Properties

Label 1040.4.k.d.961.8
Level $1040$
Weight $4$
Character 1040.961
Analytic conductor $61.362$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,4,Mod(961,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.961"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1040.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.3619864060\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2674x^{10} + 40048x^{8} + 278769x^{6} + 727552x^{4} + 339456x^{2} + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{9}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 961.8
Root \(5.37688i\) of defining polynomial
Character \(\chi\) \(=\) 1040.961
Dual form 1040.4.k.d.961.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.936724 q^{3} +5.00000i q^{5} +0.201771i q^{7} -26.1225 q^{9} -10.4218i q^{11} +(39.9303 + 24.5473i) q^{13} +4.68362i q^{15} -54.7775 q^{17} -129.099i q^{19} +0.189004i q^{21} +175.846 q^{23} -25.0000 q^{25} -49.7612 q^{27} +107.045 q^{29} -22.2028i q^{31} -9.76239i q^{33} -1.00886 q^{35} +205.591i q^{37} +(37.4037 + 22.9940i) q^{39} +285.238i q^{41} -321.835 q^{43} -130.613i q^{45} +379.907i q^{47} +342.959 q^{49} -51.3115 q^{51} +506.192 q^{53} +52.1092 q^{55} -120.930i q^{57} -678.186i q^{59} -186.634 q^{61} -5.27077i q^{63} +(-122.736 + 199.652i) q^{65} +925.768i q^{67} +164.719 q^{69} +376.232i q^{71} +671.223i q^{73} -23.4181 q^{75} +2.10282 q^{77} +593.491 q^{79} +658.696 q^{81} +425.750i q^{83} -273.888i q^{85} +100.271 q^{87} +141.676i q^{89} +(-4.95293 + 8.05678i) q^{91} -20.7979i q^{93} +645.496 q^{95} -551.467i q^{97} +272.245i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 158 q^{9} - 4 q^{13} - 100 q^{17} + 532 q^{23} - 350 q^{25} + 48 q^{27} + 588 q^{29} - 540 q^{35} + 260 q^{39} - 728 q^{43} - 1302 q^{49} - 176 q^{51} + 1040 q^{53} + 40 q^{55} - 1460 q^{61} - 30 q^{65}+ \cdots + 3120 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1040\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(417\) \(561\) \(911\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.936724 0.180273 0.0901363 0.995929i \(-0.471270\pi\)
0.0901363 + 0.995929i \(0.471270\pi\)
\(4\) 0 0
\(5\) 5.00000i 0.447214i
\(6\) 0 0
\(7\) 0.201771i 0.0108946i 0.999985 + 0.00544731i \(0.00173394\pi\)
−0.999985 + 0.00544731i \(0.998266\pi\)
\(8\) 0 0
\(9\) −26.1225 −0.967502
\(10\) 0 0
\(11\) 10.4218i 0.285664i −0.989747 0.142832i \(-0.954379\pi\)
0.989747 0.142832i \(-0.0456208\pi\)
\(12\) 0 0
\(13\) 39.9303 + 24.5473i 0.851898 + 0.523707i
\(14\) 0 0
\(15\) 4.68362i 0.0806204i
\(16\) 0 0
\(17\) −54.7775 −0.781500 −0.390750 0.920497i \(-0.627784\pi\)
−0.390750 + 0.920497i \(0.627784\pi\)
\(18\) 0 0
\(19\) 129.099i 1.55881i −0.626521 0.779405i \(-0.715522\pi\)
0.626521 0.779405i \(-0.284478\pi\)
\(20\) 0 0
\(21\) 0.189004i 0.00196400i
\(22\) 0 0
\(23\) 175.846 1.59419 0.797097 0.603852i \(-0.206368\pi\)
0.797097 + 0.603852i \(0.206368\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) −49.7612 −0.354687
\(28\) 0 0
\(29\) 107.045 0.685438 0.342719 0.939438i \(-0.388652\pi\)
0.342719 + 0.939438i \(0.388652\pi\)
\(30\) 0 0
\(31\) 22.2028i 0.128637i −0.997929 0.0643184i \(-0.979513\pi\)
0.997929 0.0643184i \(-0.0204873\pi\)
\(32\) 0 0
\(33\) 9.76239i 0.0514974i
\(34\) 0 0
\(35\) −1.00886 −0.00487222
\(36\) 0 0
\(37\) 205.591i 0.913486i 0.889599 + 0.456743i \(0.150984\pi\)
−0.889599 + 0.456743i \(0.849016\pi\)
\(38\) 0 0
\(39\) 37.4037 + 22.9940i 0.153574 + 0.0944101i
\(40\) 0 0
\(41\) 285.238i 1.08651i 0.839569 + 0.543253i \(0.182807\pi\)
−0.839569 + 0.543253i \(0.817193\pi\)
\(42\) 0 0
\(43\) −321.835 −1.14138 −0.570690 0.821166i \(-0.693324\pi\)
−0.570690 + 0.821166i \(0.693324\pi\)
\(44\) 0 0
\(45\) 130.613i 0.432680i
\(46\) 0 0
\(47\) 379.907i 1.17905i 0.807752 + 0.589523i \(0.200684\pi\)
−0.807752 + 0.589523i \(0.799316\pi\)
\(48\) 0 0
\(49\) 342.959 0.999881
\(50\) 0 0
\(51\) −51.3115 −0.140883
\(52\) 0 0
\(53\) 506.192 1.31190 0.655951 0.754804i \(-0.272268\pi\)
0.655951 + 0.754804i \(0.272268\pi\)
\(54\) 0 0
\(55\) 52.1092 0.127753
\(56\) 0 0
\(57\) 120.930i 0.281011i
\(58\) 0 0
\(59\) 678.186i 1.49648i −0.663428 0.748240i \(-0.730899\pi\)
0.663428 0.748240i \(-0.269101\pi\)
\(60\) 0 0
\(61\) −186.634 −0.391738 −0.195869 0.980630i \(-0.562753\pi\)
−0.195869 + 0.980630i \(0.562753\pi\)
\(62\) 0 0
\(63\) 5.27077i 0.0105406i
\(64\) 0 0
\(65\) −122.736 + 199.652i −0.234209 + 0.380981i
\(66\) 0 0
