Properties

Label 325.4.c.e.51.1
Level $325$
Weight $4$
Character 325.51
Analytic conductor $19.176$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [325,4,Mod(51,325)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(325, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("325.51"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 325.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1756207519\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 84x^{12} + 2674x^{10} + 40048x^{8} + 278769x^{6} + 727552x^{4} + 339456x^{2} + 9216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{2}\cdot 5^{4} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.1
Root \(-5.37688i\) of defining polynomial
Character \(\chi\) \(=\) 325.51
Dual form 325.4.c.e.51.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.37688i q^{2} +0.936724 q^{3} -20.9108 q^{4} -5.03665i q^{6} +0.201771i q^{7} +69.4197i q^{8} -26.1225 q^{9} +10.4218i q^{11} -19.5876 q^{12} +(-39.9303 - 24.5473i) q^{13} +1.08490 q^{14} +205.975 q^{16} +54.7775 q^{17} +140.458i q^{18} +129.099i q^{19} +0.189004i q^{21} +56.0369 q^{22} +175.846 q^{23} +65.0272i q^{24} +(-131.988 + 214.700i) q^{26} -49.7612 q^{27} -4.21919i q^{28} +107.045 q^{29} +22.2028i q^{31} -552.144i q^{32} +9.76239i q^{33} -294.532i q^{34} +546.243 q^{36} -205.591i q^{37} +694.150 q^{38} +(-37.4037 - 22.9940i) q^{39} +285.238i q^{41} +1.01625 q^{42} -321.835 q^{43} -217.929i q^{44} -945.503i q^{46} +379.907i q^{47} +192.942 q^{48} +342.959 q^{49} +51.3115 q^{51} +(834.975 + 513.303i) q^{52} -506.192 q^{53} +267.560i q^{54} -14.0069 q^{56} +120.930i q^{57} -575.566i q^{58} +678.186i q^{59} -186.634 q^{61} +119.382 q^{62} -5.27077i q^{63} -1321.01 q^{64} +52.4911 q^{66} +925.768i q^{67} -1145.44 q^{68} +164.719 q^{69} -376.232i q^{71} -1813.42i q^{72} -671.223i q^{73} -1105.44 q^{74} -2699.57i q^{76} -2.10282 q^{77} +(-123.636 + 201.115i) q^{78} -593.491 q^{79} +658.696 q^{81} +1533.69 q^{82} +425.750i q^{83} -3.95222i q^{84} +1730.47i q^{86} +100.271 q^{87} -723.481 q^{88} +141.676i q^{89} +(4.95293 - 8.05678i) q^{91} -3677.08 q^{92} +20.7979i q^{93} +2042.71 q^{94} -517.206i q^{96} +551.467i q^{97} -1844.05i q^{98} -272.245i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 56 q^{4} + 158 q^{9} + 108 q^{12} + 4 q^{13} - 152 q^{14} + 280 q^{16} + 100 q^{17} - 648 q^{22} + 532 q^{23} - 344 q^{26} + 48 q^{27} + 588 q^{29} + 496 q^{36} - 148 q^{38} - 260 q^{39} + 620 q^{42}+ \cdots + 2656 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.37688i 1.90101i −0.310705 0.950506i \(-0.600565\pi\)
0.310705 0.950506i \(-0.399435\pi\)
\(3\) 0.936724 0.180273 0.0901363 0.995929i \(-0.471270\pi\)
0.0901363 + 0.995929i \(0.471270\pi\)
