.149358i
\(679\) 0 0
\(680\) 1.28689 1.67079i 0.0493501 0.0640720i
\(681\) −26.9972 −1.03454
\(682\) −14.3323 45.5528i −0.548812 1.74431i
\(683\) 8.54104i 0.326814i 0.986559 + 0.163407i \(0.0522483\pi\)
−0.986559 + 0.163407i \(0.947752\pi\)
\(684\) −10.3545 + 7.23156i −0.395915 + 0.276506i
\(685\) 0.507689i 0.0193978i
\(686\) 0 0
\(687\) 2.91694i 0.111288i
\(688\) 3.31168 + 1.21448i 0.126256 + 0.0463017i
\(689\) 6.71821i 0.255943i
\(690\) 1.13994 0.358660i 0.0433969 0.0136540i
\(691\) 2.45848 0.0935249 0.0467625 0.998906i \(-0.485110\pi\)
0.0467625 + 0.998906i \(0.485110\pi\)
\(692\) 23.7123 + 33.9525i 0.901406 + 1.29068i
\(693\) 0 0
\(694\) 9.33563 + 29.6717i 0.354375 + 1.12632i
\(695\) 0.0335203i 0.00127150i
\(696\) 4.88383 6.34074i 0.185121 0.240345i
\(697\) −18.9220 −0.716720
\(698\) 11.3203 + 35.9795i 0.428478 + 1.36185i
\(699\) 20.3989 0.771559
\(700\) 0 0
\(701\) 43.1693 1.63048 0.815241 0.579123i \(-0.196605\pi\)
0.815241 + 0.579123i \(0.196605\pi\)
\(702\) −0.378456 1.20286i −0.0142839 0.0453990i
\(703\) 54.8077 2.06711
\(704\) −30.8975 + 8.15822i −1.16449 + 0.307475i
\(705\) 1.28103i 0.0482462i
\(706\) −3.29861 10.4841i −0.124145 0.394574i
\(707\) 0 0
\(708\) −0.965485 + 0.674291i −0.0362852 + 0.0253414i
\(709\) 26.0798 0.979447 0.489723 0.871878i \(-0.337098\pi\)
0.489723 + 0.871878i \(0.337098\pi\)
\(710\) 1.96491 0.618219i 0.0737417 0.0232014i
\(711\) 9.82324i 0.368400i
\(712\) 1.00832 + 0.776638i 0.0377884 + 0.0291057i
\(713\) 55.8375i 2.09113i
\(714\) 0 0
\(715\) 0.455652i 0.0170404i
\(716\) −1.68101 2.40695i −0.0628222 0.0899521i
\(717\) 25.2554i 0.943180i
\(718\) 7.12511 + 22.6460i 0.265907 + 0.845140i
\(719\) −38.1219 −1.42171 −0.710854 0.703340i \(-0.751691\pi\)
−0.710854 + 0.703340i \(0.751691\pi\)
\(720\) −0.480429 0.176187i −0.0179045 0.00656608i
\(721\) 0 0
\(722\) 28.1647 8.86146i 1.04818 0.329789i
\(723\) 8.20938i 0.305310i
\(724\) −26.9653 38.6103i −1.00216 1.43494i
\(725\) 14.1021 0.523739
\(726\) −6.68629 + 2.10371i −0.248151 + 0.0780759i
\(727\) −30.8059 −1.14253 −0.571264 0.820766i \(-0.693547\pi\)
−0.571264 + 0.820766i \(0.693547\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −2.67737 + 0.842381i −0.0990939 + 0.0311779i
\(731\) −5.13971 −0.190099
\(732\) −1.93297 2.76773i −0.0714446 0.102298i
\(733\) 41.1095i 1.51841i −0.650849 0.759207i \(-0.725587\pi\)
0.650849 0.759207i \(-0.274413\pi\)
\(734\) 5.44517 1.71322i 0.200985 0.0632360i
\(735\) 0 0
\(736\) 37.3248 + 1.74337i 1.37581 + 0.0642617i
\(737\) 25.3749 0.934696
\(738\) 1.37795 + 4.37958i 0.0507230 + 0.161215i
