Properties

Label 585.4.b.e.181.1
Level $585$
Weight $4$
Character 585.181
Analytic conductor $34.516$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,4,Mod(181,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.181"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 585.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.5161173534\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2674x^{10} + 40048x^{8} + 278769x^{6} + 727552x^{4} + 339456x^{2} + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 181.1
Root \(-5.37688i\) of defining polynomial
Character \(\chi\) \(=\) 585.181
Dual form 585.4.b.e.181.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.37688i q^{2} -20.9108 q^{4} -5.00000i q^{5} -0.201771i q^{7} +69.4197i q^{8} -26.8844 q^{10} -10.4218i q^{11} +(39.9303 + 24.5473i) q^{13} -1.08490 q^{14} +205.975 q^{16} +54.7775 q^{17} +129.099i q^{19} +104.554i q^{20} -56.0369 q^{22} +175.846 q^{23} -25.0000 q^{25} +(131.988 - 214.700i) q^{26} +4.21919i q^{28} -107.045 q^{29} +22.2028i q^{31} -552.144i q^{32} -294.532i q^{34} -1.00886 q^{35} +205.591i q^{37} +694.150 q^{38} +347.099 q^{40} -285.238i q^{41} +321.835 q^{43} +217.929i q^{44} -945.503i q^{46} +379.907i q^{47} +342.959 q^{49} +134.422i q^{50} +(-834.975 - 513.303i) q^{52} -506.192 q^{53} -52.1092 q^{55} +14.0069 q^{56} +575.566i q^{58} -678.186i q^{59} -186.634 q^{61} +119.382 q^{62} -1321.01 q^{64} +(122.736 - 199.652i) q^{65} -925.768i q^{67} -1145.44 q^{68} +5.42449i q^{70} +376.232i q^{71} +671.223i q^{73} +1105.44 q^{74} -2699.57i q^{76} -2.10282 q^{77} -593.491 q^{79} -1029.87i q^{80} -1533.69 q^{82} +425.750i q^{83} -273.888i q^{85} -1730.47i q^{86} +723.481 q^{88} -141.676i q^{89} +(4.95293 - 8.05678i) q^{91} -3677.08 q^{92} +2042.71 q^{94} +645.496 q^{95} -551.467i q^{97} -1844.05i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 56 q^{4} - 20 q^{10} - 4 q^{13} + 152 q^{14} + 280 q^{16} + 100 q^{17} + 648 q^{22} + 532 q^{23} - 350 q^{25} + 344 q^{26} - 588 q^{29} - 540 q^{35} - 148 q^{38} + 240 q^{40} + 728 q^{43} - 1302 q^{49}+ \cdots + 3120 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.37688i 1.90101i −0.310705 0.950506i \(-0.600565\pi\)
0.310705 0.950506i \(-0.399435\pi\)
\(3\) 0 0
\(4\) −20.9108 −2.61385
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 0.201771i 0.0108946i −0.999985 0.00544731i \(-0.998266\pi\)
0.999985 0.00544731i \(-0.00173394\pi\)
\(8\) 69.4197i 3.06795i
\(9\) 0 0
\(10\) −26.8844 −0.850159
\(11\) 10.4218i 0.285664i −0.989747 0.142832i \(-0.954379\pi\)
0.989747 0.142832i \(-0.0456208\pi\)
\(12\) 0 0
\(13\) 39.9303 + 24.5473i 0.851898 + 0.523707i
\(14\) −1.08490 −0.0207108
\(15\) 0 0
\(16\) 205.975 3.21836
\(17\) 54.7775 0.781500 0.390750 0.920497i \(-0.372216\pi\)
0.390750 + 0.920497i \(0.372216\pi\)
\(18\) 0 0
\(19\) 129.099i 1.55881i 0.626521 + 0.779405i \(0.284478\pi\)
−0.626521 + 0.779405i \(0.715522\pi\)
\(20\) 104.554i 1.16895i
\(21\) 0 0
\(22\) −56.0369 −0.543050
\(23\) 175.846 1.59419 0.797097 0.603852i \(-0.206368\pi\)
0.797097 + 0.603852i \(0.206368\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 131.988 214.700i 0.995574 1.61947i
\(27\) 0 0
\(28\) 4.21919i 0.0284769i
\(29\) −107.045 −0.685438 −0.342719 0.939438i \(-0.611348\pi\)
−0.342719 + 0.939438i \(0.611348\pi\)
\(30\) 0 0
\(31\) 22.2028i 0.128637i 0.997929 + 0.0643184i \(0.0204873\pi\)
−0.997929 + 0.0643184i \(0.979513\pi\)
\(32\) 552.144i 3.05019i
\(33\) 0 0
\(34\) 294.532i 1.48564i
\(35\) −1.00886 −0.00487222
\(36\) 0 0
\(37\) 205.591i 0.913486i 0.889599 + 0.456743i \(0.150984\pi\)
−0.889599 + 0.456743i \(0.849016\pi\)
\(38\) 694.150 2.96332
\(39\) 0 0
\(40\) 347.099 1.37203
\(41\) 285.238i 1.08651i −0.839569 0.543253i \(-0.817193\pi\)
0.839569 0.543253i \(-0.182807\pi\)
\(42\) 0 0
\(43\) 321.835 1.14138 0.570690 0.821166i \(-0.306676\pi\)
0.570690 + 0.821166i \(0.306676\pi\)
\(44\) 217.929i 0.746682i
\(45\) 0 0
\(46\) 945.503i 3.03058i
\(47\) 379.907i 1.17905i 0.807752 + 0.589523i \(0.200684\pi\)
−0.807752 + 0.589523i \(0.799316\pi\)
\(48\) 0 0
\(49\) 342.959 0.999881
\(50\) 134.422i 0.380203i
\(51\) 0 0
\(52\) −834.975 513.303i −2.22673 1.36889i
\(53\) −506.192 −1.31190 −0.655951 0.754804i \(-0.727732\pi\)
−0.655951 + 0.754804i \(0.727732\pi\)
\(54\) 0 0
\(55\) −52.1092 −0.127753
\(56\) 14.0069 0.0334241
\(57\) 0 0
\(58\) 575.566i 1.30303i
\(59\) 678.186i 1.49648i −0.663428 0.748240i \(-0.730899\pi\)
0.663428 0.748240i \(-0.269101\pi\)
\(60\) 0 0
\(61\) −186.634 −0.391738 −0.195869 0.980630i \(-0.562753\pi\)
−0.195869 + 0.980630i \(0.562753\pi\)
\(62\) 119.382 0.244540
\(63\) 0 0
\(64\) −1321.01 −2.58009
\(65\) 122.736 199.652i 0.234209 0.380981i
\(66\) 0 0
\(67\) 925.768i 1.68807i −0.536289 0.844034i \(-0.680174\pi\)
0.536289 0.844034i \(-0.319826\pi\)