\(67\) 925.768i 1.68807i 0.536289 + 0.844034i \(0.319826\pi\)
−0.536289 + 0.844034i \(0.680174\pi\)
\(68\) 0 0
\(69\) 164.719 0.287390
\(70\) 0 0
\(71\) 376.232i 0.628881i 0.949277 + 0.314441i \(0.101817\pi\)
−0.949277 + 0.314441i \(0.898183\pi\)
\(72\) 0 0
\(73\) 671.223i 1.07617i 0.842889 + 0.538087i \(0.180853\pi\)
−0.842889 + 0.538087i \(0.819147\pi\)
\(74\) 0 0
\(75\) −23.4181 −0.0360545
\(76\) 0 0
\(77\) 2.10282 0.00311220
\(78\) 0 0
\(79\) 593.491 0.845227 0.422613 0.906310i \(-0.361113\pi\)
0.422613 + 0.906310i \(0.361113\pi\)
\(80\) 0 0
\(81\) 658.696 0.903561
\(82\) 0 0
\(83\) 425.750i 0.563037i 0.959556 + 0.281519i \(0.0908381\pi\)
−0.959556 + 0.281519i \(0.909162\pi\)
\(84\) 0 0
\(85\) 273.888i 0.349498i
\(86\) 0 0
\(87\) 100.271 0.123566
\(88\) 0 0
\(89\) 141.676i 0.168737i 0.996435 + 0.0843685i \(0.0268873\pi\)
−0.996435 + 0.0843685i \(0.973113\pi\)
\(90\) 0 0
\(91\) −4.95293 + 8.05678i −0.00570559 + 0.00928110i
\(92\) 0 0
\(93\) 20.7979i 0.0231897i
\(94\) 0 0
\(95\) 645.496 0.697121
\(96\) 0 0
\(97\) 551.467i 0.577247i −0.957443 0.288623i \(-0.906802\pi\)
0.957443 0.288623i \(-0.0931976\pi\)
\(98\) 0 0
\(99\) 272.245i 0.276380i
\(100\) 0 0
\(101\) −1386.39 −1.36585 −0.682924 0.730489i \(-0.739292\pi\)
−0.682924 + 0.730489i \(0.739292\pi\)
\(102\) 0 0
\(103\) −1156.61 −1.10645 −0.553223 0.833033i \(-0.686602\pi\)
−0.553223 + 0.833033i \(0.686602\pi\)
\(104\) 0 0
\(105\) −0.945019 −0.000878328
\(106\) 0 0
\(107\) 1145.31 1.03478 0.517390 0.855750i \(-0.326904\pi\)
0.517390 + 0.855750i \(0.326904\pi\)
\(108\) 0 0
\(109\) 2033.95i 1.78731i 0.448750 + 0.893657i \(0.351869\pi\)
−0.448750 + 0.893657i \(0.648131\pi\)
\(110\) 0 0
\(111\) 192.582i 0.164677i
\(112\) 0 0
\(113\) −1218.91 −1.01474 −0.507370 0.861728i \(-0.669382\pi\)
−0.507370 + 0.861728i \(0.669382\pi\)
\(114\) 0 0
\(115\) 879.231i 0.712945i
\(116\) 0 0
\(117\) −1043.08 641.238i −0.824213 0.506687i
\(118\) 0 0
\(119\) 11.0525i 0.00851414i
\(120\) 0 0
\(121\) 1222.39 0.918396
\(122\) 0 0
\(123\) 267.190i 0.195867i
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) 1219.03 0.851746 0.425873 0.904783i \(-0.359967\pi\)
0.425873 + 0.904783i \(0.359967\pi\)
\(128\) 0 0
\(129\) −301.470 −0.205760
\(130\) 0 0
\(131\) −807.392 −0.538490 −0.269245 0.963072i \(-0.586774\pi\)
−0.269245 + 0.963072i \(0.586774\pi\)
\(132\) 0 0
\(133\) 26.0485 0.0169826
\(134\) 0 0
\(135\) 248.806i 0.158621i
\(136\) 0 0
\(137\) 24.8642i 0.0155057i 0.999970 + 0.00775287i \(0.00246784\pi\)
−0.999970 + 0.00775287i \(0.997532\pi\)
\(138\) 0 0
\(139\) 1351.45 0.824665 0.412332 0.911033i \(-0.364714\pi\)
0.412332 + 0.911033i \(0.364714\pi\)
\(140\) 0 0
\(141\) 355.868i 0.212550i
\(142\) 0 0
\(143\) 255.828 416.147i 0.149604 0.243357i
\(144\) 0 0
\(145\) 535.223i 0.306537i
\(146\) 0 0
\(147\) 321.258 0.180251
\(148\) 0 0
\(149\) 318.875i 0.175324i 0.996150 + 0.0876621i \(0.0279396\pi\)
−0.996150 + 0.0876621i \(0.972060\pi\)
\(150\) 0 0
\(151\) 472.671i 0.254738i −0.991855 0.127369i \(-0.959347\pi\)
0.991855 0.127369i \(-0.0406533\pi\)
\(152\) 0 0
\(153\) 1430.93 0.756103
\(154\) 0 0
\(155\) 111.014 0.0575281
\(156\) 0 0
\(157\) 2157.92 1.09695 0.548474 0.836168i \(-0.315209\pi\)
0.548474 + 0.836168i \(0.315209\pi\)
\(158\) 0 0
\(159\) 474.162 0.236500
\(160\) 0 0
\(161\) 35.4807i 0.0173681i
\(162\) 0 0
\(163\) 2482.96i 1.19313i 0.802564 + 0.596567i \(0.203469\pi\)
−0.802564 + 0.596567i \(0.796531\pi\)
\(164\) 0 0
\(165\) 48.8119 0.0230303
\(166\) 0 0
\(167\) 1563.31i 0.724389i 0.932103 + 0.362194i \(0.117972\pi\)
−0.932103 + 0.362194i \(0.882028\pi\)
\(168\) 0 0
\(169\) 991.862 + 1960.36i 0.451462 + 0.892290i
\(170\) 0 0
\(171\) 3372.40i 1.50815i
\(172\) 0 0
\(173\) 2785.12 1.22398 0.611991 0.790865i \(-0.290369\pi\)
0.611991 + 0.790865i \(0.290369\pi\)
\(174\) 0 0
\(175\) 5.04428i 0.00217892i
\(176\) 0 0
\(177\) 635.274i 0.269774i
\(178\) 0 0
\(179\) 3352.21 1.39975 0.699877 0.714264i \(-0.253238\pi\)
0.699877 + 0.714264i \(0.253238\pi\)
\(180\) 0 0
\(181\) 3474.25 1.42674 0.713368 0.700789i \(-0.247169\pi\)
0.713368 + 0.700789i \(0.247169\pi\)
\(182\) 0 0
\(183\) −174.825 −0.0706197
\(184\) 0 0
\(185\) −1027.96 −0.408524
\(186\) 0 0
\(187\) 570.882i 0.223246i
\(188\) 0 0
\(189\) 10.0404i 0.00386418i
\(190\) 0 0
\(191\) 823.112 0.311824 0.155912 0.987771i \(-0.450168\pi\)
0.155912 + 0.987771i \(0.450168\pi\)
\(192\) 0 0
\(193\) 186.060i 0.0693933i −0.999398 0.0346967i \(-0.988953\pi\)
0.999398 0.0346967i \(-0.0110465\pi\)