\(739\) 28.8483i 1.06120i −0.847622 0.530600i \(-0.821967\pi\)
0.847622 0.530600i \(-0.178033\pi\)
\(740\) 1.27148 + 1.82058i 0.0467407 + 0.0669257i
\(741\) 5.63071i 0.206849i
\(742\) 0 0
\(743\) 0.365822i 0.0134207i −0.999977 0.00671036i \(-0.997864\pi\)
0.999977 0.00671036i \(-0.00213599\pi\)
\(744\) 14.5899 18.9423i 0.534892 0.694457i
\(745\) 0.344831i 0.0126336i
\(746\) 28.0312 8.81948i 1.02630 0.322904i
\(747\) −1.48021 −0.0541581
\(748\) 38.1753 26.6615i 1.39583 0.974841i
\(749\) 0 0
\(750\) −0.542096 1.72296i −0.0197945 0.0629136i
\(751\) 19.9623i 0.728434i 0.931314 + 0.364217i \(0.118663\pi\)
−0.931314 + 0.364217i \(0.881337\pi\)
\(752\) −13.7909 + 37.6052i −0.502902 + 1.37132i
\(753\) 6.55180 0.238761
\(754\) −1.07091 3.40371i −0.0390002 0.123956i
\(755\) −0.552224 −0.0200975
\(756\) 0 0
\(757\) −3.04476 −0.110664 −0.0553319 0.998468i \(-0.517622\pi\)
−0.0553319 + 0.998468i \(0.517622\pi\)
\(758\) −4.57549 14.5424i −0.166189 0.528205i
\(759\) 26.3854 0.957729
\(760\) 1.81025 + 1.39431i 0.0656646 + 0.0505768i
\(761\) 7.52068i 0.272624i 0.990666 + 0.136312i \(0.0435250\pi\)
−0.990666 + 0.136312i \(0.956475\pi\)
\(762\) 5.97507 + 18.9908i 0.216454 + 0.687963i
\(763\) 0 0
\(764\) −4.22711 6.05259i −0.152931 0.218975i
\(765\) 0.745624 0.0269581
\(766\) 8.80884 2.77153i 0.318276 0.100139i
\(767\) 0.525023i 0.0189575i
\(768\) −12.2065 10.3441i −0.440465 0.373261i
\(769\) 42.4363i 1.53029i 0.643857 + 0.765146i \(0.277333\pi\)
−0.643857 + 0.765146i \(0.722667\pi\)
\(770\) 0 0
\(771\) 18.7522i 0.675346i
\(772\) −4.45464 + 3.11110i −0.160326 + 0.111971i
\(773\) 23.7646i 0.854752i −0.904074 0.427376i \(-0.859438\pi\)
0.904074 0.427376i \(-0.140562\pi\)
\(774\) 0.374288 + 1.18961i 0.0134535 + 0.0427598i
\(775\) 42.1285 1.51330
\(776\) −36.3104 27.9673i −1.30347 1.00397i
\(777\) 0 0
\(778\) 42.9928 13.5268i 1.54137 0.484960i
\(779\) 20.5013i 0.734535i
\(780\) −0.187038 + 0.130627i −0.00669703 + 0.00467718i
\(781\) 45.4803 1.62741
\(782\) −51.9355 + 16.3405i −1.85721 + 0.584335i
\(783\) 2.82968 0.101125
\(784\) 0 0
\(785\) −0.410160 −0.0146393
\(786\) 13.1795 4.14666i 0.470096 0.147906i
\(787\) −19.9519 −0.711210 −0.355605 0.934636i \(-0.615725\pi\)
−0.355605 + 0.934636i \(0.615725\pi\)
\(788\) 6.72019 4.69336i 0.239397 0.167194i
\(789\) 2.10526i 0.0749492i
\(790\) 1.69528 0.533387i 0.0603154 0.0189770i
\(791\) 0 0
\(792\) −8.95097 6.89430i −0.318059 0.244978i
\(793\) −1.50507 −0.0534465
\(794\) 6.54565 + 20.8043i 0.232296 + 0.738316i
\(795\) 0.963886i 0.0341855i
\(796\) 0.341433 0.238455i 0.0121018 0.00845183i