\(68\) −1145.44 −2.04272
\(69\) 0 0
\(70\) 5.42449i 0.00926215i
\(71\) 376.232i 0.628881i 0.949277 + 0.314441i \(0.101817\pi\)
−0.949277 + 0.314441i \(0.898183\pi\)
\(72\) 0 0
\(73\) 671.223i 1.07617i 0.842889 + 0.538087i \(0.180853\pi\)
−0.842889 + 0.538087i \(0.819147\pi\)
\(74\) 1105.44 1.73655
\(75\) 0 0
\(76\) 2699.57i 4.07449i
\(77\) −2.10282 −0.00311220
\(78\) 0 0
\(79\) −593.491 −0.845227 −0.422613 0.906310i \(-0.638887\pi\)
−0.422613 + 0.906310i \(0.638887\pi\)
\(80\) 1029.87i 1.43929i
\(81\) 0 0
\(82\) −1533.69 −2.06546
\(83\) 425.750i 0.563037i 0.959556 + 0.281519i \(0.0908381\pi\)
−0.959556 + 0.281519i \(0.909162\pi\)
\(84\) 0 0
\(85\) 273.888i 0.349498i
\(86\) 1730.47i 2.16978i
\(87\) 0 0
\(88\) 723.481 0.876401
\(89\) 141.676i 0.168737i −0.996435 0.0843685i \(-0.973113\pi\)
0.996435 0.0843685i \(-0.0268873\pi\)
\(90\) 0 0
\(91\) 4.95293 8.05678i 0.00570559 0.00928110i
\(92\) −3677.08 −4.16698
\(93\) 0 0
\(94\) 2042.71 2.24138
\(95\) 645.496 0.697121
\(96\) 0 0
\(97\) 551.467i 0.577247i −0.957443 0.288623i \(-0.906802\pi\)
0.957443 0.288623i \(-0.0931976\pi\)
\(98\) 1844.05i 1.90079i
\(99\) 0 0
\(100\) 522.770 0.522770
\(101\) 1386.39 1.36585 0.682924 0.730489i \(-0.260708\pi\)
0.682924 + 0.730489i \(0.260708\pi\)
\(102\) 0 0
\(103\) 1156.61 1.10645 0.553223 0.833033i \(-0.313398\pi\)
0.553223 + 0.833033i \(0.313398\pi\)
\(104\) −1704.07 + 2771.95i −1.60671 + 2.61358i
\(105\) 0 0
\(106\) 2721.73i 2.49394i
\(107\) 1145.31 1.03478 0.517390 0.855750i \(-0.326904\pi\)
0.517390 + 0.855750i \(0.326904\pi\)
\(108\) 0 0
\(109\) 2033.95i 1.78731i 0.448750 + 0.893657i \(0.351869\pi\)
−0.448750 + 0.893657i \(0.648131\pi\)
\(110\) 280.185i 0.242860i
\(111\) 0 0
\(112\) 41.5598i 0.0350628i
\(113\) 1218.91 1.01474 0.507370 0.861728i \(-0.330618\pi\)
0.507370 + 0.861728i \(0.330618\pi\)
\(114\) 0 0
\(115\) 879.231i 0.712945i
\(116\) 2238.39 1.79163
\(117\) 0 0
\(118\) −3646.52 −2.84483
\(119\) 11.0525i 0.00851414i
\(120\) 0 0
\(121\) 1222.39 0.918396
\(122\) 1003.51i 0.744699i
\(123\) 0 0
\(124\) 464.278i 0.336237i
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) −1219.03 −0.851746 −0.425873 0.904783i \(-0.640033\pi\)
−0.425873 + 0.904783i \(0.640033\pi\)
\(128\) 2685.75i 1.85460i
\(129\) 0 0
\(130\) −1073.50 659.938i −0.724249 0.445234i
\(131\) −807.392 −0.538490 −0.269245 0.963072i \(-0.586774\pi\)
−0.269245 + 0.963072i \(0.586774\pi\)
\(132\) 0 0
\(133\) 26.0485 0.0169826
\(134\) −4977.74 −3.20904
\(135\) 0 0
\(136\) 3802.64i 2.39760i
\(137\) 24.8642i 0.0155057i −0.999970 0.00775287i \(-0.997532\pi\)
0.999970 0.00775287i \(-0.00246784\pi\)
\(138\) 0 0
\(139\) −1351.45 −0.824665 −0.412332 0.911033i \(-0.635286\pi\)
−0.412332 + 0.911033i \(0.635286\pi\)
\(140\) 21.0960 0.0127352
\(141\) 0 0
\(142\) 2022.96 1.19551
\(143\) 255.828 416.147i 0.149604 0.243357i
\(144\) 0 0
\(145\) 535.223i 0.306537i
\(146\) 3609.08 2.04582
\(147\) 0 0
\(148\) 4299.08i 2.38772i
\(149\) 318.875i 0.175324i −0.996150 0.0876621i \(-0.972060\pi\)
0.996150 0.0876621i \(-0.0279396\pi\)
\(150\) 0 0
\(151\) 472.671i 0.254738i 0.991855 + 0.127369i \(0.0406533\pi\)
−0.991855 + 0.127369i \(0.959347\pi\)
\(152\) −8962.03 −4.78234
\(153\) 0 0
\(154\) 11.3066i 0.00591632i
\(155\) 111.014 0.0575281
\(156\) 0 0
\(157\) 2157.92 1.09695 0.548474 0.836168i \(-0.315209\pi\)
0.548474 + 0.836168i \(0.315209\pi\)
\(158\) 3191.13i 1.60679i
\(159\) 0 0
\(160\) −2760.72 −1.36409
\(161\) 35.4807i 0.0173681i
\(162\) 0 0
\(163\) 2482.96i 1.19313i −0.802564 0.596567i \(-0.796531\pi\)
0.802564 0.596567i \(-0.203469\pi\)
\(164\) 5964.56i 2.83996i
\(165\) 0 0
\(166\) 2289.20 1.07034
\(167\) 1563.31i 0.724389i 0.932103 + 0.362194i \(0.117972\pi\)
−0.932103 + 0.362194i \(0.882028\pi\)
\(168\) 0 0
\(169\) 991.862 + 1960.36i 0.451462 + 0.892290i
\(170\) −1472.66 −0.664399
\(171\) 0 0
\(172\) −6729.82 −2.98339
\(173\) −2785.12 −1.22398 −0.611991 0.790865i \(-0.709631\pi\)
−0.611991 + 0.790865i \(0.709631\pi\)
\(174\) 0 0
\(175\) 5.04428i 0.00217892i
\(176\) 2146.64i 0.919368i
\(177\) 0 0
\(178\) −761.772 −0.320771
\(179\) 3352.21 1.39975 0.699877 0.714264i \(-0.253238\pi\)
0.699877 + 0.714264i \(0.253238\pi\)
\(180\) 0 0
\(181\) 3474.25 1.42674 0.713368 0.700789i \(-0.247169\pi\)
0.713368 + 0.700789i \(0.247169\pi\)
\(182\) −43.3203 26.6313i −0.0176435 0.0108464i
\(183\) 0 0
\(184\) 12207.2i 4.89090i
\(185\) 1027.96 0.408524
\(186\) 0 0
\(187\) 570.882i 0.223246i
\(188\) 7944.16i 3.08185i
\(189\) 0 0
\(190\) 3470.75i 1.32524i
\(191\) 823.112 0.311824 0.155912 0.987771i \(-0.450168\pi\)
0.155912 + 0.987771i \(0.450168\pi\)
\(192\) 0 0
\(193\) 186.060i 0.0693933i −0.999398 0.0346967i \(-0.988953\pi\)
0.999398 0.0346967i \(-0.0110465\pi\)
\(194\) −2965.17 −1.09735
\(195\) 0 0
\(196\) −7171.55 −2.61354