\(194\) 0 0
\(195\) −114.970 + 187.019i −0.0422215 + 0.0686804i
\(196\) 0 0
\(197\) 3035.00i 1.09764i 0.835942 + 0.548819i \(0.184922\pi\)
−0.835942 + 0.548819i \(0.815078\pi\)
\(198\) 0 0
\(199\) −2690.11 −0.958276 −0.479138 0.877740i \(-0.659051\pi\)
−0.479138 + 0.877740i \(0.659051\pi\)
\(200\) 0 0
\(201\) 867.190i 0.304313i
\(202\) 0 0
\(203\) 21.5985i 0.00746758i
\(204\) 0 0
\(205\) −1426.19 −0.485900
\(206\) 0 0
\(207\) −4593.55 −1.54239
\(208\) 0 0
\(209\) −1345.45 −0.445295
\(210\) 0 0
\(211\) −1411.57 −0.460554 −0.230277 0.973125i \(-0.573963\pi\)
−0.230277 + 0.973125i \(0.573963\pi\)
\(212\) 0 0
\(213\) 352.426i 0.113370i
\(214\) 0 0
\(215\) 1609.17i 0.510441i
\(216\) 0 0
\(217\) 4.47988 0.00140145
\(218\) 0 0
\(219\) 628.751i 0.194005i
\(220\) 0 0
\(221\) −2187.28 1344.64i −0.665759 0.409277i
\(222\) 0 0
\(223\) 474.236i 0.142409i −0.997462 0.0712044i \(-0.977316\pi\)
0.997462 0.0712044i \(-0.0226843\pi\)
\(224\) 0 0
\(225\) 653.064 0.193500
\(226\) 0 0
\(227\) 1561.74i 0.456635i −0.973587 0.228318i \(-0.926678\pi\)
0.973587 0.228318i \(-0.0733225\pi\)
\(228\) 0 0
\(229\) 2928.82i 0.845162i −0.906325 0.422581i \(-0.861124\pi\)
0.906325 0.422581i \(-0.138876\pi\)
\(230\) 0 0
\(231\) 1.96977 0.000561044
\(232\) 0 0
\(233\) 2785.91 0.783310 0.391655 0.920112i \(-0.371903\pi\)
0.391655 + 0.920112i \(0.371903\pi\)
\(234\) 0 0
\(235\) −1899.54 −0.527285
\(236\) 0 0
\(237\) 555.937 0.152371
\(238\) 0 0
\(239\) 2488.61i 0.673534i −0.941588 0.336767i \(-0.890667\pi\)
0.941588 0.336767i \(-0.109333\pi\)
\(240\) 0 0
\(241\) 4840.64i 1.29383i 0.762562 + 0.646915i \(0.223941\pi\)
−0.762562 + 0.646915i \(0.776059\pi\)
\(242\) 0 0
\(243\) 1960.57 0.517574
\(244\) 0 0
\(245\) 1714.80i 0.447161i
\(246\) 0 0
\(247\) 3169.03 5154.97i 0.816359 1.32795i
\(248\) 0 0
\(249\) 398.810i 0.101500i
\(250\) 0 0
\(251\) −8.77945 −0.00220779 −0.00110389 0.999999i \(-0.500351\pi\)
−0.00110389 + 0.999999i \(0.500351\pi\)
\(252\) 0 0
\(253\) 1832.64i 0.455403i
\(254\) 0 0
\(255\) 256.557i 0.0630049i
\(256\) 0 0
\(257\) 1600.04 0.388357 0.194179 0.980966i \(-0.437796\pi\)
0.194179 + 0.980966i \(0.437796\pi\)
\(258\) 0 0
\(259\) −41.4824 −0.00995208
\(260\) 0 0
\(261\) −2796.28 −0.663162
\(262\) 0 0
\(263\) 3050.24 0.715155 0.357578 0.933883i \(-0.383603\pi\)
0.357578 + 0.933883i \(0.383603\pi\)
\(264\) 0 0
\(265\) 2530.96i 0.586700i
\(266\) 0 0
\(267\) 132.711i 0.0304187i
\(268\) 0 0
\(269\) −6168.58 −1.39816 −0.699080 0.715043i \(-0.746407\pi\)
−0.699080 + 0.715043i \(0.746407\pi\)
\(270\) 0 0
\(271\) 2424.93i 0.543556i 0.962360 + 0.271778i \(0.0876117\pi\)
−0.962360 + 0.271778i \(0.912388\pi\)
\(272\) 0 0
\(273\) −4.63953 + 7.54699i −0.00102856 + 0.00167313i
\(274\) 0 0
\(275\) 260.546i 0.0571328i
\(276\) 0 0
\(277\) 4442.72 0.963673 0.481836 0.876261i \(-0.339970\pi\)
0.481836 + 0.876261i \(0.339970\pi\)
\(278\) 0 0
\(279\) 579.993i 0.124456i
\(280\) 0 0
\(281\) 357.622i 0.0759215i −0.999279 0.0379608i \(-0.987914\pi\)
0.999279 0.0379608i \(-0.0120862\pi\)
\(282\) 0 0
\(283\) −1573.71 −0.330556 −0.165278 0.986247i \(-0.552852\pi\)
−0.165278 + 0.986247i \(0.552852\pi\)
\(284\) 0 0
\(285\) 604.652 0.125672
\(286\) 0 0
\(287\) −57.5528 −0.0118371
\(288\) 0 0
\(289\) −1912.42 −0.389257
\(290\) 0 0
\(291\) 516.572i 0.104062i
\(292\) 0 0
\(293\) 4370.32i 0.871389i 0.900095 + 0.435694i \(0.143497\pi\)
−0.900095 + 0.435694i \(0.856503\pi\)
\(294\) 0 0
\(295\) 3390.93 0.669246
\(296\) 0 0
\(297\) 518.603i 0.101321i
\(298\) 0 0
\(299\) 7021.59 + 4316.54i 1.35809 + 0.834890i
\(300\) 0 0
\(301\) 64.9369i 0.0124349i
\(302\) 0 0
\(303\) −1298.66 −0.246225
\(304\) 0 0
\(305\) 933.170i 0.175191i
\(306\) 0 0
\(307\) 3998.97i 0.743430i −0.928347 0.371715i \(-0.878770\pi\)
0.928347 0.371715i \(-0.121230\pi\)
\(308\) 0 0
\(309\) −1083.42 −0.199462
\(310\) 0 0
\(311\) −2116.08 −0.385825 −0.192913 0.981216i \(-0.561793\pi\)
−0.192913 + 0.981216i \(0.561793\pi\)
\(312\) 0 0
\(313\) 1729.75 0.312368 0.156184 0.987728i \(-0.450081\pi\)
0.156184 + 0.987728i \(0.450081\pi\)
\(314\) 0 0
\(315\) 26.3539 0.00471388
\(316\) 0 0
\(317\) 4636.84i 0.821548i 0.911737 + 0.410774i \(0.134741\pi\)
−0.911737 + 0.410774i \(0.865259\pi\)
\(318\) 0 0
\(319\) 1115.60i 0.195805i
\(320\) 0 0
\(321\) 1072.84 0.186543
\(322\) 0 0
\(323\) 7071.73i 1.21821i
\(324\) 0 0
\(325\) −998.258 613.682i −0.170380 0.104741i
\(326\) 0 0
\(327\) 1905.25i 0.322204i
\(328\) 0 0
\(329\) −76.6543 −0.0128453
\(330\) 0 0