\(4\) −20.9108 −2.61385
\(5\) 0 0
\(6\) 5.03665i 0.342701i
\(7\) 0.201771i 0.0108946i 0.999985 + 0.00544731i \(0.00173394\pi\)
−0.999985 + 0.00544731i \(0.998266\pi\)
\(8\) 69.4197i 3.06795i
\(9\) −26.1225 −0.967502
\(10\) 0 0
\(11\) 10.4218i 0.285664i 0.989747 + 0.142832i \(0.0456208\pi\)
−0.989747 + 0.142832i \(0.954379\pi\)
\(12\) −19.5876 −0.471206
\(13\) −39.9303 24.5473i −0.851898 0.523707i
\(14\) 1.08490 0.0207108
\(15\) 0 0
\(16\) 205.975 3.21836
\(17\) 54.7775 0.781500 0.390750 0.920497i \(-0.372216\pi\)
0.390750 + 0.920497i \(0.372216\pi\)
\(18\) 140.458i 1.83923i
\(19\) 129.099i 1.55881i 0.626521 + 0.779405i \(0.284478\pi\)
−0.626521 + 0.779405i \(0.715522\pi\)
\(20\) 0 0
\(21\) 0.189004i 0.00196400i
\(22\) 56.0369 0.543050
\(23\) 175.846 1.59419 0.797097 0.603852i \(-0.206368\pi\)
0.797097 + 0.603852i \(0.206368\pi\)
\(24\) 65.0272i 0.553067i
\(25\) 0 0
\(26\) −131.988 + 214.700i −0.995574 + 1.61947i
\(27\) −49.7612 −0.354687
\(28\) 4.21919i 0.0284769i
\(29\) 107.045 0.685438 0.342719 0.939438i \(-0.388652\pi\)
0.342719 + 0.939438i \(0.388652\pi\)
\(30\) 0 0
\(31\) 22.2028i 0.128637i 0.997929 + 0.0643184i \(0.0204873\pi\)
−0.997929 + 0.0643184i \(0.979513\pi\)
\(32\) 552.144i 3.05019i
\(33\) 9.76239i 0.0514974i
\(34\) 294.532i 1.48564i
\(35\) 0 0
\(36\) 546.243 2.52890
\(37\) 205.591i 0.913486i −0.889599 0.456743i \(-0.849016\pi\)
0.889599 0.456743i \(-0.150984\pi\)
\(38\) 694.150 2.96332
\(39\) −37.4037 22.9940i −0.153574 0.0944101i
\(40\) 0 0
\(41\) 285.238i 1.08651i 0.839569 + 0.543253i \(0.182807\pi\)
−0.839569 + 0.543253i \(0.817193\pi\)
\(42\) 1.01625 0.00373359
\(43\) −321.835 −1.14138 −0.570690 0.821166i \(-0.693324\pi\)
−0.570690 + 0.821166i \(0.693324\pi\)
\(44\) 217.929i 0.746682i
\(45\) 0 0
\(46\) 945.503i 3.03058i
\(47\) 379.907i 1.17905i 0.807752 + 0.589523i \(0.200684\pi\)
−0.807752 + 0.589523i \(0.799316\pi\)
\(48\) 192.942 0.580182
\(49\) 342.959 0.999881
\(50\) 0 0
\(51\) 51.3115 0.140883
\(52\) 834.975 + 513.303i 2.22673 + 1.36889i
\(53\) −506.192 −1.31190 −0.655951 0.754804i \(-0.727732\pi\)
−0.655951 + 0.754804i \(0.727732\pi\)
\(54\) 267.560i 0.674264i
\(55\) 0 0
\(56\) −14.0069 −0.0334241
\(57\) 120.930i 0.281011i
\(58\) 575.566i 1.30303i
\(59\) 678.186i 1.49648i 0.663428 + 0.748240i \(0.269101\pi\)
−0.663428 + 0.748240i \(0.730899\pi\)
\(60\) 0 0
\(61\) −186.634 −0.391738 −0.195869 0.980630i \(-0.562753\pi\)
−0.195869 + 0.980630i \(0.562753\pi\)
\(62\) 119.382 0.244540
\(63\) 5.27077i 0.0105406i
\(64\) −1321.01 −2.58009
\(65\) 0 0
\(66\) 52.4911 0.0978972
\(67\) 925.768i 1.68807i 0.536289 + 0.844034i \(0.319826\pi\)
−0.536289 + 0.844034i \(0.680174\pi\)
\(68\) −1145.44 −2.04272
\(69\) 164.719 0.287390