\(197\) 3035.00i 1.09764i −0.835942 0.548819i \(-0.815078\pi\)
0.835942 0.548819i \(-0.184922\pi\)
\(198\) 0 0
\(199\) 2690.11 0.958276 0.479138 0.877740i \(-0.340949\pi\)
0.479138 + 0.877740i \(0.340949\pi\)
\(200\) 1735.49i 0.613589i
\(201\) 0 0
\(202\) 7454.43i 2.59650i
\(203\) 21.5985i 0.00746758i
\(204\) 0 0
\(205\) −1426.19 −0.485900
\(206\) 6218.93i 2.10337i
\(207\) 0 0
\(208\) 8224.64 + 5056.12i 2.74171 + 1.68548i
\(209\) 1345.45 0.445295
\(210\) 0 0
\(211\) 1411.57 0.460554 0.230277 0.973125i \(-0.426037\pi\)
0.230277 + 0.973125i \(0.426037\pi\)
\(212\) 10584.9 3.42911
\(213\) 0 0
\(214\) 6158.20i 1.96713i
\(215\) 1609.17i 0.510441i
\(216\) 0 0
\(217\) 4.47988 0.00140145
\(218\) 10936.3 3.39771
\(219\) 0 0
\(220\) 1089.64 0.333926
\(221\) 2187.28 + 1344.64i 0.665759 + 0.409277i
\(222\) 0 0
\(223\) 474.236i 0.142409i 0.997462 + 0.0712044i \(0.0226843\pi\)
−0.997462 + 0.0712044i \(0.977316\pi\)
\(224\) −111.407 −0.0332307
\(225\) 0 0
\(226\) 6553.94i 1.92903i
\(227\) 1561.74i 0.456635i −0.973587 0.228318i \(-0.926678\pi\)
0.973587 0.228318i \(-0.0733225\pi\)
\(228\) 0 0
\(229\) 2928.82i 0.845162i −0.906325 0.422581i \(-0.861124\pi\)
0.906325 0.422581i \(-0.138876\pi\)
\(230\) −4727.51 −1.35532
\(231\) 0 0
\(232\) 7431.01i 2.10289i
\(233\) −2785.91 −0.783310 −0.391655 0.920112i \(-0.628097\pi\)
−0.391655 + 0.920112i \(0.628097\pi\)
\(234\) 0 0
\(235\) 1899.54 0.527285
\(236\) 14181.4i 3.91157i
\(237\) 0 0
\(238\) −59.4280 −0.0161855
\(239\) 2488.61i 0.673534i −0.941588 0.336767i \(-0.890667\pi\)
0.941588 0.336767i \(-0.109333\pi\)
\(240\) 0 0
\(241\) 4840.64i 1.29383i 0.762562 + 0.646915i \(0.223941\pi\)
−0.762562 + 0.646915i \(0.776059\pi\)
\(242\) 6572.61i 1.74588i
\(243\) 0 0
\(244\) 3902.66 1.02394
\(245\) 1714.80i 0.447161i
\(246\) 0 0
\(247\) −3169.03 + 5154.97i −0.816359 + 1.32795i
\(248\) −1541.31 −0.394651
\(249\) 0 0
\(250\) 672.109 0.170032
\(251\) −8.77945 −0.00220779 −0.00110389 0.999999i \(-0.500351\pi\)
−0.00110389 + 0.999999i \(0.500351\pi\)
\(252\) 0 0
\(253\) 1832.64i 0.455403i
\(254\) 6554.59i 1.61918i
\(255\) 0 0
\(256\) 3872.87 0.945525
\(257\) −1600.04 −0.388357 −0.194179 0.980966i \(-0.562204\pi\)
−0.194179 + 0.980966i \(0.562204\pi\)
\(258\) 0 0
\(259\) 41.4824 0.00995208
\(260\) −2566.52 + 4174.87i −0.612187 + 0.995826i
\(261\) 0 0
\(262\) 4341.25i 1.02368i
\(263\) 3050.24 0.715155 0.357578 0.933883i \(-0.383603\pi\)
0.357578 + 0.933883i \(0.383603\pi\)
\(264\) 0 0
\(265\) 2530.96i 0.586700i
\(266\) 140.059i 0.0322842i
\(267\) 0 0
\(268\) 19358.6i 4.41236i
\(269\) 6168.58 1.39816 0.699080 0.715043i \(-0.253593\pi\)
0.699080 + 0.715043i \(0.253593\pi\)
\(270\) 0 0
\(271\) 2424.93i 0.543556i −0.962360 0.271778i \(-0.912388\pi\)
0.962360 0.271778i \(-0.0876117\pi\)
\(272\) 11282.8 2.51515
\(273\) 0 0
\(274\) −133.691 −0.0294766
\(275\) 260.546i 0.0571328i
\(276\) 0 0
\(277\) 4442.72 0.963673 0.481836 0.876261i \(-0.339970\pi\)
0.481836 + 0.876261i \(0.339970\pi\)
\(278\) 7266.57i 1.56770i
\(279\) 0 0
\(280\) 70.0345i 0.0149477i
\(281\) 357.622i 0.0759215i 0.999279 + 0.0379608i \(0.0120862\pi\)
−0.999279 + 0.0379608i \(0.987914\pi\)
\(282\) 0 0
\(283\) 1573.71 0.330556 0.165278 0.986247i \(-0.447148\pi\)
0.165278 + 0.986247i \(0.447148\pi\)
\(284\) 7867.32i 1.64380i
\(285\) 0 0
\(286\) −2237.57 1375.55i −0.462624 0.284399i
\(287\) −57.5528 −0.0118371
\(288\) 0 0
\(289\) −1912.42 −0.389257
\(290\) 2877.83 0.582731
\(291\) 0 0
\(292\) 14035.8i 2.81296i
\(293\) 4370.32i 0.871389i −0.900095 0.435694i \(-0.856503\pi\)
0.900095 0.435694i \(-0.143497\pi\)
\(294\) 0 0
\(295\) −3390.93 −0.669246
\(296\) −14272.1 −2.80253
\(297\) 0 0
\(298\) −1714.55 −0.333293
\(299\) 7021.59 + 4316.54i 1.35809 + 0.834890i
\(300\) 0 0
\(301\) 64.9369i 0.0124349i
\(302\) 2541.50 0.484260
\(303\) 0 0
\(304\) 26591.2i 5.01680i
\(305\) 933.170i 0.175191i
\(306\) 0 0
\(307\) 3998.97i 0.743430i 0.928347 + 0.371715i \(0.121230\pi\)
−0.928347 + 0.371715i \(0.878770\pi\)
\(308\) 43.9717 0.00813481
\(309\) 0 0
\(310\) 596.908i 0.109362i
\(311\) −2116.08 −0.385825 −0.192913 0.981216i \(-0.561793\pi\)
−0.192913 + 0.981216i \(0.561793\pi\)
\(312\) 0 0
\(313\) 1729.75 0.312368 0.156184 0.987728i \(-0.450081\pi\)
0.156184 + 0.987728i \(0.450081\pi\)
\(314\) 11602.9i 2.08531i
\(315\) 0 0
\(316\) 12410.4 2.20930
\(317\) 4636.84i 0.821548i −0.911737 0.410774i \(-0.865259\pi\)
0.911737 0.410774i \(-0.134741\pi\)
\(318\) 0 0
\(319\) 1115.60i 0.195805i
\(320\) 6605.04i 1.15385i
\(321\) 0 0
\(322\) −190.775 −0.0330170
\(323\) 7071.73i 1.21821i
\(324\) 0 0
\(325\) −998.258 613.682i −0.170380 0.104741i
\(326\) −13350.6 −2.26816
\(327\) 0 0
\(328\) 19801.2 3.33334
\(329\) 76.6543 0.0128453
\(330\) 0 0
\(331\) 2278.33i 0.378333i −0.981945 0.189167i \(-0.939421\pi\)