\(331\) 2278.33i 0.378333i 0.981945 + 0.189167i \(0.0605787\pi\)
−0.981945 + 0.189167i \(0.939421\pi\)
\(332\) 0 0
\(333\) 5370.57i 0.883800i
\(334\) 0 0
\(335\) −4628.84 −0.754927
\(336\) 0 0
\(337\) −419.703 −0.0678418 −0.0339209 0.999425i \(-0.510799\pi\)
−0.0339209 + 0.999425i \(0.510799\pi\)
\(338\) 0 0
\(339\) −1141.79 −0.182930
\(340\) 0 0
\(341\) −231.394 −0.0367469
\(342\) 0 0
\(343\) 138.407i 0.0217879i
\(344\) 0 0
\(345\) 823.597i 0.128525i
\(346\) 0 0
\(347\) 495.311 0.0766273 0.0383137 0.999266i \(-0.487801\pi\)
0.0383137 + 0.999266i \(0.487801\pi\)
\(348\) 0 0
\(349\) 4453.77i 0.683109i −0.939862 0.341554i \(-0.889047\pi\)
0.939862 0.341554i \(-0.110953\pi\)
\(350\) 0 0
\(351\) −1986.98 1221.50i −0.302157 0.185752i
\(352\) 0 0
\(353\) 11893.7i 1.79330i −0.442736 0.896652i \(-0.645992\pi\)
0.442736 0.896652i \(-0.354008\pi\)
\(354\) 0 0
\(355\) −1881.16 −0.281244
\(356\) 0 0
\(357\) 10.3532i 0.00153487i
\(358\) 0 0
\(359\) 5141.43i 0.755861i 0.925834 + 0.377931i \(0.123364\pi\)
−0.925834 + 0.377931i \(0.876636\pi\)
\(360\) 0 0
\(361\) −9807.58 −1.42989
\(362\) 0 0
\(363\) 1145.04 0.165562
\(364\) 0 0
\(365\) −3356.12 −0.481280
\(366\) 0 0
\(367\) −9410.74 −1.33852 −0.669260 0.743028i \(-0.733389\pi\)
−0.669260 + 0.743028i \(0.733389\pi\)
\(368\) 0 0
\(369\) 7451.15i 1.05120i
\(370\) 0 0
\(371\) 102.135i 0.0142927i
\(372\) 0 0
\(373\) −4992.80 −0.693076 −0.346538 0.938036i \(-0.612643\pi\)
−0.346538 + 0.938036i \(0.612643\pi\)
\(374\) 0 0
\(375\) 117.091i 0.0161241i
\(376\) 0 0
\(377\) 4274.33 + 2627.66i 0.583923 + 0.358969i
\(378\) 0 0
\(379\) 2436.78i 0.330261i −0.986272 0.165131i \(-0.947195\pi\)
0.986272 0.165131i \(-0.0528046\pi\)
\(380\) 0 0
\(381\) 1141.90 0.153547
\(382\) 0 0
\(383\) 10395.4i 1.38690i −0.720506 0.693449i \(-0.756090\pi\)
0.720506 0.693449i \(-0.243910\pi\)
\(384\) 0 0
\(385\) 10.5141i 0.00139182i
\(386\) 0 0
\(387\) 8407.14 1.10429
\(388\) 0 0
\(389\) 13872.3 1.80811 0.904056 0.427413i \(-0.140575\pi\)
0.904056 + 0.427413i \(0.140575\pi\)
\(390\) 0 0
\(391\) −9632.42 −1.24586
\(392\) 0 0
\(393\) −756.304 −0.0970750
\(394\) 0 0
\(395\) 2967.45i 0.377997i
\(396\) 0 0
\(397\) 2216.16i 0.280166i −0.990140 0.140083i \(-0.955263\pi\)
0.990140 0.140083i \(-0.0447369\pi\)
\(398\) 0 0
\(399\) 24.4002 0.00306150
\(400\) 0 0
\(401\) 12127.7i 1.51030i −0.655554 0.755148i \(-0.727565\pi\)
0.655554 0.755148i \(-0.272435\pi\)
\(402\) 0 0
\(403\) 545.018 886.565i 0.0673680 0.109585i
\(404\) 0 0
\(405\) 3293.48i 0.404085i
\(406\) 0 0
\(407\) 2142.64 0.260950
\(408\) 0 0
\(409\) 2755.96i 0.333187i 0.986026 + 0.166594i \(0.0532768\pi\)
−0.986026 + 0.166594i \(0.946723\pi\)
\(410\) 0 0
\(411\) 23.2909i 0.00279526i
\(412\) 0 0
\(413\) 136.838 0.0163036
\(414\) 0 0
\(415\) −2128.75 −0.251798
\(416\) 0 0
\(417\) 1265.94 0.148665
\(418\) 0 0
\(419\) −417.932 −0.0487287 −0.0243643 0.999703i \(-0.507756\pi\)
−0.0243643 + 0.999703i \(0.507756\pi\)
\(420\) 0 0
\(421\) 7623.50i 0.882534i 0.897376 + 0.441267i \(0.145471\pi\)
−0.897376 + 0.441267i \(0.854529\pi\)
\(422\) 0 0
\(423\) 9924.15i 1.14073i
\(424\) 0 0
\(425\) 1369.44 0.156300
\(426\) 0 0
\(427\) 37.6573i 0.00426783i
\(428\) 0 0
\(429\) 239.640 389.815i 0.0269695 0.0438705i
\(430\) 0 0
\(431\) 6348.22i 0.709473i −0.934966 0.354736i \(-0.884571\pi\)
0.934966 0.354736i \(-0.115429\pi\)
\(432\) 0 0
\(433\) −4286.27 −0.475716 −0.237858 0.971300i \(-0.576445\pi\)
−0.237858 + 0.971300i \(0.576445\pi\)
\(434\) 0 0
\(435\) 501.357i 0.0552603i
\(436\) 0 0
\(437\) 22701.6i 2.48504i
\(438\) 0 0
\(439\) 898.674 0.0977024 0.0488512 0.998806i \(-0.484444\pi\)
0.0488512 + 0.998806i \(0.484444\pi\)
\(440\) 0 0
\(441\) −8958.97 −0.967387
\(442\) 0 0
\(443\) −4981.83 −0.534297 −0.267149 0.963655i \(-0.586081\pi\)
−0.267149 + 0.963655i \(0.586081\pi\)
\(444\) 0 0
\(445\) −708.378 −0.0754615
\(446\) 0 0
\(447\) 298.698i 0.0316062i
\(448\) 0 0
\(449\) 4494.76i 0.472429i −0.971701 0.236215i \(-0.924093\pi\)
0.971701 0.236215i \(-0.0759068\pi\)
\(450\) 0 0
\(451\) 2972.71 0.310375
\(452\) 0 0
\(453\) 442.763i 0.0459223i
\(454\) 0 0
\(455\) −40.2839 24.7647i −0.00415064 0.00255162i
\(456\) 0 0
\(457\) 2924.71i 0.299370i 0.988734 + 0.149685i \(0.0478259\pi\)
−0.988734 + 0.149685i \(0.952174\pi\)
\(458\) 0 0
\(459\) 2725.80 0.277188
\(460\) 0 0
\(461\) 10122.2i 1.02264i −0.859390 0.511320i \(-0.829157\pi\)
0.859390 0.511320i \(-0.170843\pi\)
\(462\) 0 0
\(463\) 5225.27i 0.524490i 0.965001 + 0.262245i \(0.0844628\pi\)