\(70\) 0 0
\(71\) 376.232i 0.628881i −0.949277 0.314441i \(-0.898183\pi\)
0.949277 0.314441i \(-0.101817\pi\)
\(72\) 1813.42i 2.96824i
\(73\) 671.223i 1.07617i −0.842889 0.538087i \(-0.819147\pi\)
0.842889 0.538087i \(-0.180853\pi\)
\(74\) −1105.44 −1.73655
\(75\) 0 0
\(76\) 2699.57i 4.07449i
\(77\) −2.10282 −0.00311220
\(78\) −123.636 + 201.115i −0.179475 + 0.291946i
\(79\) −593.491 −0.845227 −0.422613 0.906310i \(-0.638887\pi\)
−0.422613 + 0.906310i \(0.638887\pi\)
\(80\) 0 0
\(81\) 658.696 0.903561
\(82\) 1533.69 2.06546
\(83\) 425.750i 0.563037i 0.959556 + 0.281519i \(0.0908381\pi\)
−0.959556 + 0.281519i \(0.909162\pi\)
\(84\) 3.95222i 0.00513360i
\(85\) 0 0
\(86\) 1730.47i 2.16978i
\(87\) 100.271 0.123566
\(88\) −723.481 −0.876401
\(89\) 141.676i 0.168737i 0.996435 + 0.0843685i \(0.0268873\pi\)
−0.996435 + 0.0843685i \(0.973113\pi\)
\(90\) 0 0
\(91\) 4.95293 8.05678i 0.00570559 0.00928110i
\(92\) −3677.08 −4.16698
\(93\) 20.7979i 0.0231897i
\(94\) 2042.71 2.24138
\(95\) 0 0
\(96\) 517.206i 0.549866i
\(97\) 551.467i 0.577247i 0.957443 + 0.288623i \(0.0931976\pi\)
−0.957443 + 0.288623i \(0.906802\pi\)
\(98\) 1844.05i 1.90079i
\(99\) 272.245i 0.276380i
\(100\) 0 0
\(101\) −1386.39 −1.36585 −0.682924 0.730489i \(-0.739292\pi\)
−0.682924 + 0.730489i \(0.739292\pi\)
\(102\) 275.895i 0.267821i
\(103\) −1156.61 −1.10645 −0.553223 0.833033i \(-0.686602\pi\)
−0.553223 + 0.833033i \(0.686602\pi\)
\(104\) 1704.07 2771.95i 1.60671 2.61358i
\(105\) 0 0
\(106\) 2721.73i 2.49394i
\(107\) 1145.31 1.03478 0.517390 0.855750i \(-0.326904\pi\)
0.517390 + 0.855750i \(0.326904\pi\)
\(108\) 1040.55 0.927098
\(109\) 2033.95i 1.78731i 0.448750 + 0.893657i \(0.351869\pi\)
−0.448750 + 0.893657i \(0.648131\pi\)
\(110\) 0 0
\(111\) 192.582i 0.164677i
\(112\) 41.5598i 0.0350628i
\(113\) 1218.91 1.01474 0.507370 0.861728i \(-0.330618\pi\)
0.507370 + 0.861728i \(0.330618\pi\)
\(114\) 650.227 0.534205
\(115\) 0 0
\(116\) −2238.39 −1.79163
\(117\) 1043.08 + 641.238i 0.824213 + 0.506687i
\(118\) 3646.52 2.84483
\(119\) 11.0525i 0.00851414i
\(120\) 0 0
\(121\) 1222.39 0.918396
\(122\) 1003.51i 0.744699i
\(123\) 267.190i 0.195867i
\(124\) 464.278i 0.336237i
\(125\) 0 0
\(126\) −28.3403 −0.0200377
\(127\) 1219.03 0.851746 0.425873 0.904783i \(-0.359967\pi\)
0.425873 + 0.904783i \(0.359967\pi\)
\(128\) 2685.75i 1.85460i
\(129\) −301.470 −0.205760
\(130\) 0 0
\(131\) 807.392 0.538490 0.269245 0.963072i \(-0.413226\pi\)
0.269245 + 0.963072i \(0.413226\pi\)
\(132\) 204.139i 0.134606i
\(133\) −26.0485 −0.0169826
\(134\) 4977.74 3.20904
\(135\) 0 0
\(136\) 3802.64i 2.39760i
\(137\) 24.8642i 0.0155057i −0.999970 0.00775287i \(-0.997532\pi\)
0.999970 0.00775287i \(-0.00246784\pi\)
