Properties

Label 585.4
Level 585
Weight 4
Dimension 25724
Nonzero newspaces 50
Sturm bound 96768
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 50 \)
Sturm bound: \(96768\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(585))\).

Total New Old
Modular forms 37056 26320 10736
Cusp forms 35520 25724 9796
Eisenstein series 1536 596 940

Trace form

\( 25724 q - 32 q^{2} - 44 q^{3} - 96 q^{4} - 66 q^{5} - 76 q^{6} + 84 q^{7} + 252 q^{8} + 20 q^{9} - 428 q^{10} - 476 q^{11} - 400 q^{12} - 208 q^{13} + 384 q^{14} + 334 q^{15} + 1088 q^{16} + 1474 q^{17}+ \cdots + 27580 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(585))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
585.4.a \(\chi_{585}(1, \cdot)\) 585.4.a.a 1 1
585.4.a.b 1
585.4.a.c 1
585.4.a.d 1
585.4.a.e 1
585.4.a.f 2
585.4.a.g 2
585.4.a.h 2
585.4.a.i 2
585.4.a.j 3
585.4.a.k 3
585.4.a.l 4
585.4.a.m 4
585.4.a.n 4
585.4.a.o 5
585.4.a.p 5
585.4.a.q 5
585.4.a.r 7
585.4.a.s 7
585.4.b \(\chi_{585}(181, \cdot)\) 585.4.b.a 2 1
585.4.b.b 2
585.4.b.c 2
585.4.b.d 8
585.4.b.e 14
585.4.b.f 14
585.4.b.g 28
585.4.c \(\chi_{585}(469, \cdot)\) 585.4.c.a 2 1
585.4.c.b 2
585.4.c.c 12
585.4.c.d 16
585.4.c.e 22
585.4.c.f 36
585.4.h \(\chi_{585}(64, \cdot)\) n/a 104 1
585.4.i \(\chi_{585}(196, \cdot)\) n/a 288 2
585.4.j \(\chi_{585}(406, \cdot)\) n/a 140 2
585.4.k \(\chi_{585}(61, \cdot)\) n/a 336 2
585.4.l \(\chi_{585}(16, \cdot)\) n/a 336 2
585.4.n \(\chi_{585}(307, \cdot)\) n/a 206 2
585.4.p \(\chi_{585}(53, \cdot)\) n/a 144 2
585.4.q \(\chi_{585}(44, \cdot)\) n/a 168 2
585.4.r \(\chi_{585}(161, \cdot)\) n/a 112 2
585.4.v \(\chi_{585}(233, \cdot)\) n/a 168 2
585.4.w \(\chi_{585}(73, \cdot)\) n/a 206 2
585.4.ba \(\chi_{585}(121, \cdot)\) n/a 336 2
585.4.bb \(\chi_{585}(139, \cdot)\) n/a 496 2
585.4.be \(\chi_{585}(259, \cdot)\) n/a 496 2
585.4.bf \(\chi_{585}(199, \cdot)\) n/a 208 2
585.4.bk \(\chi_{585}(49, \cdot)\) n/a 496 2
585.4.bl \(\chi_{585}(94, \cdot)\) n/a 496 2
585.4.bm \(\chi_{585}(166, \cdot)\) n/a 336 2
585.4.br \(\chi_{585}(79, \cdot)\) n/a 432 2
585.4.bs \(\chi_{585}(289, \cdot)\) n/a 204 2
585.4.bt \(\chi_{585}(376, \cdot)\) n/a 336 2
585.4.bu \(\chi_{585}(316, \cdot)\) n/a 140 2
585.4.bx \(\chi_{585}(4, \cdot)\) n/a 496 2
585.4.ca \(\chi_{585}(58, \cdot)\) n/a 992 4
585.4.cc \(\chi_{585}(67, \cdot)\) n/a 992 4
585.4.cf \(\chi_{585}(163, \cdot)\) n/a 412 4
585.4.cg \(\chi_{585}(187, \cdot)\) n/a 992 4
585.4.ci \(\chi_{585}(113, \cdot)\) n/a 992 4
585.4.cm \(\chi_{585}(11, \cdot)\) n/a 672 4
585.4.cn \(\chi_{585}(59, \cdot)\) n/a 992 4
585.4.co \(\chi_{585}(212, \cdot)\) n/a 992 4
585.4.cr \(\chi_{585}(23, \cdot)\) n/a 992 4
585.4.cs \(\chi_{585}(38, \cdot)\) n/a 992 4
585.4.cv \(\chi_{585}(17, \cdot)\) n/a 336 4
585.4.cw \(\chi_{585}(71, \cdot)\) n/a 224 4
585.4.cx \(\chi_{585}(89, \cdot)\) n/a 336 4
585.4.dc \(\chi_{585}(164, \cdot)\) n/a 992 4
585.4.dd \(\chi_{585}(41, \cdot)\) n/a 672 4
585.4.de \(\chi_{585}(254, \cdot)\) n/a 992 4
585.4.df \(\chi_{585}(86, \cdot)\) n/a 672 4
585.4.dj \(\chi_{585}(92, \cdot)\) n/a 864 4
585.4.dk \(\chi_{585}(68, \cdot)\) n/a 992 4
585.4.dn \(\chi_{585}(107, \cdot)\) n/a 336 4
585.4.dp \(\chi_{585}(28, \cdot)\) n/a 412 4
585.4.dq \(\chi_{585}(112, \cdot)\) n/a 992 4
585.4.dt \(\chi_{585}(7, \cdot)\) n/a 992 4
585.4.dv \(\chi_{585}(292, \cdot)\) n/a 992 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(585))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(585)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(195))\)\(^{\oplus 2}\)