−0.965001 + 0.262245i \(0.915537\pi\)
\(464\) 0 0
\(465\) 103.989 0.0103707
\(466\) 0 0
\(467\) 5596.68 0.554569 0.277284 0.960788i \(-0.410566\pi\)
0.277284 + 0.960788i \(0.410566\pi\)
\(468\) 0 0
\(469\) −186.793 −0.0183909
\(470\) 0 0
\(471\) 2021.38 0.197750
\(472\) 0 0
\(473\) 3354.11i 0.326051i
\(474\) 0 0
\(475\) 3227.48i 0.311762i
\(476\) 0 0
\(477\) −13223.0 −1.26927
\(478\) 0 0
\(479\) 14342.8i 1.36814i −0.729418 0.684069i \(-0.760209\pi\)
0.729418 0.684069i \(-0.239791\pi\)
\(480\) 0 0
\(481\) −5046.71 + 8209.33i −0.478399 + 0.778198i
\(482\) 0 0
\(483\) 33.2356i 0.00313100i
\(484\) 0 0
\(485\) 2757.33 0.258153
\(486\) 0 0
\(487\) 19369.6i 1.80230i −0.433512 0.901148i \(-0.642726\pi\)
0.433512 0.901148i \(-0.357274\pi\)
\(488\) 0 0
\(489\) 2325.85i 0.215089i
\(490\) 0 0
\(491\) −12486.5 −1.14768 −0.573838 0.818969i \(-0.694546\pi\)
−0.573838 + 0.818969i \(0.694546\pi\)
\(492\) 0 0
\(493\) −5863.64 −0.535670
\(494\) 0 0
\(495\) −1361.22 −0.123601
\(496\) 0 0
\(497\) −75.9128 −0.00685142
\(498\) 0 0
\(499\) 15364.4i 1.37837i −0.724585 0.689186i \(-0.757968\pi\)
0.724585 0.689186i \(-0.242032\pi\)
\(500\) 0 0
\(501\) 1464.40i 0.130588i
\(502\) 0 0
\(503\) −15778.4 −1.39866 −0.699328 0.714800i \(-0.746517\pi\)
−0.699328 + 0.714800i \(0.746517\pi\)
\(504\) 0 0
\(505\) 6931.94i 0.610826i
\(506\) 0 0
\(507\) 929.101 + 1836.32i 0.0813863 + 0.160856i
\(508\) 0 0
\(509\) 6252.54i 0.544478i −0.962230 0.272239i \(-0.912236\pi\)
0.962230 0.272239i \(-0.0877641\pi\)
\(510\) 0 0
\(511\) −135.433 −0.0117245
\(512\) 0 0
\(513\) 6424.13i 0.552889i
\(514\) 0 0
\(515\) 5783.04i 0.494817i
\(516\) 0 0
\(517\) 3959.33 0.336811
\(518\) 0 0
\(519\) 2608.89 0.220651
\(520\) 0 0
\(521\) −13016.7 −1.09457 −0.547287 0.836945i \(-0.684340\pi\)
−0.547287 + 0.836945i \(0.684340\pi\)
\(522\) 0 0
\(523\) 16344.2 1.36650 0.683251 0.730183i \(-0.260565\pi\)
0.683251 + 0.730183i \(0.260565\pi\)
\(524\) 0 0
\(525\) 4.72510i 0.000392800i
\(526\) 0 0
\(527\) 1216.21i 0.100530i
\(528\) 0 0
\(529\) 18754.9 1.54145
\(530\) 0 0
\(531\) 17715.9i 1.44785i
\(532\) 0 0
\(533\) −7001.82 + 11389.7i −0.569010 + 0.925592i
\(534\) 0 0
\(535\) 5726.56i 0.462768i
\(536\) 0 0
\(537\) 3140.10 0.252337
\(538\) 0 0
\(539\) 3574.26i 0.285630i
\(540\) 0 0
\(541\) 21385.8i 1.69953i 0.527158 + 0.849767i \(0.323258\pi\)
−0.527158 + 0.849767i \(0.676742\pi\)
\(542\) 0 0
\(543\) 3254.42 0.257202
\(544\) 0 0
\(545\) −10169.8 −0.799312
\(546\) 0 0
\(547\) 22836.7 1.78505 0.892527 0.450993i \(-0.148930\pi\)
0.892527 + 0.450993i \(0.148930\pi\)
\(548\) 0 0
\(549\) 4875.35 0.379007
\(550\) 0 0
\(551\) 13819.4i 1.06847i
\(552\) 0 0
\(553\) 119.749i 0.00920842i
\(554\) 0 0
\(555\) −962.912 −0.0736456
\(556\) 0 0
\(557\) 14375.7i 1.09357i −0.837274 0.546784i \(-0.815852\pi\)
0.837274 0.546784i \(-0.184148\pi\)
\(558\) 0 0
\(559\) −12851.0 7900.17i −0.972340 0.597749i
\(560\) 0 0
\(561\) 534.760i 0.0402452i
\(562\) 0 0
\(563\) −2088.93 −0.156373 −0.0781866 0.996939i \(-0.524913\pi\)
−0.0781866 + 0.996939i \(0.524913\pi\)
\(564\) 0 0
\(565\) 6094.57i 0.453806i
\(566\) 0 0
\(567\) 132.906i 0.00984395i
\(568\) 0 0
\(569\) 7775.20 0.572853 0.286426 0.958102i \(-0.407533\pi\)
0.286426 + 0.958102i \(0.407533\pi\)
\(570\) 0 0
\(571\) −21491.9 −1.57515 −0.787573 0.616221i \(-0.788663\pi\)
−0.787573 + 0.616221i \(0.788663\pi\)
\(572\) 0 0
\(573\) 771.029 0.0562133
\(574\) 0 0
\(575\) −4396.15 −0.318839
\(576\) 0 0
\(577\) 4348.75i 0.313762i −0.987617 0.156881i \(-0.949856\pi\)
0.987617 0.156881i \(-0.0501440\pi\)
\(578\) 0 0
\(579\) 174.287i 0.0125097i
\(580\) 0 0
\(581\) −85.9040 −0.00613407
\(582\) 0 0
\(583\) 5275.45i 0.374763i
\(584\) 0 0
\(585\) 3206.19 5215.41i 0.226598 0.368599i
\(586\) 0 0
\(587\) 5800.67i 0.407870i 0.978984 + 0.203935i \(0.0653731\pi\)
−0.978984 + 0.203935i \(0.934627\pi\)
\(588\) 0 0
\(589\) −2866.36 −0.200520
\(590\) 0 0
\(591\) 2842.95i 0.197874i
\(592\) 0 0
\(593\) 4577.14i 0.316966i 0.987362 + 0.158483i \(0.0506603\pi\)
−0.987362 + 0.158483i \(0.949340\pi\)
\(594\) 0 0
\(595\) 55.2626 0.00380764
\(596\) 0 0
\(597\) −2519.89 −0.172751
\(598\) 0 0
\(599\) −17537.7 −1.19628 −0.598140 0.801392i \(-0.704093\pi\)
−0.598140 + 0.801392i \(0.704093\pi\)
\(600\) 0 0
\(601\) 13316.0 0.903780 0.451890 0.892074i \(-0.350750\pi\)
0.451890 + 0.892074i \(0.350750\pi\)
\(602\) 0 0
\(603\) 24183.4i 1.63321i
\(604\) 0 0
\(605\) 6111.93i 0.410719i
\(606\) 0 0