\(138\) 885.676i 0.546331i
\(139\) −1351.45 −0.824665 −0.412332 0.911033i \(-0.635286\pi\)
−0.412332 + 0.911033i \(0.635286\pi\)
\(140\) 0 0
\(141\) 355.868i 0.212550i
\(142\) −2022.96 −1.19551
\(143\) 255.828 416.147i 0.149604 0.243357i
\(144\) −5380.59 −3.11377
\(145\) 0 0
\(146\) −3609.08 −2.04582
\(147\) 321.258 0.180251
\(148\) 4299.08i 2.38772i
\(149\) 318.875i 0.175324i 0.996150 + 0.0876621i \(0.0279396\pi\)
−0.996150 + 0.0876621i \(0.972060\pi\)
\(150\) 0 0
\(151\) 472.671i 0.254738i 0.991855 + 0.127369i \(0.0406533\pi\)
−0.991855 + 0.127369i \(0.959347\pi\)
\(152\) −8962.03 −4.78234
\(153\) −1430.93 −0.756103
\(154\) 11.3066i 0.00591632i
\(155\) 0 0
\(156\) 782.141 + 480.824i 0.401419 + 0.246774i
\(157\) −2157.92 −1.09695 −0.548474 0.836168i \(-0.684791\pi\)
−0.548474 + 0.836168i \(0.684791\pi\)
\(158\) 3191.13i 1.60679i
\(159\) −474.162 −0.236500
\(160\) 0 0
\(161\) 35.4807i 0.0173681i
\(162\) 3541.73i 1.71768i
\(163\) 2482.96i 1.19313i 0.802564 + 0.596567i \(0.203469\pi\)
−0.802564 + 0.596567i \(0.796531\pi\)
\(164\) 5964.56i 2.83996i
\(165\) 0 0
\(166\) 2289.20 1.07034
\(167\) 1563.31i 0.724389i 0.932103 + 0.362194i \(0.117972\pi\)
−0.932103 + 0.362194i \(0.882028\pi\)
\(168\) −13.1206 −0.00602545
\(169\) 991.862 + 1960.36i 0.451462 + 0.892290i
\(170\) 0 0
\(171\) 3372.40i 1.50815i
\(172\) 6729.82 2.98339
\(173\) −2785.12 −1.22398 −0.611991 0.790865i \(-0.709631\pi\)
−0.611991 + 0.790865i \(0.709631\pi\)
\(174\) 539.147i 0.234900i
\(175\) 0 0
\(176\) 2146.64i 0.919368i
\(177\) 635.274i 0.269774i
\(178\) 761.772 0.320771
\(179\) −3352.21 −1.39975 −0.699877 0.714264i \(-0.746762\pi\)
−0.699877 + 0.714264i \(0.746762\pi\)
\(180\) 0 0
\(181\) 3474.25 1.42674 0.713368 0.700789i \(-0.247169\pi\)
0.713368 + 0.700789i \(0.247169\pi\)
\(182\) −43.3203 26.6313i −0.0176435 0.0108464i
\(183\) −174.825 −0.0706197
\(184\) 12207.2i 4.89090i
\(185\) 0 0
\(186\) 111.828 0.0440839
\(187\) 570.882i 0.223246i
\(188\) 7944.16i 3.08185i
\(189\) 10.0404i 0.00386418i
\(190\) 0 0
\(191\) −823.112 −0.311824 −0.155912 0.987771i \(-0.549832\pi\)
−0.155912 + 0.987771i \(0.549832\pi\)
\(192\) −1237.42 −0.465121
\(193\) 186.060i 0.0693933i 0.999398 + 0.0346967i \(0.0110465\pi\)
−0.999398 + 0.0346967i \(0.988953\pi\)
\(194\) 2965.17 1.09735
\(195\) 0 0
\(196\) −7171.55 −2.61354
\(197\) 3035.00i 1.09764i −0.835942 0.548819i \(-0.815078\pi\)
0.835942 0.548819i \(-0.184922\pi\)
\(198\) −1463.83 −0.525402
\(199\) 2690.11 0.958276 0.479138 0.877740i \(-0.340949\pi\)
0.479138 + 0.877740i \(0.340949\pi\)
\(200\) 0 0
\(201\) 867.190i 0.304313i
\(202\) 7454.43i 2.59650i
\(203\) 21.5985i 0.00746758i
\(204\) −1072.96 −0.368247
\(205\) 0 0
\(206\) 6218.93i 2.10337i