\(797\) 27.9236i 0.989106i −0.869147 0.494553i \(-0.835332\pi\)
0.869147 0.494553i \(-0.164668\pi\)
\(798\) 0 0
\(799\) 58.3633i 2.06474i
\(800\) 1.31535 28.1610i 0.0465046 0.995641i
\(801\) 0.449983i 0.0158994i
\(802\) 37.3622 11.7553i 1.31931 0.415093i
\(803\) −61.9711 −2.18691
\(804\) 7.27449 + 10.4160i 0.256551 + 0.367344i
\(805\) 0 0
\(806\) −3.19922 10.1682i −0.112688 0.358160i
\(807\) 11.8021i 0.415453i
\(808\) 27.0376 + 20.8252i 0.951181 + 0.732628i
\(809\) −21.7399 −0.764333 −0.382166 0.924094i \(-0.624822\pi\)
−0.382166 + 0.924094i \(0.624822\pi\)
\(810\) −0.0542984 0.172579i −0.00190785 0.00606379i
\(811\) 21.4122 0.751885 0.375942 0.926643i \(-0.377319\pi\)
0.375942 + 0.926643i \(0.377319\pi\)
\(812\) 0 0
\(813\) −11.3243 −0.397159
\(814\) 14.7150 + 46.7693i 0.515762 + 1.63926i
\(815\) −2.97587 −0.104240
\(816\) 21.8882 + 8.02702i 0.766241 + 0.281002i
\(817\) 5.56870i 0.194824i
\(818\) 10.5464 + 33.5199i 0.368746 + 1.17200i
\(819\) 0 0
\(820\) 0.681001 0.475609i 0.0237816 0.0166090i
\(821\) −26.7099 −0.932183 −0.466092 0.884736i \(-0.654338\pi\)
−0.466092 + 0.884736i \(0.654338\pi\)
\(822\) −5.35361 + 1.68441i −0.186729 + 0.0587505i
\(823\) 24.2476i 0.845217i −0.906312 0.422608i \(-0.861115\pi\)
0.906312 0.422608i \(-0.138885\pi\)
\(824\) 5.66848 7.35946i 0.197471 0.256379i
\(825\) 19.9074i 0.693085i
\(826\) 0 0
\(827\) 34.2930i 1.19248i 0.802805 + 0.596242i \(0.203340\pi\)
−0.802805 + 0.596242i \(0.796660\pi\)
\(828\) 7.56418 + 10.8308i 0.262873 + 0.376396i
\(829\) 0.807148i 0.0280334i −0.999902 0.0140167i \(-0.995538\pi\)
0.999902 0.0140167i \(-0.00446180\pi\)
\(830\) 0.0803731 + 0.255453i 0.00278979 + 0.00886689i
\(831\) −11.7638 −0.408083
\(832\) −6.89687 + 1.82106i −0.239106 + 0.0631340i
\(833\) 0 0
\(834\) 0.353473 0.111213i 0.0122398 0.00385101i
\(835\) 1.23690i 0.0428047i
\(836\) 28.8868 + 41.3616i 0.999071 + 1.43052i
\(837\) 8.45337 0.292191
\(838\) 29.5552 9.29896i 1.02097 0.321227i
\(839\) 27.7282 0.957284 0.478642 0.878010i \(-0.341129\pi\)
0.478642 + 0.878010i \(0.341129\pi\)
\(840\) 0 0
\(841\) −20.9929 −0.723893
\(842\) −25.3920 + 7.98910i −0.875067 + 0.275322i
\(843\) −9.80481 −0.337696
\(844\) −18.9925 27.1944i −0.653748 0.936071i
\(845\) 1.56137i 0.0537127i
\(846\) −13.5085 + 4.25018i −0.464431 + 0.146124i
\(847\) 0 0
\(848\) −10.3767 + 28.2954i −0.356338 + 0.971670i
\(849\) −24.6465 −0.845866
\(850\) 12.3286 + 39.1845i 0.422869 + 1.34402i
\(851\) 57.3287i 1.96520i
\(852\) 13.0383 + 18.6689i 0.446685 + 0.639587i
\(853\) 16.3380i 0.559402i 0.960087 + 0.279701i \(0.0902354\pi\)