\(607\) −2103.20 −0.140636 −0.0703182 0.997525i \(-0.522401\pi\)
−0.0703182 + 0.997525i \(0.522401\pi\)
\(608\) 0 0
\(609\) 20.2319i 0.00134620i
\(610\) 0 0
\(611\) −9325.69 + 15169.8i −0.617475 + 1.00443i
\(612\) 0 0
\(613\) 6984.21i 0.460178i 0.973170 + 0.230089i \(0.0739018\pi\)
−0.973170 + 0.230089i \(0.926098\pi\)
\(614\) 0 0
\(615\) −1335.95 −0.0875945
\(616\) 0 0
\(617\) 13605.0i 0.887713i −0.896098 0.443856i \(-0.853610\pi\)
0.896098 0.443856i \(-0.146390\pi\)
\(618\) 0 0
\(619\) 24505.8i 1.59123i 0.605801 + 0.795616i \(0.292853\pi\)
−0.605801 + 0.795616i \(0.707147\pi\)
\(620\) 0 0
\(621\) −8750.31 −0.565439
\(622\) 0 0
\(623\) −28.5860 −0.00183832
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −1260.32 −0.0802746
\(628\) 0 0
\(629\) 11261.8i 0.713890i
\(630\) 0 0
\(631\) 18694.2i 1.17940i −0.807621 0.589702i \(-0.799245\pi\)
0.807621 0.589702i \(-0.200755\pi\)
\(632\) 0 0
\(633\) −1322.26 −0.0830252
\(634\) 0 0
\(635\) 6095.17i 0.380912i
\(636\) 0 0
\(637\) 13694.5 + 8418.72i 0.851797 + 0.523645i
\(638\) 0 0
\(639\) 9828.15i 0.608444i
\(640\) 0 0
\(641\) −22658.3 −1.39617 −0.698087 0.716013i \(-0.745965\pi\)
−0.698087 + 0.716013i \(0.745965\pi\)
\(642\) 0 0
\(643\) 18187.4i 1.11546i 0.830022 + 0.557730i \(0.188328\pi\)
−0.830022 + 0.557730i \(0.811672\pi\)
\(644\) 0 0
\(645\) 1507.35i 0.0920185i
\(646\) 0 0
\(647\) −4755.08 −0.288936 −0.144468 0.989509i \(-0.546147\pi\)
−0.144468 + 0.989509i \(0.546147\pi\)
\(648\) 0 0
\(649\) −7067.94 −0.427490
\(650\) 0 0
\(651\) 4.19641 0.000252643
\(652\) 0 0
\(653\) 731.494 0.0438370 0.0219185 0.999760i \(-0.493023\pi\)
0.0219185 + 0.999760i \(0.493023\pi\)
\(654\) 0 0
\(655\) 4036.96i 0.240820i
\(656\) 0 0
\(657\) 17534.1i 1.04120i
\(658\) 0 0
\(659\) −16005.3 −0.946099 −0.473050 0.881036i \(-0.656847\pi\)
−0.473050 + 0.881036i \(0.656847\pi\)
\(660\) 0 0
\(661\) 12332.1i 0.725664i 0.931855 + 0.362832i \(0.118190\pi\)
−0.931855 + 0.362832i \(0.881810\pi\)
\(662\) 0 0
\(663\) −2048.88 1259.56i −0.120018 0.0737815i
\(664\) 0 0
\(665\) 130.242i 0.00759486i
\(666\) 0 0
\(667\) 18823.4 1.09272
\(668\) 0 0
\(669\) 444.228i 0.0256724i
\(670\) 0 0
\(671\) 1945.07i 0.111905i
\(672\) 0 0
\(673\) 12183.0 0.697799 0.348899 0.937160i \(-0.386556\pi\)
0.348899 + 0.937160i \(0.386556\pi\)
\(674\) 0 0
\(675\) 1244.03 0.0709374
\(676\) 0 0
\(677\) 25830.0 1.46637 0.733183 0.680032i \(-0.238034\pi\)
0.733183 + 0.680032i \(0.238034\pi\)
\(678\) 0 0
\(679\) 111.270 0.00628888
\(680\) 0 0
\(681\) 1462.92i 0.0823189i
\(682\) 0 0
\(683\) 6832.74i 0.382793i 0.981513 + 0.191396i \(0.0613016\pi\)
−0.981513 + 0.191396i \(0.938698\pi\)
\(684\) 0 0
\(685\) −124.321 −0.00693438
\(686\) 0 0
\(687\) 2743.50i 0.152360i
\(688\) 0 0
\(689\) 20212.4 + 12425.6i 1.11761 + 0.687052i
\(690\) 0 0
\(691\) 26068.7i 1.43517i 0.696472 + 0.717584i \(0.254752\pi\)
−0.696472 + 0.717584i \(0.745248\pi\)
\(692\) 0 0
\(693\) −54.9311 −0.00301106
\(694\) 0 0
\(695\) 6757.24i 0.368801i
\(696\) 0 0
\(697\) 15624.6i 0.849104i
\(698\) 0 0
\(699\) 2609.63 0.141209
\(700\) 0 0
\(701\) −31003.6 −1.67045 −0.835227 0.549905i \(-0.814664\pi\)
−0.835227 + 0.549905i \(0.814664\pi\)
\(702\) 0 0
\(703\) 26541.7 1.42395
\(704\) 0 0
\(705\) −1779.34 −0.0950552
\(706\) 0 0
\(707\) 279.733i 0.0148804i
\(708\) 0 0
\(709\) 19868.2i 1.05242i 0.850355 + 0.526209i \(0.176387\pi\)
−0.850355 + 0.526209i \(0.823613\pi\)
\(710\) 0 0
\(711\) −15503.5 −0.817759
\(712\) 0 0
\(713\) 3904.27i 0.205072i
\(714\) 0 0
\(715\) 2080.74 + 1279.14i 0.108832 + 0.0669050i
\(716\) 0 0
\(717\) 2331.14i 0.121420i
\(718\) 0 0
\(719\) −2878.38 −0.149298 −0.0746491 0.997210i \(-0.523784\pi\)
−0.0746491 + 0.997210i \(0.523784\pi\)
\(720\) 0 0
\(721\) 233.370i 0.0120543i
\(722\) 0 0
\(723\) 4534.35i 0.233242i
\(724\) 0 0
\(725\) −2676.12 −0.137088
\(726\) 0 0
\(727\) 22798.9 1.16309 0.581543 0.813516i \(-0.302449\pi\)
0.581543 + 0.813516i \(0.302449\pi\)
\(728\) 0 0
\(729\) −15948.3 −0.810257
\(730\) 0 0
\(731\) 17629.3 0.891989
\(732\) 0 0
\(733\) 27940.5i 1.40792i −0.710240 0.703960i \(-0.751414\pi\)
0.710240 0.703960i \(-0.248586\pi\)
\(734\) 0 0
\(735\) 1606.29i 0.0806108i
\(736\) 0 0
\(737\) 9648.21 0.482220
\(738\) 0 0
\(739\) 30468.8i 1.51666i 0.651871 + 0.758330i \(0.273984\pi\)
−0.651871 + 0.758330i \(0.726016\pi\)
\(740\) 0 0
\(741\) 2968.51 4828.79i 0.147167 0.239393i
\(742\) 0 0
\(743\) 17528.7i 0.865501i −0.901514 0.432750i \(-0.857543\pi\)
0.901514 0.432750i \(-0.142457\pi\)