\(207\) −4593.55 −1.54239
\(208\) −8224.64 5056.12i −2.74171 1.68548i
\(209\) −1345.45 −0.445295
\(210\) 0 0
\(211\) 1411.57 0.460554 0.230277 0.973125i \(-0.426037\pi\)
0.230277 + 0.973125i \(0.426037\pi\)
\(212\) 10584.9 3.42911
\(213\) 352.426i 0.113370i
\(214\) 6158.20i 1.96713i
\(215\) 0 0
\(216\) 3454.41i 1.08816i
\(217\) −4.47988 −0.00140145
\(218\) 10936.3 3.39771
\(219\) 628.751i 0.194005i
\(220\) 0 0
\(221\) −2187.28 1344.64i −0.665759 0.409277i
\(222\) −1035.49 −0.313052
\(223\) 474.236i 0.142409i −0.997462 0.0712044i \(-0.977316\pi\)
0.997462 0.0712044i \(-0.0226843\pi\)
\(224\) 111.407 0.0332307
\(225\) 0 0
\(226\) 6553.94i 1.92903i
\(227\) 1561.74i 0.456635i −0.973587 0.228318i \(-0.926678\pi\)
0.973587 0.228318i \(-0.0733225\pi\)
\(228\) 2528.75i 0.734520i
\(229\) 2928.82i 0.845162i −0.906325 0.422581i \(-0.861124\pi\)
0.906325 0.422581i \(-0.138876\pi\)
\(230\) 0 0
\(231\) −1.96977 −0.000561044
\(232\) 7431.01i 2.10289i
\(233\) −2785.91 −0.783310 −0.391655 0.920112i \(-0.628097\pi\)
−0.391655 + 0.920112i \(0.628097\pi\)
\(234\) 3447.85 5608.52i 0.963219 1.56684i
\(235\) 0 0
\(236\) 14181.4i 3.91157i
\(237\) −555.937 −0.152371
\(238\) 59.4280 0.0161855
\(239\) 2488.61i 0.673534i 0.941588 + 0.336767i \(0.109333\pi\)
−0.941588 + 0.336767i \(0.890667\pi\)
\(240\) 0 0
\(241\) 4840.64i 1.29383i 0.762562 + 0.646915i \(0.223941\pi\)
−0.762562 + 0.646915i \(0.776059\pi\)
\(242\) 6572.61i 1.74588i
\(243\) 1960.57 0.517574
\(244\) 3902.66 1.02394
\(245\) 0 0
\(246\) 1436.65 0.372346
\(247\) 3169.03 5154.97i 0.816359 1.32795i
\(248\) −1541.31 −0.394651
\(249\) 398.810i 0.101500i
\(250\) 0 0
\(251\) 8.77945 0.00220779 0.00110389 0.999999i \(-0.499649\pi\)
0.00110389 + 0.999999i \(0.499649\pi\)
\(252\) 110.216i 0.0275514i
\(253\) 1832.64i 0.455403i
\(254\) 6554.59i 1.61918i
\(255\) 0 0
\(256\) 3872.87 0.945525
\(257\) −1600.04 −0.388357 −0.194179 0.980966i \(-0.562204\pi\)
−0.194179 + 0.980966i \(0.562204\pi\)
\(258\) 1620.97i 0.391152i
\(259\) 41.4824 0.00995208
\(260\) 0 0
\(261\) −2796.28 −0.663162
\(262\) 4341.25i 1.02368i
\(263\) 3050.24 0.715155 0.357578 0.933883i \(-0.383603\pi\)
0.357578 + 0.933883i \(0.383603\pi\)
\(264\) −677.702 −0.157991
\(265\) 0 0
\(266\) 140.059i 0.0322842i
\(267\) 132.711i 0.0304187i
\(268\) 19358.6i 4.41236i
\(269\) −6168.58 −1.39816 −0.699080 0.715043i \(-0.746407\pi\)
−0.699080 + 0.715043i \(0.746407\pi\)
\(270\) 0 0
\(271\) 2424.93i 0.543556i −0.962360 0.271778i \(-0.912388\pi\)
0.962360 0.271778i \(-0.0876117\pi\)
\(272\) 11282.8 2.51515
\(273\) 4.63953 7.54699i 0.00102856 0.00167313i
\(274\) −133.691 −0.0294766
\(275\) 0 0
\(276\) −3444.41 −0.751193
\(277\) −4442.72 −0.963673 −0.481836 0.876261i \(-0.660030\pi\)