0.981945 0.189167i \(-0.0605787\pi\)
\(332\) 8902.76i 1.47169i
\(333\) 0 0
\(334\) 8405.75 1.37707
\(335\) −4628.84 −0.754927
\(336\) 0 0
\(337\) −419.703 −0.0678418 −0.0339209 0.999425i \(-0.510799\pi\)
−0.0339209 + 0.999425i \(0.510799\pi\)
\(338\) 10540.6 5333.12i 1.69626 0.858235i
\(339\) 0 0
\(340\) 5727.21i 0.913534i
\(341\) 231.394 0.0367469
\(342\) 0 0
\(343\) 138.407i 0.0217879i
\(344\) 22341.7i 3.50169i
\(345\) 0 0
\(346\) 14975.3i 2.32681i
\(347\) 495.311 0.0766273 0.0383137 0.999266i \(-0.487801\pi\)
0.0383137 + 0.999266i \(0.487801\pi\)
\(348\) 0 0
\(349\) 4453.77i 0.683109i −0.939862 0.341554i \(-0.889047\pi\)
0.939862 0.341554i \(-0.110953\pi\)
\(350\) 27.1224 0.00414216
\(351\) 0 0
\(352\) −5754.35 −0.871329
\(353\) 11893.7i 1.79330i 0.442736 + 0.896652i \(0.354008\pi\)
−0.442736 + 0.896652i \(0.645992\pi\)
\(354\) 0 0
\(355\) 1881.16 0.281244
\(356\) 2962.55i 0.441053i
\(357\) 0 0
\(358\) 18024.4i 2.66095i
\(359\) 5141.43i 0.755861i 0.925834 + 0.377931i \(0.123364\pi\)
−0.925834 + 0.377931i \(0.876636\pi\)
\(360\) 0 0
\(361\) −9807.58 −1.42989
\(362\) 18680.6i 2.71224i
\(363\) 0 0
\(364\) −103.570 + 168.474i −0.0149135 + 0.0242594i
\(365\) 3356.12 0.481280
\(366\) 0 0
\(367\) 9410.74 1.33852 0.669260 0.743028i \(-0.266611\pi\)
0.669260 + 0.743028i \(0.266611\pi\)
\(368\) 36219.9 5.13068
\(369\) 0 0
\(370\) 5527.19i 0.776608i
\(371\) 102.135i 0.0142927i
\(372\) 0 0
\(373\) −4992.80 −0.693076 −0.346538 0.938036i \(-0.612643\pi\)
−0.346538 + 0.938036i \(0.612643\pi\)
\(374\) −3069.56 −0.424394
\(375\) 0 0
\(376\) −26373.1 −3.61725
\(377\) −4274.33 2627.66i −0.583923 0.358969i
\(378\) 0 0
\(379\) 2436.78i 0.330261i 0.986272 + 0.165131i \(0.0528046\pi\)
−0.986272 + 0.165131i \(0.947195\pi\)
\(380\) −13497.8 −1.82217
\(381\) 0 0
\(382\) 4425.77i 0.592781i
\(383\) 10395.4i 1.38690i −0.720506 0.693449i \(-0.756090\pi\)
0.720506 0.693449i \(-0.243910\pi\)
\(384\) 0 0
\(385\) 10.5141i 0.00139182i
\(386\) −1000.42 −0.131918
\(387\) 0 0
\(388\) 11531.6i 1.50884i
\(389\) −13872.3 −1.80811 −0.904056 0.427413i \(-0.859425\pi\)
−0.904056 + 0.427413i \(0.859425\pi\)
\(390\) 0 0
\(391\) 9632.42 1.24586
\(392\) 23808.1i 3.06758i
\(393\) 0 0
\(394\) −16318.8 −2.08662
\(395\) 2967.45i 0.377997i
\(396\) 0 0
\(397\) 2216.16i 0.280166i −0.990140 0.140083i \(-0.955263\pi\)
0.990140 0.140083i \(-0.0447369\pi\)
\(398\) 14464.4i 1.82169i
\(399\) 0 0
\(400\) −5149.37 −0.643672
\(401\) 12127.7i 1.51030i 0.655554 + 0.755148i \(0.272435\pi\)
−0.655554 + 0.755148i \(0.727565\pi\)
\(402\) 0 0
\(403\) −545.018 + 886.565i −0.0673680 + 0.109585i
\(404\) −28990.5 −3.57012
\(405\) 0 0
\(406\) 116.133 0.0141960
\(407\) 2142.64 0.260950
\(408\) 0 0
\(409\) 2755.96i 0.333187i 0.986026 + 0.166594i \(0.0532768\pi\)
−0.986026 + 0.166594i \(0.946723\pi\)
\(410\) 7668.45i 0.923702i
\(411\) 0 0
\(412\) −24185.6 −2.89208
\(413\) −136.838 −0.0163036
\(414\) 0 0
\(415\) 2128.75 0.251798
\(416\) 13553.6 22047.3i 1.59741 2.59845i
\(417\) 0 0
\(418\) 7234.32i 0.846512i
\(419\) −417.932 −0.0487287 −0.0243643 0.999703i \(-0.507756\pi\)
−0.0243643 + 0.999703i \(0.507756\pi\)
\(420\) 0 0
\(421\) 7623.50i 0.882534i 0.897376 + 0.441267i \(0.145471\pi\)
−0.897376 + 0.441267i \(0.854529\pi\)
\(422\) 7589.86i 0.875518i
\(423\) 0 0
\(424\) 35139.7i 4.02484i
\(425\) −1369.44 −0.156300
\(426\) 0 0
\(427\) 37.6573i 0.00426783i
\(428\) −23949.4 −2.70476
\(429\) 0 0
\(430\) −8652.33 −0.970354
\(431\) 6348.22i 0.709473i −0.934966 0.354736i \(-0.884571\pi\)
0.934966 0.354736i \(-0.115429\pi\)
\(432\) 0 0
\(433\) −4286.27 −0.475716 −0.237858 0.971300i \(-0.576445\pi\)
−0.237858 + 0.971300i \(0.576445\pi\)
\(434\) 24.0878i 0.00266417i
\(435\) 0 0
\(436\) 42531.6i 4.67177i
\(437\) 22701.6i 2.48504i
\(438\) 0 0
\(439\) −898.674 −0.0977024 −0.0488512 0.998806i \(-0.515556\pi\)
−0.0488512 + 0.998806i \(0.515556\pi\)
\(440\) 3617.40i 0.391939i
\(441\) 0 0
\(442\) 7229.96 11760.8i 0.778041 1.26562i
\(443\) −4981.83 −0.534297 −0.267149 0.963655i \(-0.586081\pi\)
−0.267149 + 0.963655i \(0.586081\pi\)
\(444\) 0 0
\(445\) −708.378 −0.0754615
\(446\) 2549.91 0.270721
\(447\) 0 0
\(448\) 266.541i 0.0281091i
\(449\) 4494.76i 0.472429i 0.971701 + 0.236215i \(0.0759068\pi\)
−0.971701 + 0.236215i \(0.924093\pi\)
\(450\) 0 0
\(451\) −2972.71 −0.310375
\(452\) −25488.4 −2.65238
\(453\) 0 0
\(454\) −8397.27 −0.868069
\(455\) −40.2839 24.7647i −0.00415064 0.00255162i
\(456\) 0 0
\(457\) 2924.71i 0.299370i 0.988734 + 0.149685i \(0.0478259\pi\)
−0.988734 + 0.149685i \(0.952174\pi\)
\(458\) −15747.9 −1.60666
\(459\) 0 0
\(460\) 18385.4i 1.86353i
\(461\) 10122.2i 1.02264i 0.859390 + 0.511320i \(0.170843\pi\)
−0.859390 + 0.511320i \(0.829157\pi\)
\(462\) 0 0
\(463\) 5225.27i 0.524490i −0.965001 0.262245i \(-0.915537\pi\)