\(744\) 0 0
\(745\) −1594.38 −0.0784073
\(746\) 0 0
\(747\) 11121.7i 0.544740i
\(748\) 0 0
\(749\) 231.091i 0.0112735i
\(750\) 0 0
\(751\) 4371.31 0.212399 0.106199 0.994345i \(-0.466132\pi\)
0.106199 + 0.994345i \(0.466132\pi\)
\(752\) 0 0
\(753\) −8.22393 −0.000398003
\(754\) 0 0
\(755\) 2363.36 0.113922
\(756\) 0 0
\(757\) 2920.51 0.140221 0.0701107 0.997539i \(-0.477665\pi\)
0.0701107 + 0.997539i \(0.477665\pi\)
\(758\) 0 0
\(759\) 1716.68i 0.0820968i
\(760\) 0 0
\(761\) 40352.4i 1.92217i 0.276246 + 0.961087i \(0.410909\pi\)
−0.276246 + 0.961087i \(0.589091\pi\)
\(762\) 0 0
\(763\) −410.393 −0.0194721
\(764\) 0 0
\(765\) 7154.64i 0.338139i
\(766\) 0 0
\(767\) 16647.6 27080.2i 0.783717 1.27485i
\(768\) 0 0
\(769\) 27282.1i 1.27935i −0.768646 0.639674i \(-0.779069\pi\)
0.768646 0.639674i \(-0.220931\pi\)
\(770\) 0 0
\(771\) 1498.80 0.0700102
\(772\) 0 0
\(773\) 10121.3i 0.470942i 0.971881 + 0.235471i \(0.0756633\pi\)
−0.971881 + 0.235471i \(0.924337\pi\)
\(774\) 0 0
\(775\) 555.070i 0.0257273i
\(776\) 0 0
\(777\) −38.8575 −0.00179409
\(778\) 0 0
\(779\) 36824.0 1.69365
\(780\) 0 0
\(781\) 3921.03 0.179649
\(782\) 0 0
\(783\) −5326.67 −0.243116
\(784\) 0 0
\(785\) 10789.6i 0.490570i
\(786\) 0 0
\(787\) 17973.2i 0.814072i 0.913412 + 0.407036i \(0.133438\pi\)
−0.913412 + 0.407036i \(0.866562\pi\)
\(788\) 0 0
\(789\) 2857.23 0.128923
\(790\) 0 0
\(791\) 245.941i 0.0110552i
\(792\) 0 0
\(793\) −7452.35 4581.36i −0.333721 0.205156i
\(794\) 0 0
\(795\) 2370.81i 0.105766i
\(796\) 0 0
\(797\) −1050.61 −0.0466931 −0.0233465 0.999727i \(-0.507432\pi\)
−0.0233465 + 0.999727i \(0.507432\pi\)
\(798\) 0 0
\(799\) 20810.4i 0.921425i
\(800\) 0 0
\(801\) 3700.93i 0.163253i
\(802\) 0 0
\(803\) 6995.38 0.307424
\(804\) 0 0
\(805\) −177.403 −0.00776726
\(806\) 0 0
\(807\) −5778.26 −0.252050
\(808\) 0 0
\(809\) −10131.7 −0.440310 −0.220155 0.975465i \(-0.570656\pi\)
−0.220155 + 0.975465i \(0.570656\pi\)
\(810\) 0 0
\(811\) 3463.42i 0.149959i −0.997185 0.0749797i \(-0.976111\pi\)
0.997185 0.0749797i \(-0.0238892\pi\)
\(812\) 0 0
\(813\) 2271.49i 0.0979884i
\(814\) 0 0
\(815\) −12414.8 −0.533585
\(816\) 0 0
\(817\) 41548.6i 1.77919i
\(818\) 0 0
\(819\) 129.383 210.464i 0.00552016 0.00897948i
\(820\) 0 0
\(821\) 9876.00i 0.419823i −0.977720 0.209912i \(-0.932682\pi\)
0.977720 0.209912i \(-0.0673176\pi\)
\(822\) 0 0
\(823\) 7199.95 0.304951 0.152475 0.988307i \(-0.451276\pi\)
0.152475 + 0.988307i \(0.451276\pi\)
\(824\) 0 0
\(825\) 244.060i 0.0102995i
\(826\) 0 0
\(827\) 16864.4i 0.709110i 0.935035 + 0.354555i \(0.115368\pi\)
−0.935035 + 0.354555i \(0.884632\pi\)
\(828\) 0 0
\(829\) 26061.1 1.09184 0.545922 0.837836i \(-0.316180\pi\)
0.545922 + 0.837836i \(0.316180\pi\)
\(830\) 0 0
\(831\) 4161.61 0.173724
\(832\) 0 0
\(833\) −18786.5 −0.781407
\(834\) 0 0
\(835\) −7816.57 −0.323957
\(836\) 0 0
\(837\) 1104.84i 0.0456258i
\(838\) 0 0
\(839\) 35491.9i 1.46045i 0.683208 + 0.730224i \(0.260584\pi\)
−0.683208 + 0.730224i \(0.739416\pi\)
\(840\) 0 0
\(841\) −12930.4 −0.530175
\(842\) 0 0
\(843\) 334.993i 0.0136866i
\(844\) 0 0
\(845\) −9801.81 + 4959.31i −0.399044 + 0.201900i
\(846\) 0 0
\(847\) 246.642i 0.0100056i
\(848\) 0 0
\(849\) −1474.13 −0.0595903
\(850\) 0 0
\(851\) 36152.4i 1.45627i
\(852\) 0 0
\(853\) 10763.1i 0.432029i −0.976390 0.216014i \(-0.930694\pi\)
0.976390 0.216014i \(-0.0693058\pi\)
\(854\) 0 0
\(855\) −16862.0 −0.674465
\(856\) 0 0
\(857\) −3344.32 −0.133302 −0.0666511 0.997776i \(-0.521231\pi\)
−0.0666511 + 0.997776i \(0.521231\pi\)
\(858\) 0 0
\(859\) 31361.2 1.24567 0.622836 0.782353i \(-0.285980\pi\)
0.622836 + 0.782353i \(0.285980\pi\)
\(860\) 0 0
\(861\) −53.9111 −0.00213390
\(862\) 0 0
\(863\) 9576.65i 0.377744i −0.982002 0.188872i \(-0.939517\pi\)
0.982002 0.188872i \(-0.0604831\pi\)
\(864\) 0 0
\(865\) 13925.6i 0.547382i
\(866\) 0 0
\(867\) −1791.41 −0.0701725
\(868\) 0 0
\(869\) 6185.26i 0.241451i
\(870\) 0 0
\(871\) −22725.1 + 36966.2i −0.884054 + 1.43806i
\(872\) 0 0
\(873\) 14405.7i 0.558487i
\(874\) 0 0
\(875\) 25.2214 0.000974444
\(876\) 0 0
\(877\) 28993.5i 1.11635i 0.829722 + 0.558177i \(0.188499\pi\)
−0.829722 + 0.558177i \(0.811501\pi\)
\(878\) 0 0
\(879\) 4093.79i 0.157088i
\(880\) 0 0
\(881\) 23068.0 0.882156 0.441078 0.897469i \(-0.354596\pi\)
0.441078 + 0.897469i \(0.354596\pi\)
\(882\) 0 0
\(883\) 29675.0 1.13097 0.565483 0.824760i \(-0.308690\pi\)
0.565483 + 0.824760i \(0.308690\pi\)
\(884\) 0 0
\(885\) 3176.37 0.120647