−0.481836 + 0.876261i \(0.660030\pi\)
\(278\) 7266.57i 1.56770i
\(279\) 579.993i 0.124456i
\(280\) 0 0
\(281\) 357.622i 0.0759215i −0.999279 0.0379608i \(-0.987914\pi\)
0.999279 0.0379608i \(-0.0120862\pi\)
\(282\) 1913.46 0.404060
\(283\) −1573.71 −0.330556 −0.165278 0.986247i \(-0.552852\pi\)
−0.165278 + 0.986247i \(0.552852\pi\)
\(284\) 7867.32i 1.64380i
\(285\) 0 0
\(286\) −2237.57 1375.55i −0.462624 0.284399i
\(287\) −57.5528 −0.0118371
\(288\) 14423.4i 2.95107i
\(289\) −1912.42 −0.389257
\(290\) 0 0
\(291\) 516.572i 0.104062i
\(292\) 14035.8i 2.81296i
\(293\) 4370.32i 0.871389i −0.900095 0.435694i \(-0.856503\pi\)
0.900095 0.435694i \(-0.143497\pi\)
\(294\) 1727.37i 0.342660i
\(295\) 0 0
\(296\) 14272.1 2.80253
\(297\) 518.603i 0.101321i
\(298\) 1714.55 0.333293
\(299\) −7021.59 4316.54i −1.35809 0.834890i
\(300\) 0 0
\(301\) 64.9369i 0.0124349i
\(302\) 2541.50 0.484260
\(303\) −1298.66 −0.246225
\(304\) 26591.2i 5.01680i
\(305\) 0 0
\(306\) 7693.93i 1.43736i
\(307\) 3998.97i 0.743430i −0.928347 0.371715i \(-0.878770\pi\)
0.928347 0.371715i \(-0.121230\pi\)
\(308\) 43.9717 0.00813481
\(309\) −1083.42 −0.199462
\(310\) 0 0
\(311\) 2116.08 0.385825 0.192913 0.981216i \(-0.438207\pi\)
0.192913 + 0.981216i \(0.438207\pi\)
\(312\) 1596.24 2596.56i 0.289645 0.471157i
\(313\) −1729.75 −0.312368 −0.156184 0.987728i \(-0.549919\pi\)
−0.156184 + 0.987728i \(0.549919\pi\)
\(314\) 11602.9i 2.08531i
\(315\) 0 0
\(316\) 12410.4 2.20930
\(317\) 4636.84i 0.821548i −0.911737 0.410774i \(-0.865259\pi\)
0.911737 0.410774i \(-0.134741\pi\)
\(318\) 2549.51i 0.449590i
\(319\) 1115.60i 0.195805i
\(320\) 0 0
\(321\) 1072.84 0.186543
\(322\) 190.775 0.0330170
\(323\) 7071.73i 1.21821i
\(324\) −13773.9 −2.36177
\(325\) 0 0
\(326\) 13350.6 2.26816
\(327\) 1905.25i 0.322204i
\(328\) −19801.2 −3.33334
\(329\) −76.6543 −0.0128453
\(330\) 0 0
\(331\) 2278.33i 0.378333i −0.981945 0.189167i \(-0.939421\pi\)
0.981945 0.189167i \(-0.0605787\pi\)
\(332\) 8902.76i 1.47169i
\(333\) 5370.57i 0.883800i
\(334\) 8405.75 1.37707
\(335\) 0 0
\(336\) 38.9301i 0.00632086i
\(337\) 419.703 0.0678418 0.0339209 0.999425i \(-0.489201\pi\)
0.0339209 + 0.999425i \(0.489201\pi\)
\(338\) 10540.6 5333.12i 1.69626 0.858235i
\(339\) 1141.79 0.182930
\(340\) 0 0
\(341\) −231.394 −0.0367469
\(342\) −18133.0 −2.86701
\(343\) 138.407i 0.0217879i
\(344\) 22341.7i 3.50169i
\(345\) 0 0
\(346\) 14975.3i 2.32681i
\(347\) 495.311 0.0766273 0.0383137 0.999266i \(-0.487801\pi\)
0.0383137 + 0.999266i \(0.487801\pi\)
\(348\) −2096.75 −0.322982
\(349\) 4453.77i 0.683109i −0.939862 0.341554i \(-0.889047\pi\)
0.939862 0.341554i \(-0.110953\pi\)
\(350\) 0 0
\(351\) 1986.98 + 1221.50i 0.302157 + 0.185752i