0.965001 0.262245i \(-0.0844628\pi\)
\(464\) −22048.5 −2.20598
\(465\) 0 0
\(466\) 14979.5i 1.48908i
\(467\) 5596.68 0.554569 0.277284 0.960788i \(-0.410566\pi\)
0.277284 + 0.960788i \(0.410566\pi\)
\(468\) 0 0
\(469\) −186.793 −0.0183909
\(470\) 10213.6i 1.00238i
\(471\) 0 0
\(472\) 47079.5 4.59112
\(473\) 3354.11i 0.326051i
\(474\) 0 0
\(475\) 3227.48i 0.311762i
\(476\) 231.117i 0.0222547i
\(477\) 0 0
\(478\) −13380.9 −1.28040
\(479\) 14342.8i 1.36814i −0.729418 0.684069i \(-0.760209\pi\)
0.729418 0.684069i \(-0.239791\pi\)
\(480\) 0 0
\(481\) −5046.71 + 8209.33i −0.478399 + 0.778198i
\(482\) 26027.5 2.45959
\(483\) 0 0
\(484\) −25561.0 −2.40055
\(485\) −2757.33 −0.258153
\(486\) 0 0
\(487\) 19369.6i 1.80230i 0.433512 + 0.901148i \(0.357274\pi\)
−0.433512 + 0.901148i \(0.642726\pi\)
\(488\) 12956.1i 1.20183i
\(489\) 0 0
\(490\) −9220.25 −0.850058
\(491\) −12486.5 −1.14768 −0.573838 0.818969i \(-0.694546\pi\)
−0.573838 + 0.818969i \(0.694546\pi\)
\(492\) 0 0
\(493\) −5863.64 −0.535670
\(494\) 27717.6 + 17039.5i 2.52444 + 1.55191i
\(495\) 0 0
\(496\) 4573.22i 0.413999i
\(497\) 75.9128 0.00685142
\(498\) 0 0
\(499\) 15364.4i 1.37837i 0.724585 + 0.689186i \(0.242032\pi\)
−0.724585 + 0.689186i \(0.757968\pi\)
\(500\) 2613.85i 0.233790i
\(501\) 0 0
\(502\) 47.2060i 0.00419703i
\(503\) −15778.4 −1.39866 −0.699328 0.714800i \(-0.746517\pi\)
−0.699328 + 0.714800i \(0.746517\pi\)
\(504\) 0 0
\(505\) 6931.94i 0.610826i
\(506\) −9853.87 −0.865727
\(507\) 0 0
\(508\) 25491.0 2.22634
\(509\) 6252.54i 0.544478i 0.962230 + 0.272239i \(0.0877641\pi\)
−0.962230 + 0.272239i \(0.912236\pi\)
\(510\) 0 0
\(511\) 135.433 0.0117245
\(512\) 662.049i 0.0571459i
\(513\) 0 0
\(514\) 8603.22i 0.738272i
\(515\) 5783.04i 0.494817i
\(516\) 0 0
\(517\) 3959.33 0.336811
\(518\) 223.046i 0.0189190i
\(519\) 0 0
\(520\) 13859.8 + 8520.33i 1.16883 + 0.718541i
\(521\) 13016.7 1.09457 0.547287 0.836945i \(-0.315660\pi\)
0.547287 + 0.836945i \(0.315660\pi\)
\(522\) 0 0
\(523\) −16344.2 −1.36650 −0.683251 0.730183i \(-0.739435\pi\)
−0.683251 + 0.730183i \(0.739435\pi\)
\(524\) 16883.2 1.40753
\(525\) 0 0
\(526\) 16400.8i 1.35952i
\(527\) 1216.21i 0.100530i
\(528\) 0 0
\(529\) 18754.9 1.54145
\(530\) 13608.6 1.11532
\(531\) 0 0
\(532\) −544.694 −0.0443900
\(533\) 7001.82 11389.7i 0.569010 0.925592i
\(534\) 0 0
\(535\) 5726.56i 0.462768i
\(536\) 64266.6 5.17891
\(537\) 0 0
\(538\) 33167.7i 2.65792i
\(539\) 3574.26i 0.285630i
\(540\) 0 0
\(541\) 21385.8i 1.69953i 0.527158 + 0.849767i \(0.323258\pi\)
−0.527158 + 0.849767i \(0.676742\pi\)
\(542\) −13038.5 −1.03331
\(543\) 0 0
\(544\) 30245.1i 2.38373i
\(545\) 10169.8 0.799312
\(546\) 0 0
\(547\) −22836.7 −1.78505 −0.892527 0.450993i \(-0.851070\pi\)
−0.892527 + 0.450993i \(0.851070\pi\)
\(548\) 519.929i 0.0405297i
\(549\) 0 0
\(550\) 1400.92 0.108610
\(551\) 13819.4i 1.06847i
\(552\) 0 0
\(553\) 119.749i 0.00920842i
\(554\) 23888.0i 1.83195i
\(555\) 0 0
\(556\) 28259.9 2.15555
\(557\) 14375.7i 1.09357i 0.837274 + 0.546784i \(0.184148\pi\)
−0.837274 + 0.546784i \(0.815852\pi\)
\(558\) 0 0
\(559\) 12851.0 + 7900.17i 0.972340 + 0.597749i
\(560\) −207.799 −0.0156805
\(561\) 0 0
\(562\) 1922.89 0.144328
\(563\) −2088.93 −0.156373 −0.0781866 0.996939i \(-0.524913\pi\)
−0.0781866 + 0.996939i \(0.524913\pi\)
\(564\) 0 0
\(565\) 6094.57i 0.453806i
\(566\) 8461.65i 0.628392i
\(567\) 0 0
\(568\) −26118.0 −1.92937
\(569\) −7775.20 −0.572853 −0.286426 0.958102i \(-0.592467\pi\)
−0.286426 + 0.958102i \(0.592467\pi\)
\(570\) 0 0
\(571\) 21491.9 1.57515 0.787573 0.616221i \(-0.211337\pi\)
0.787573 + 0.616221i \(0.211337\pi\)
\(572\) −5349.56 + 8701.97i −0.391043 + 0.636097i
\(573\) 0 0
\(574\) 309.454i 0.0225024i
\(575\) −4396.15 −0.318839
\(576\) 0 0
\(577\) 4348.75i 0.313762i −0.987617 0.156881i \(-0.949856\pi\)
0.987617 0.156881i \(-0.0501440\pi\)
\(578\) 10282.9i 0.739983i
\(579\) 0 0
\(580\) 11191.9i 0.801242i
\(581\) 85.9040 0.00613407
\(582\) 0 0
\(583\) 5275.45i 0.374763i
\(584\) −46596.1 −3.30165
\(585\) 0 0
\(586\) −23498.7 −1.65652
\(587\) 5800.67i 0.407870i 0.978984 + 0.203935i \(0.0653731\pi\)
−0.978984 + 0.203935i \(0.934627\pi\)
\(588\) 0 0
\(589\) −2866.36 −0.200520
\(590\) 18232.6i 1.27225i
\(591\) 0 0
\(592\) 42346.6i 2.93993i
\(593\) 4577.14i 0.316966i −0.987362 0.158483i \(-0.949340\pi\)
0.987362 0.158483i \(-0.0506603\pi\)
\(594\) 0 0
\(595\) −55.2626 −0.00380764
\(596\) 6667.94i 0.458271i
\(597\) 0 0
\(598\) 23209.5 37754.2i 1.58714 2.58175i
\(599\) −17537.7 −1.19628 −0.598140 0.801392i \(-0.704093\pi\)
−0.598140 + 0.801392i \(0.704093\pi\)
\(600\) 0 0
\(601\) 13316.0 0.903780 0.451890 0.892074i \(-0.350750\pi\)
0.451890 + 0.892074i \(0.350750\pi\)
\(602\) −349.158 −0.0236389
\(603\) 0 0
\(604\) 9883.94i 0.665847i
\(605\) 6111.93i 0.410719i