−0.960087 + 0.279701i \(0.909765\pi\)
\(854\) 0 0
\(855\) 0.807859i 0.0276282i
\(856\) −7.47403 5.75672i −0.255457 0.196761i
\(857\) 29.5296i 1.00871i 0.863496 + 0.504355i \(0.168270\pi\)
−0.863496 + 0.504355i \(0.831730\pi\)
\(858\) −4.80487 + 1.51176i −0.164036 + 0.0516106i
\(859\) 15.1259 0.516090 0.258045 0.966133i \(-0.416922\pi\)
0.258045 + 0.966133i \(0.416922\pi\)
\(860\) 0.184978 0.129188i 0.00630771 0.00440528i
\(861\) 0 0
\(862\) −9.27225 29.4703i −0.315814 1.00376i
\(863\) 16.1792i 0.550748i −0.961337 0.275374i \(-0.911198\pi\)
0.961337 0.275374i \(-0.0888016\pi\)
\(864\) 0.263934 5.65069i 0.00897921 0.192241i
\(865\) 2.64897 0.0900676
\(866\) −10.0780 32.0311i −0.342463 1.08846i
\(867\) −16.9705 −0.576348
\(868\) 0 0
\(869\) 39.2394 1.33111
\(870\) −0.153647 0.488343i −0.00520913 0.0165564i
\(871\) 5.66413 0.191922
\(872\) 7.69930 9.99611i 0.260731 0.338511i
\(873\) 16.2042i 0.548430i
\(874\) −17.7044 56.2704i −0.598859 1.90337i
\(875\) 0 0
\(876\) −17.7659 25.4381i −0.600254 0.859475i
\(877\) 39.6822 1.33997 0.669987 0.742373i \(-0.266300\pi\)
0.669987 + 0.742373i \(0.266300\pi\)
\(878\) −43.0146 + 13.5337i −1.45167 + 0.456740i
\(879\) 2.41042i 0.0813014i
\(880\) −0.703786 + 1.91910i −0.0237246 + 0.0646927i
\(881\) 27.4290i 0.924106i −0.886852 0.462053i \(-0.847113\pi\)
0.886852 0.462053i \(-0.152887\pi\)
\(882\) 0 0
\(883\) 37.1425i 1.24994i −0.780647 0.624972i \(-0.785110\pi\)
0.780647 0.624972i \(-0.214890\pi\)
\(884\) 8.52141 5.95132i 0.286606 0.200165i
\(885\) 0.0753270i 0.00253209i
\(886\) −6.65628 21.1559i −0.223622 0.710746i
\(887\) 27.7126 0.930497 0.465248 0.885180i \(-0.345965\pi\)
0.465248 + 0.885180i \(0.345965\pi\)
\(888\) −14.9795 + 19.4481i −0.502681 + 0.652637i
\(889\) 0 0
\(890\) 0.0776574 0.0244334i 0.00260308 0.000819008i
\(891\) 3.99455i 0.133822i
\(892\) 34.9964 24.4414i 1.17177 0.818358i
\(893\) 63.2346 2.11607
\(894\) 3.63626 1.14408i 0.121615 0.0382637i
\(895\) −0.187790 −0.00627714
\(896\) 0 0
\(897\) 5.88969 0.196651
\(898\) −13.1190 + 4.12763i −0.437786 + 0.137741i
\(899\) 23.9203 0.797788
\(900\) 8.17166 5.70705i 0.272389 0.190235i
\(901\) 43.9145i 1.46300i
\(902\) 17.4944 5.50428i 0.582501 0.183273i
\(903\) 0 0
\(904\) −15.8142 + 20.5318i −0.525973 + 0.682877i
\(905\) −3.01237 −0.100135
\(906\) −1.83216 5.82323i −0.0608696 0.193464i
\(907\) 39.9740i 1.32732i 0.748036 + 0.663658i \(0.230997\pi\)
−0.748036 + 0.663658i \(0.769003\pi\)
\(908\) −44.2673 + 30.9161i −1.46906 + 1.02599i
\(909\) 12.0661i 0.400207i
\(910\) 0 0
