| L(s) = 1 | + 0.936·3-s + 5i·5-s + 0.201i·7-s − 26.1·9-s − 10.4i·11-s + (39.9 + 24.5i)13-s + 4.68i·15-s − 54.7·17-s − 129. i·19-s + 0.189i·21-s + 175.·23-s − 25·25-s − 49.7·27-s + 107.·29-s − 22.2i·31-s + ⋯ |
| L(s) = 1 | + 0.180·3-s + 0.447i·5-s + 0.0108i·7-s − 0.967·9-s − 0.285i·11-s + (0.851 + 0.523i)13-s + 0.0806i·15-s − 0.781·17-s − 1.55i·19-s + 0.00196i·21-s + 1.59·23-s − 0.200·25-s − 0.354·27-s + 0.685·29-s − 0.128i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.523 - 0.851i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.523 - 0.851i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.827891931\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.827891931\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 - 5iT \) |
| 13 | \( 1 + (-39.9 - 24.5i)T \) |
| good | 3 | \( 1 - 0.936T + 27T^{2} \) |
| 7 | \( 1 - 0.201iT - 343T^{2} \) |
| 11 | \( 1 + 10.4iT - 1.33e3T^{2} \) |
| 17 | \( 1 + 54.7T + 4.91e3T^{2} \) |
| 19 | \( 1 + 129. iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 175.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 107.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 22.2iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 205. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 285. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 321.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 379. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 506.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 678. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 186.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 925. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 376. iT - 3.57e5T^{2} \) |
| 73 | \( 1 - 671. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 593.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 425. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 141. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 551. iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.498875569190944544814917980313, −8.795652113428599096527441042332, −8.254525148699617552350866639109, −6.93010107435558664083924026601, −6.50307012960946603744989847167, −5.38055091987125738498553700281, −4.41947007121299152829199003384, −3.17869666545291807718638892721, −2.51719304131901111155359977053, −0.938661160290058629693018538242,
0.54176959106086511108269653307, 1.86019759240404352429123016649, 3.09615809298461086311570215918, 4.00638641430521761599351352984, 5.20614200880570406647850784605, 5.86802057374033769029851565977, 6.88582433822139472722737571319, 7.927984444169034932023391445616, 8.684907015943350186201310890453, 9.126331171267795965157479474792