\(606\) 0 0
\(607\) 2103.20 0.140636 0.0703182 0.997525i \(-0.477599\pi\)
0.0703182 + 0.997525i \(0.477599\pi\)
\(608\) 71281.3 4.75467
\(609\) 0 0
\(610\) 5017.54 0.333040
\(611\) −9325.69 + 15169.8i −0.617475 + 1.00443i
\(612\) 0 0
\(613\) 6984.21i 0.460178i 0.973170 + 0.230089i \(0.0739018\pi\)
−0.973170 + 0.230089i \(0.926098\pi\)
\(614\) 21502.0 1.41327
\(615\) 0 0
\(616\) 145.977i 0.00954805i
\(617\) 13605.0i 0.887713i 0.896098 + 0.443856i \(0.146390\pi\)
−0.896098 + 0.443856i \(0.853610\pi\)
\(618\) 0 0
\(619\) 24505.8i 1.59123i −0.605801 0.795616i \(-0.707147\pi\)
0.605801 0.795616i \(-0.292853\pi\)
\(620\) −2321.39 −0.150370
\(621\) 0 0
\(622\) 11377.9i 0.733458i
\(623\) −28.5860 −0.00183832
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 9300.65i 0.593816i
\(627\) 0 0
\(628\) −45123.8 −2.86726
\(629\) 11261.8i 0.713890i
\(630\) 0 0
\(631\) 18694.2i 1.17940i 0.807621 + 0.589702i \(0.200755\pi\)
−0.807621 + 0.589702i \(0.799245\pi\)
\(632\) 41200.0i 2.59311i
\(633\) 0 0
\(634\) −24931.7 −1.56177
\(635\) 6095.17i 0.380912i
\(636\) 0 0
\(637\) 13694.5 + 8418.72i 0.851797 + 0.523645i
\(638\) 5998.45 0.372227
\(639\) 0 0
\(640\) 13428.7 0.829403
\(641\) 22658.3 1.39617 0.698087 0.716013i \(-0.254035\pi\)
0.698087 + 0.716013i \(0.254035\pi\)
\(642\) 0 0
\(643\) 18187.4i 1.11546i −0.830022 0.557730i \(-0.811672\pi\)
0.830022 0.557730i \(-0.188328\pi\)
\(644\) 741.929i 0.0453976i
\(645\) 0 0
\(646\) 38023.8 2.31583
\(647\) −4755.08 −0.288936 −0.144468 0.989509i \(-0.546147\pi\)
−0.144468 + 0.989509i \(0.546147\pi\)
\(648\) 0 0
\(649\) −7067.94 −0.427490
\(650\) −3299.69 + 5367.51i −0.199115 + 0.323894i
\(651\) 0 0
\(652\) 51920.7i 3.11867i
\(653\) −731.494 −0.0438370 −0.0219185 0.999760i \(-0.506977\pi\)
−0.0219185 + 0.999760i \(0.506977\pi\)
\(654\) 0 0
\(655\) 4036.96i 0.240820i
\(656\) 58751.9i 3.49676i
\(657\) 0 0
\(658\) 412.161i 0.0244190i
\(659\) −16005.3 −0.946099 −0.473050 0.881036i \(-0.656847\pi\)
−0.473050 + 0.881036i \(0.656847\pi\)
\(660\) 0 0
\(661\) 12332.1i 0.725664i 0.931855 + 0.362832i \(0.118190\pi\)
−0.931855 + 0.362832i \(0.881810\pi\)
\(662\) −12250.3 −0.719217
\(663\) 0 0
\(664\) −29555.4 −1.72737
\(665\) 130.242i 0.00759486i
\(666\) 0 0
\(667\) −18823.4 −1.09272
\(668\) 32690.2i 1.89344i
\(669\) 0 0
\(670\) 24888.7i 1.43513i
\(671\) 1945.07i 0.111905i
\(672\) 0 0
\(673\) 12183.0 0.697799 0.348899 0.937160i \(-0.386556\pi\)
0.348899 + 0.937160i \(0.386556\pi\)
\(674\) 2256.69i 0.128968i
\(675\) 0 0
\(676\) −20740.6 40992.7i −1.18005 2.33231i
\(677\) −25830.0 −1.46637 −0.733183 0.680032i \(-0.761966\pi\)
−0.733183 + 0.680032i \(0.761966\pi\)
\(678\) 0 0
\(679\) −111.270 −0.00628888
\(680\) 19013.2 1.07224
\(681\) 0 0
\(682\) 1244.18i 0.0698562i
\(683\) 6832.74i 0.382793i 0.981513 + 0.191396i \(0.0613016\pi\)
−0.981513 + 0.191396i \(0.938698\pi\)
\(684\) 0 0
\(685\) −124.321 −0.00693438
\(686\) −744.196 −0.0414191
\(687\) 0 0
\(688\) 66289.9 3.67337
\(689\) −20212.4 12425.6i −1.11761 0.687052i
\(690\) 0 0
\(691\) 26068.7i 1.43517i −0.696472 0.717584i \(-0.745248\pi\)
0.696472 0.717584i \(-0.254752\pi\)
\(692\) 58239.1 3.19930
\(693\) 0 0
\(694\) 2663.23i 0.145670i
\(695\) 6757.24i 0.368801i
\(696\) 0 0
\(697\) 15624.6i 0.849104i
\(698\) −23947.4 −1.29860
\(699\) 0 0
\(700\) 105.480i 0.00569537i
\(701\) 31003.6 1.67045 0.835227 0.549905i \(-0.185336\pi\)
0.835227 + 0.549905i \(0.185336\pi\)
\(702\) 0 0
\(703\) −26541.7 −1.42395
\(704\) 13767.3i 0.737039i
\(705\) 0 0
\(706\) 63950.8 3.40909
\(707\) 279.733i 0.0148804i
\(708\) 0 0
\(709\) 19868.2i 1.05242i 0.850355 + 0.526209i \(0.176387\pi\)
−0.850355 + 0.526209i \(0.823613\pi\)
\(710\) 10114.8i 0.534649i
\(711\) 0 0
\(712\) 9835.08 0.517676
\(713\) 3904.27i 0.205072i
\(714\) 0 0
\(715\) −2080.74 1279.14i −0.108832 0.0669050i
\(716\) −70097.4 −3.65874
\(717\) 0 0
\(718\) 27644.8 1.43690
\(719\) −2878.38 −0.149298 −0.0746491 0.997210i \(-0.523784\pi\)
−0.0746491 + 0.997210i \(0.523784\pi\)
\(720\) 0 0
\(721\) 233.370i 0.0120543i
\(722\) 52734.2i 2.71823i
\(723\) 0 0
\(724\) −72649.4 −3.72927
\(725\) 2676.12 0.137088
\(726\) 0 0
\(727\) −22798.9 −1.16309 −0.581543 0.813516i \(-0.697551\pi\)
−0.581543 + 0.813516i \(0.697551\pi\)
\(728\) 559.300 + 343.831i 0.0284739 + 0.0175044i
\(729\) 0 0
\(730\) 18045.4i 0.914919i
\(731\) 17629.3 0.891989
\(732\) 0 0
\(733\) 27940.5i 1.40792i −0.710240 0.703960i \(-0.751414\pi\)
0.710240 0.703960i \(-0.248586\pi\)
\(734\) 50600.4i 2.54454i
\(735\) 0 0
\(736\) 97092.3i 4.86259i
\(737\) −9648.21 −0.482220
\(738\) 0 0
\(739\) 30468.8i 1.51666i −0.651871 0.758330i \(-0.726016\pi\)
0.651871 0.758330i \(-0.273984\pi\)
\(740\) −21495.4 −1.06782
\(741\) 0 0
\(742\) 549.166 0.0271705
\(743\) 17528.7i 0.865501i −0.901514 0.432750i \(-0.857543\pi\)