\(911\) 35.0711i 1.16196i −0.813918 0.580979i \(-0.802670\pi\)
0.813918 0.580979i \(-0.197330\pi\)
\(912\) −8.69701 + 23.7152i −0.287987 + 0.785287i
\(913\) 5.91277i 0.195684i
\(914\) −15.3891 + 4.84189i −0.509028 + 0.160155i
\(915\) −0.215938 −0.00713868
\(916\) 3.34036 + 4.78290i 0.110369 + 0.158031i
\(917\) 0 0
\(918\) 2.47383 + 7.86264i 0.0816484 + 0.259506i
\(919\) 0.330846i 0.0109136i 0.999985 + 0.00545681i \(0.00173696\pi\)
−0.999985 + 0.00545681i \(0.998263\pi\)
\(920\) 1.45844 1.89351i 0.0480833 0.0624272i
\(921\) 24.4054 0.804187
\(922\) −8.33799 26.5009i −0.274597 0.872761i
\(923\) 10.1520 0.334157
\(924\) 0 0
\(925\) −43.2536 −1.42217
\(926\) 2.85674 + 9.07966i 0.0938782 + 0.298376i
\(927\) 3.28431 0.107871
\(928\) 0.746849 15.9897i 0.0245165 0.524887i
\(929\) 28.4574i 0.933658i 0.884348 + 0.466829i \(0.154604\pi\)
−0.884348 + 0.466829i \(0.845396\pi\)
\(930\) −0.459004 1.45887i −0.0150513 0.0478382i
\(931\) 0 0
\(932\) 33.4481 23.3600i 1.09563 0.765183i
\(933\) 31.1866 1.02100
\(934\) 29.8425 9.38934i 0.976476 0.307229i
\(935\) 2.97843i 0.0974051i
\(936\) −1.99802 1.53893i −0.0653072 0.0503016i
\(937\) 11.8966i 0.388645i −0.980938 0.194323i \(-0.937749\pi\)
0.980938 0.194323i \(-0.0622509\pi\)
\(938\) 0 0
\(939\) 2.53807i 0.0828269i
\(940\) 1.46698 + 2.10050i 0.0478475 + 0.0685106i
\(941\) 16.7967i 0.547556i 0.961793 + 0.273778i \(0.0882733\pi\)
−0.961793 + 0.273778i \(0.911727\pi\)
\(942\) −1.36083 4.32516i −0.0443381 0.140921i
\(943\) −21.4443 −0.698321
\(944\) −0.810934 + 2.21127i −0.0263936 + 0.0719707i
\(945\) 0 0
\(946\) 4.75197 1.49511i 0.154500 0.0486103i
\(947\) 20.6321i 0.670455i −0.942137 0.335227i \(-0.891187\pi\)
0.942137 0.335227i \(-0.108813\pi\)
\(948\) 11.2492 + 16.1072i 0.365356 + 0.523136i
\(949\) −13.8331 −0.449040
\(950\) −42.4551 + 13.3577i −1.37743 + 0.433380i
\(951\) −18.2520 −0.591863
\(952\) 0 0
\(953\) 21.9025 0.709492 0.354746 0.934963i \(-0.384567\pi\)
0.354746 + 0.934963i \(0.384567\pi\)
\(954\) −10.1642 + 3.19797i −0.329079 + 0.103538i
\(955\) −0.472222 −0.0152807
\(956\) −28.9215 41.4112i −0.935387 1.33934i
\(957\) 11.3033i 0.365384i
\(958\) 28.6867 9.02571i 0.926826 0.291608i
\(959\) 0 0
\(960\) −0.989520 + 0.261274i −0.0319366 + 0.00843260i
\(961\) 40.4594 1.30514
\(962\) 3.28466 + 10.4398i 0.105902 + 0.336591i
\(963\) 3.33543i 0.107483i
\(964\) −9.40105 13.4609i −0.302787 0.433547i
\(965\) 0.347550i 0.0111880i
\(966\) 0 0
\(967\) 0.651178i 0.0209405i 0.999945 + 0.0104702i \(0.00333284\pi\)
−0.999945 + 0.0104702i \(0.996667\pi\)
\(968\) −8.55441 + 11.1063i −0.274949 + 0.356970i