\(886\) 0 0
\(887\) 5118.12 0.193742 0.0968712 0.995297i \(-0.469117\pi\)
0.0968712 + 0.995297i \(0.469117\pi\)
\(888\) 0 0
\(889\) 245.966i 0.00927944i
\(890\) 0 0
\(891\) 6864.82i 0.258115i
\(892\) 0 0
\(893\) 49045.7 1.83791
\(894\) 0 0
\(895\) 16761.0i 0.625989i
\(896\) 0 0
\(897\) 6577.30 + 4043.41i 0.244827 + 0.150508i
\(898\) 0 0
\(899\) 2376.69i 0.0881725i
\(900\) 0 0
\(901\) −27727.9 −1.02525
\(902\) 0 0
\(903\) 60.8280i 0.00224167i
\(904\) 0 0
\(905\) 17371.3i 0.638056i
\(906\) 0 0
\(907\) −37154.2 −1.36018 −0.680091 0.733128i \(-0.738060\pi\)
−0.680091 + 0.733128i \(0.738060\pi\)
\(908\) 0 0
\(909\) 36216.0 1.32146
\(910\) 0 0
\(911\) −7888.56 −0.286893 −0.143447 0.989658i \(-0.545819\pi\)
−0.143447 + 0.989658i \(0.545819\pi\)
\(912\) 0 0
\(913\) 4437.09 0.160839
\(914\) 0 0
\(915\) 874.123i 0.0315821i
\(916\) 0 0
\(917\) 162.908i 0.00586664i
\(918\) 0 0
\(919\) 32292.7 1.15913 0.579563 0.814927i \(-0.303223\pi\)
0.579563 + 0.814927i \(0.303223\pi\)
\(920\) 0 0
\(921\) 3745.93i 0.134020i
\(922\) 0 0
\(923\) −9235.48 + 15023.1i −0.329350 + 0.535743i
\(924\) 0 0
\(925\) 5139.78i 0.182697i
\(926\) 0 0
\(927\) 30213.5 1.07049
\(928\) 0 0
\(929\) 7931.61i 0.280116i −0.990143 0.140058i \(-0.955271\pi\)
0.990143 0.140058i \(-0.0447289\pi\)
\(930\) 0 0
\(931\) 44275.7i 1.55862i
\(932\) 0 0
\(933\) −1982.18 −0.0695537
\(934\) 0 0
\(935\) −2854.41 −0.0998388
\(936\) 0 0
\(937\) 35368.6 1.23313 0.616565 0.787304i \(-0.288524\pi\)
0.616565 + 0.787304i \(0.288524\pi\)
\(938\) 0 0
\(939\) 1620.30 0.0563115
\(940\) 0 0
\(941\) 21319.4i 0.738569i 0.929316 + 0.369285i \(0.120397\pi\)
−0.929316 + 0.369285i \(0.879603\pi\)
\(942\) 0 0
\(943\) 50158.0i 1.73210i
\(944\) 0 0
\(945\) 50.2018 0.00172811
\(946\) 0 0
\(947\) 16623.5i 0.570422i −0.958465 0.285211i \(-0.907936\pi\)
0.958465 0.285211i \(-0.0920637\pi\)
\(948\) 0 0
\(949\) −16476.7 + 26802.2i −0.563600 + 0.916792i
\(950\) 0 0
\(951\) 4343.44i 0.148103i
\(952\) 0 0
\(953\) 25047.2 0.851374 0.425687 0.904870i \(-0.360032\pi\)
0.425687 + 0.904870i \(0.360032\pi\)
\(954\) 0 0
\(955\) 4115.56i 0.139452i
\(956\) 0 0
\(957\) 1045.01i 0.0352982i
\(958\) 0 0
\(959\) −5.01687 −0.000168929
\(960\) 0 0
\(961\) 29298.0 0.983453
\(962\) 0 0
\(963\) −29918.4 −1.00115
\(964\) 0 0
\(965\) 930.301 0.0310336
\(966\) 0 0
\(967\) 13656.8i 0.454161i −0.973876 0.227081i \(-0.927082\pi\)
0.973876 0.227081i \(-0.0729181\pi\)
\(968\) 0 0
\(969\) 6624.26i 0.219610i
\(970\) 0 0
\(971\) −2265.67 −0.0748803 −0.0374401 0.999299i \(-0.511920\pi\)
−0.0374401 + 0.999299i \(0.511920\pi\)
\(972\) 0 0
\(973\) 272.683i 0.00898440i
\(974\) 0 0
\(975\) −935.093 574.851i −0.0307148 0.0188820i
\(976\) 0 0
\(977\) 20144.9i 0.659666i 0.944039 + 0.329833i \(0.106992\pi\)
−0.944039 + 0.329833i \(0.893008\pi\)
\(978\) 0 0
\(979\) 1476.52 0.0482020
\(980\) 0 0
\(981\) 53132.0i 1.72923i
\(982\) 0 0
\(983\) 10526.6i 0.341552i −0.985310 0.170776i \(-0.945373\pi\)
0.985310 0.170776i \(-0.0546274\pi\)
\(984\) 0 0
\(985\) −15175.0 −0.490878
\(986\) 0 0
\(987\) −71.8039 −0.00231565
\(988\) 0 0
\(989\) −56593.4 −1.81958
\(990\) 0 0
\(991\) −55992.7 −1.79482 −0.897410 0.441198i \(-0.854554\pi\)
−0.897410 + 0.441198i \(0.854554\pi\)
\(992\) 0 0
\(993\) 2134.17i 0.0682032i
\(994\) 0 0
\(995\) 13450.6i 0.428554i
\(996\) 0 0
\(997\) 48578.5 1.54312 0.771562 0.636154i \(-0.219476\pi\)
0.771562 + 0.636154i \(0.219476\pi\)
\(998\) 0 0
\(999\) 10230.5i 0.324002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1040.4.k.d.961.8 14
4.3 odd 2 65.4.c.a.51.14 yes 14
12.11 even 2 585.4.b.e.181.1 14
13.12 even 2 inner 1040.4.k.d.961.7 14
20.3 even 4 325.4.d.d.324.13 14
20.7 even 4 325.4.d.c.324.2 14
20.19 odd 2 325.4.c.e.51.1 14
52.31 even 4 845.4.a.l.1.7 7
52.47 even 4 845.4.a.i.1.1 7
52.51 odd 2 65.4.c.a.51.1 14
156.155 even 2 585.4.b.e.181.14 14
260.103 even 4 325.4.d.c.324.1 14
260.207 even 4 325.4.d.d.324.14 14
260.259 odd 2 325.4.c.e.51.14 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.4.c.a.51.1 14 52.51 odd 2
65.4.c.a.51.14 yes 14 4.3 odd 2
325.4.c.e.51.1 14 20.19 odd 2
325.4.c.e.51.14 14 260.259 odd 2
325.4.d.c.324.1 14 260.103 even 4
325.4.d.c.324.2 14 20.7 even 4
325.4.d.d.324.13 14 20.3 even 4
325.4.d.d.324.14 14 260.207 even 4
585.4.b.e.181.1 14 12.11 even 2
585.4.b.e.181.14 14 156.155 even 2
845.4.a.i.1.1 7 52.47 even 4
845.4.a.l.1.7 7 52.31 even 4
1040.4.k.d.961.7 14 13.12 even 2 inner
1040.4.k.d.961.8 14 1.1 even 1 trivial