0.901514 0.432750i \(-0.142457\pi\)
\(744\) 0 0
\(745\) −1594.38 −0.0784073
\(746\) 26845.7i 1.31755i
\(747\) 0 0
\(748\) 11937.6i 0.583532i
\(749\) 231.091i 0.0112735i
\(750\) 0 0
\(751\) −4371.31 −0.212399 −0.106199 0.994345i \(-0.533868\pi\)
−0.106199 + 0.994345i \(0.533868\pi\)
\(752\) 78251.4i 3.79459i
\(753\) 0 0
\(754\) −14128.6 + 22982.5i −0.682404 + 1.11005i
\(755\) 2363.36 0.113922
\(756\) 0 0
\(757\) 2920.51 0.140221 0.0701107 0.997539i \(-0.477665\pi\)
0.0701107 + 0.997539i \(0.477665\pi\)
\(758\) 13102.3 0.627831
\(759\) 0 0
\(760\) 44810.1i 2.13873i
\(761\) 40352.4i 1.92217i −0.276246 0.961087i \(-0.589091\pi\)
0.276246 0.961087i \(-0.410909\pi\)
\(762\) 0 0
\(763\) 410.393 0.0194721
\(764\) −17211.9 −0.815060
\(765\) 0 0
\(766\) −55895.0 −2.63651
\(767\) 16647.6 27080.2i 0.783717 1.27485i
\(768\) 0 0
\(769\) 27282.1i 1.27935i −0.768646 0.639674i \(-0.779069\pi\)
0.768646 0.639674i \(-0.220931\pi\)
\(770\) 56.5331 0.00264586
\(771\) 0 0
\(772\) 3890.67i 0.181384i
\(773\) 10121.3i 0.470942i −0.971881 0.235471i \(-0.924337\pi\)
0.971881 0.235471i \(-0.0756633\pi\)
\(774\) 0 0
\(775\) 555.070i 0.0257273i
\(776\) 38282.7 1.77096
\(777\) 0 0
\(778\) 74589.9i 3.43725i
\(779\) 36824.0 1.69365
\(780\) 0 0
\(781\) 3921.03 0.179649
\(782\) 51792.3i 2.36840i
\(783\) 0 0
\(784\) 70641.0 3.21798
\(785\) 10789.6i 0.490570i
\(786\) 0 0
\(787\) 17973.2i 0.814072i −0.913412 0.407036i \(-0.866562\pi\)
0.913412 0.407036i \(-0.133438\pi\)
\(788\) 63464.2i 2.86906i
\(789\) 0 0
\(790\) 15955.6 0.718577
\(791\) 245.941i 0.0110552i
\(792\) 0 0
\(793\) −7452.35 4581.36i −0.333721 0.205156i
\(794\) −11916.0 −0.532598
\(795\) 0 0
\(796\) −56252.3 −2.50479
\(797\) 1050.61 0.0466931 0.0233465 0.999727i \(-0.492568\pi\)
0.0233465 + 0.999727i \(0.492568\pi\)
\(798\) 0 0
\(799\) 20810.4i 0.921425i
\(800\) 13803.6i 0.610038i
\(801\) 0 0
\(802\) 65209.2 2.87109
\(803\) 6995.38 0.307424
\(804\) 0 0
\(805\) −177.403 −0.00776726
\(806\) 4766.95 + 2930.49i 0.208323 + 0.128067i
\(807\) 0 0
\(808\) 96242.6i 4.19035i
\(809\) 10131.7 0.440310 0.220155 0.975465i \(-0.429344\pi\)
0.220155 + 0.975465i \(0.429344\pi\)
\(810\) 0 0
\(811\) 3463.42i 0.149959i 0.997185 + 0.0749797i \(0.0238892\pi\)
−0.997185 + 0.0749797i \(0.976111\pi\)
\(812\) 451.642i 0.0195191i
\(813\) 0 0
\(814\) 11520.7i 0.496069i
\(815\) −12414.8 −0.533585
\(816\) 0 0
\(817\) 41548.6i 1.77919i
\(818\) 14818.5 0.633393
\(819\) 0 0
\(820\) 29822.8 1.27007
\(821\) 9876.00i 0.419823i 0.977720 + 0.209912i \(0.0673176\pi\)
−0.977720 + 0.209912i \(0.932682\pi\)
\(822\) 0 0
\(823\) −7199.95 −0.304951 −0.152475 0.988307i \(-0.548724\pi\)
−0.152475 + 0.988307i \(0.548724\pi\)
\(824\) 80291.3i 3.39452i
\(825\) 0 0
\(826\) 735.763i 0.0309933i
\(827\) 16864.4i 0.709110i 0.935035 + 0.354555i \(0.115368\pi\)
−0.935035 + 0.354555i \(0.884632\pi\)
\(828\) 0 0
\(829\) 26061.1 1.09184 0.545922 0.837836i \(-0.316180\pi\)
0.545922 + 0.837836i \(0.316180\pi\)
\(830\) 11446.0i 0.478671i
\(831\) 0 0
\(832\) −52748.3 32427.2i −2.19798 1.35121i
\(833\) 18786.5 0.781407
\(834\) 0 0
\(835\) 7816.57 0.323957
\(836\) −28134.4 −1.16393
\(837\) 0 0
\(838\) 2247.17i 0.0926338i
\(839\) 35491.9i 1.46045i 0.683208 + 0.730224i \(0.260584\pi\)
−0.683208 + 0.730224i \(0.739416\pi\)
\(840\) 0 0
\(841\) −12930.4 −0.530175
\(842\) 40990.6 1.67771
\(843\) 0 0
\(844\) −29517.1 −1.20382
\(845\) 9801.81 4959.31i 0.399044 0.201900i
\(846\) 0 0
\(847\) 246.642i 0.0100056i
\(848\) −104263. −4.22217
\(849\) 0 0
\(850\) 7363.30i 0.297128i
\(851\) 36152.4i 1.45627i
\(852\) 0 0
\(853\) 10763.1i 0.432029i −0.976390 0.216014i \(-0.930694\pi\)
0.976390 0.216014i \(-0.0693058\pi\)
\(854\) 202.479 0.00811321
\(855\) 0 0
\(856\) 79507.2i 3.17465i
\(857\) 3344.32 0.133302 0.0666511 0.997776i \(-0.478769\pi\)
0.0666511 + 0.997776i \(0.478769\pi\)
\(858\) 0 0
\(859\) −31361.2 −1.24567 −0.622836 0.782353i \(-0.714020\pi\)
−0.622836 + 0.782353i \(0.714020\pi\)
\(860\) 33649.1i 1.33421i
\(861\) 0 0
\(862\) −34133.6 −1.34872
\(863\) 9576.65i 0.377744i −0.982002 0.188872i \(-0.939517\pi\)
0.982002 0.188872i \(-0.0604831\pi\)
\(864\) 0 0
\(865\) 13925.6i 0.547382i
\(866\) 23046.8i 0.904342i
\(867\) 0 0
\(868\) −93.6778 −0.00366317
\(869\) 6185.26i 0.241451i
\(870\) 0 0
\(871\) 22725.1 36966.2i 0.884054 1.43806i
\(872\) −141196. −5.48339
\(873\) 0 0
\(874\) 122064. 4.72410
\(875\) 25.2214 0.000974444
\(876\) 0 0
\(877\) 28993.5i 1.11635i 0.829722 + 0.558177i \(0.188499\pi\)
−0.829722 + 0.558177i \(0.811501\pi\)
\(878\) 4832.06i 0.185734i
\(879\) 0 0
\(880\) −10733.2 −0.411154
\(881\) −23068.0 −0.882156 −0.441078 0.897469i \(-0.645404\pi\)
−0.441078 + 0.897469i \(0.645404\pi\)
\(882\) 0 0
\(883\) −29675.0 −1.13097 −0.565483 0.824760i \(-0.691310\pi\)