\(969\) 36.8059i 1.18238i
\(970\) −2.79650 + 0.879864i −0.0897903 + 0.0282507i
\(971\) 59.4641 1.90829 0.954147 0.299338i \(-0.0967659\pi\)
0.954147 + 0.299338i \(0.0967659\pi\)
\(972\) 1.63970 1.14516i 0.0525933 0.0367310i
\(973\) 0 0
\(974\) 15.0397 + 47.8012i 0.481904 + 1.53165i
\(975\) 4.44368i 0.142312i
\(976\) −6.33898 2.32468i −0.202906 0.0744111i
\(977\) −22.2437 −0.711639 −0.355819 0.934555i \(-0.615798\pi\)
−0.355819 + 0.934555i \(0.615798\pi\)
\(978\) −9.87332 31.3807i −0.315714 1.00344i
\(979\) 1.79748 0.0574476
\(980\) 0 0
\(981\) 4.46096 0.142428
\(982\) 6.44834 + 20.4950i 0.205775 + 0.654021i
\(983\) −19.0956 −0.609055 −0.304527 0.952504i \(-0.598498\pi\)
−0.304527 + 0.952504i \(0.598498\pi\)
\(984\) 7.27474 + 5.60322i 0.231910 + 0.178624i
\(985\) 0.524309i 0.0167059i
\(986\) 7.00014 + 22.2488i 0.222930 + 0.708546i
\(987\) 0 0
\(988\) 6.44806 + 9.23266i 0.205140 + 0.293730i
\(989\) −5.82484 −0.185219
\(990\) −0.689373 + 0.216898i −0.0219097 + 0.00689346i
\(991\) 27.3523i 0.868876i −0.900702 0.434438i \(-0.856947\pi\)
0.900702 0.434438i \(-0.143053\pi\)
\(992\) 2.23113 47.7674i 0.0708384 1.51662i
\(993\) 20.7274i 0.657763i
\(994\) 0 0
\(995\) 0.0266385i 0.000844499i
\(996\) −2.42710 + 1.69508i −0.0769056 + 0.0537106i
\(997\) 32.6936i 1.03542i 0.855557 + 0.517708i \(0.173215\pi\)
−0.855557 + 0.517708i \(0.826785\pi\)
\(998\) 4.70682 + 14.9598i 0.148992 + 0.473546i
\(999\) −8.67912 −0.274595
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 588.2.b.d.391.11 yes 12
3.2 odd 2 1764.2.b.m.1567.2 12
4.3 odd 2 588.2.b.c.391.12 yes 12
7.2 even 3 588.2.o.e.31.4 24
7.3 odd 6 588.2.o.f.19.7 24
7.4 even 3 588.2.o.e.19.7 24
7.5 odd 6 588.2.o.f.31.4 24
7.6 odd 2 588.2.b.c.391.11 12
12.11 even 2 1764.2.b.l.1567.1 12
21.20 even 2 1764.2.b.l.1567.2 12
28.3 even 6 588.2.o.e.19.4 24
28.11 odd 6 588.2.o.f.19.4 24
28.19 even 6 588.2.o.e.31.7 24
28.23 odd 6 588.2.o.f.31.7 24
28.27 even 2 inner 588.2.b.d.391.12 yes 12
84.83 odd 2 1764.2.b.m.1567.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
588.2.b.c.391.11 12 7.6 odd 2
588.2.b.c.391.12 yes 12 4.3 odd 2
588.2.b.d.391.11 yes 12 1.1 even 1 trivial
588.2.b.d.391.12 yes 12 28.27 even 2 inner
588.2.o.e.19.4 24 28.3 even 6
588.2.o.e.19.7 24 7.4 even 3
588.2.o.e.31.4 24 7.2 even 3
588.2.o.e.31.7 24 28.19 even 6
588.2.o.f.19.4 24 28.11 odd 6
588.2.o.f.19.7 24 7.3 odd 6
588.2.o.f.31.4 24 7.5 odd 6
588.2.o.f.31.7 24 28.23 odd 6
1764.2.b.l.1567.1 12 12.11 even 2
1764.2.b.l.1567.2 12 21.20 even 2
1764.2.b.m.1567.1 12 84.83 odd 2
1764.2.b.m.1567.2 12 3.2 odd 2