−0.565483 + 0.824760i \(0.691310\pi\)
\(884\) −45737.9 28117.5i −1.74019 1.06979i
\(885\) 0 0
\(886\) 26786.7i 1.01571i
\(887\) 5118.12 0.193742 0.0968712 0.995297i \(-0.469117\pi\)
0.0968712 + 0.995297i \(0.469117\pi\)
\(888\) 0 0
\(889\) 245.966i 0.00927944i
\(890\) 3808.86i 0.143453i
\(891\) 0 0
\(892\) 9916.64i 0.372235i
\(893\) −49045.7 −1.83791
\(894\) 0 0
\(895\) 16761.0i 0.625989i
\(896\) 541.906 0.0202052
\(897\) 0 0
\(898\) 24167.8 0.898094
\(899\) 2376.69i 0.0881725i
\(900\) 0 0
\(901\) −27727.9 −1.02525
\(902\) 15983.9i 0.590027i
\(903\) 0 0
\(904\) 84616.6i 3.11317i
\(905\) 17371.3i 0.638056i
\(906\) 0 0
\(907\) 37154.2 1.36018 0.680091 0.733128i \(-0.261940\pi\)
0.680091 + 0.733128i \(0.261940\pi\)
\(908\) 32657.2i 1.19358i
\(909\) 0 0
\(910\) −133.156 + 216.602i −0.00485065 + 0.00789041i
\(911\) −7888.56 −0.286893 −0.143447 0.989658i \(-0.545819\pi\)
−0.143447 + 0.989658i \(0.545819\pi\)
\(912\) 0 0
\(913\) 4437.09 0.160839
\(914\) 15725.8 0.569106
\(915\) 0 0
\(916\) 61244.1i 2.20913i
\(917\) 162.908i 0.00586664i
\(918\) 0 0
\(919\) −32292.7 −1.15913 −0.579563 0.814927i \(-0.696777\pi\)
−0.579563 + 0.814927i \(0.696777\pi\)
\(920\) 61035.9 2.18728
\(921\) 0 0
\(922\) 54425.7 1.94405
\(923\) −9235.48 + 15023.1i −0.329350 + 0.535743i
\(924\) 0 0
\(925\) 5139.78i 0.182697i
\(926\) −28095.6 −0.997062
\(927\) 0 0
\(928\) 59104.0i 2.09072i
\(929\) 7931.61i 0.280116i 0.990143 + 0.140058i \(0.0447289\pi\)
−0.990143 + 0.140058i \(0.955271\pi\)
\(930\) 0 0
\(931\) 44275.7i 1.55862i
\(932\) 58255.6 2.04745
\(933\) 0 0
\(934\) 30092.7i 1.05424i
\(935\) −2854.41 −0.0998388
\(936\) 0 0
\(937\) 35368.6 1.23313 0.616565 0.787304i \(-0.288524\pi\)
0.616565 + 0.787304i \(0.288524\pi\)
\(938\) 1004.36i 0.0349613i
\(939\) 0 0
\(940\) −39720.8 −1.37824
\(941\) 21319.4i 0.738569i −0.929316 0.369285i \(-0.879603\pi\)
0.929316 0.369285i \(-0.120397\pi\)
\(942\) 0 0
\(943\) 50158.0i 1.73210i
\(944\) 139689.i 4.81621i
\(945\) 0 0
\(946\) −18034.6 −0.619827
\(947\) 16623.5i 0.570422i −0.958465 0.285211i \(-0.907936\pi\)
0.958465 0.285211i \(-0.0920637\pi\)
\(948\) 0 0
\(949\) −16476.7 + 26802.2i −0.563600 + 0.916792i
\(950\) −17353.7 −0.592663
\(951\) 0 0
\(952\) 767.263 0.0261209
\(953\) −25047.2 −0.851374 −0.425687 0.904870i \(-0.639968\pi\)
−0.425687 + 0.904870i \(0.639968\pi\)
\(954\) 0 0
\(955\) 4115.56i 0.139452i
\(956\) 52038.8i 1.76052i
\(957\) 0 0
\(958\) −77119.3 −2.60085
\(959\) −5.01687 −0.000168929
\(960\) 0 0
\(961\) 29298.0 0.983453
\(962\) 44140.5 + 27135.5i 1.47936 + 0.909443i
\(963\) 0 0
\(964\) 101222.i 3.38188i
\(965\) −930.301 −0.0310336
\(966\) 0 0
\(967\) 13656.8i 0.454161i 0.973876 + 0.227081i \(0.0729181\pi\)
−0.973876 + 0.227081i \(0.927082\pi\)
\(968\) 84857.7i 2.81759i
\(969\) 0 0
\(970\) 14825.8i 0.490752i
\(971\) −2265.67 −0.0748803 −0.0374401 0.999299i \(-0.511920\pi\)
−0.0374401 + 0.999299i \(0.511920\pi\)
\(972\) 0 0
\(973\) 272.683i 0.00898440i
\(974\) 104148. 3.42619
\(975\) 0 0
\(976\) −38441.9 −1.26075
\(977\) 20144.9i 0.659666i −0.944039 0.329833i \(-0.893008\pi\)
0.944039 0.329833i \(-0.106992\pi\)
\(978\) 0 0
\(979\) −1476.52 −0.0482020
\(980\) 35857.8i 1.16881i
\(981\) 0 0
\(982\) 67138.5i 2.18175i
\(983\) 10526.6i 0.341552i −0.985310 0.170776i \(-0.945373\pi\)
0.985310 0.170776i \(-0.0546274\pi\)
\(984\) 0 0
\(985\) −15175.0 −0.490878
\(986\) 31528.1i 1.01831i
\(987\) 0 0
\(988\) 66267.0 107795.i 2.13384 3.47105i
\(989\) 56593.4 1.81958
\(990\) 0 0
\(991\) 55992.7 1.79482 0.897410 0.441198i \(-0.145446\pi\)
0.897410 + 0.441198i \(0.145446\pi\)
\(992\) 12259.1 0.392367
\(993\) 0 0
\(994\) 408.174i 0.0130246i
\(995\) 13450.6i 0.428554i
\(996\) 0 0
\(997\) 48578.5 1.54312 0.771562 0.636154i \(-0.219476\pi\)
0.771562 + 0.636154i \(0.219476\pi\)
\(998\) 82612.7 2.62030
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.4.b.e.181.1 14
3.2 odd 2 65.4.c.a.51.14 yes 14
12.11 even 2 1040.4.k.d.961.8 14
13.12 even 2 inner 585.4.b.e.181.14 14
15.2 even 4 325.4.d.c.324.2 14
15.8 even 4 325.4.d.d.324.13 14
15.14 odd 2 325.4.c.e.51.1 14
39.5 even 4 845.4.a.l.1.7 7
39.8 even 4 845.4.a.i.1.1 7
39.38 odd 2 65.4.c.a.51.1 14
156.155 even 2 1040.4.k.d.961.7 14
195.38 even 4 325.4.d.c.324.1 14
195.77 even 4 325.4.d.d.324.14 14
195.194 odd 2 325.4.c.e.51.14 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.4.c.a.51.1 14 39.38 odd 2
65.4.c.a.51.14 yes 14 3.2 odd 2
325.4.c.e.51.1 14 15.14 odd 2
325.4.c.e.51.14 14 195.194 odd 2
325.4.d.c.324.1 14 195.38 even 4
325.4.d.c.324.2 14 15.2 even 4
325.4.d.d.324.13 14 15.8 even 4
325.4.d.d.324.14 14 195.77 even 4
585.4.b.e.181.1 14 1.1 even 1 trivial
585.4.b.e.181.14 14 13.12 even 2 inner
845.4.a.i.1.1 7 39.8 even 4
845.4.a.l.1.7 7 39.5 even 4
1040.4.k.d.961.7 14 156.155 even 2
1040.4.k.d.961.8 14 12.11 even 2