\(352\) 5754.35 0.871329
\(353\) 11893.7i 1.79330i 0.442736 + 0.896652i \(0.354008\pi\)
−0.442736 + 0.896652i \(0.645992\pi\)
\(354\) 3415.79 0.512845
\(355\) 0 0
\(356\) 2962.55i 0.441053i
\(357\) 10.3532i 0.00153487i
\(358\) 18024.4i 2.66095i
\(359\) 5141.43i 0.755861i −0.925834 0.377931i \(-0.876636\pi\)
0.925834 0.377931i \(-0.123364\pi\)
\(360\) 0 0
\(361\) −9807.58 −1.42989
\(362\) 18680.6i 2.71224i
\(363\) 1145.04 0.165562
\(364\) −103.570 + 168.474i −0.0149135 + 0.0242594i
\(365\) 0 0
\(366\) 940.010i 0.134249i
\(367\) −9410.74 −1.33852 −0.669260 0.743028i \(-0.733389\pi\)
−0.669260 + 0.743028i \(0.733389\pi\)
\(368\) 36219.9 5.13068
\(369\) 7451.15i 1.05120i
\(370\) 0 0
\(371\) 102.135i 0.0142927i
\(372\) 434.900i 0.0606143i
\(373\) 4992.80 0.693076 0.346538 0.938036i \(-0.387357\pi\)
0.346538 + 0.938036i \(0.387357\pi\)
\(374\) 3069.56 0.424394
\(375\) 0 0
\(376\) −26373.1 −3.61725
\(377\) −4274.33 2627.66i −0.583923 0.358969i
\(378\) −53.9858 −0.00734585
\(379\) 2436.78i 0.330261i 0.986272 + 0.165131i \(0.0528046\pi\)
−0.986272 + 0.165131i \(0.947195\pi\)
\(380\) 0 0
\(381\) 1141.90 0.153547
\(382\) 4425.77i 0.592781i
\(383\) 10395.4i 1.38690i −0.720506 0.693449i \(-0.756090\pi\)
0.720506 0.693449i \(-0.243910\pi\)
\(384\) 2515.81i 0.334334i
\(385\) 0 0
\(386\) 1000.42 0.131918
\(387\) 8407.14 1.10429
\(388\) 11531.6i 1.50884i
\(389\) 13872.3 1.80811 0.904056 0.427413i \(-0.140575\pi\)
0.904056 + 0.427413i \(0.140575\pi\)
\(390\) 0 0
\(391\) 9632.42 1.24586
\(392\) 23808.1i 3.06758i
\(393\) 756.304 0.0970750
\(394\) −16318.8 −2.08662
\(395\) 0 0
\(396\) 5692.86i 0.722416i
\(397\) 2216.16i 0.280166i 0.990140 + 0.140083i \(0.0447369\pi\)
−0.990140 + 0.140083i \(0.955263\pi\)
\(398\) 14464.4i 1.82169i
\(399\) −24.4002 −0.00306150
\(400\) 0 0
\(401\) 12127.7i 1.51030i −0.655554 0.755148i \(-0.727565\pi\)
0.655554 0.755148i \(-0.272435\pi\)
\(402\) 4662.77 0.578502
\(403\) 545.018 886.565i 0.0673680 0.109585i
\(404\) 28990.5 3.57012
\(405\) 0 0
\(406\) 116.133 0.0141960
\(407\) 2142.64 0.260950
\(408\) 3562.03i 0.432222i
\(409\) 2755.96i 0.333187i 0.986026 + 0.166594i \(0.0532768\pi\)
−0.986026 + 0.166594i \(0.946723\pi\)
\(410\) 0 0
\(411\) 23.2909i 0.00279526i
\(412\) 24185.6 2.89208
\(413\) −136.838 −0.0163036
\(414\) 24698.9i 2.93209i
\(415\) 0 0
\(416\) −13553.6 + 22047.3i −1.59741 + 2.59845i
\(417\) −1265.94 −0.148665
\(418\) 7234.32i 0.846512i
\(419\) 417.932 0.0487287 0.0243643 0.999703i \(-0.492244\pi\)
0.0243643 + 0.999703i \(0.492244\pi\)
\(420\) 0 0
\(421\) 7623.50i 0.882534i 0.897376 + 0.441267i \(0.145471\pi\)
−0.897376 + 0.441267i \(0.854529\pi\)
\(422\) 7589.86i 0.875518i
\(423\) 9924.15i 1.14073i
\(424\) 35139.7i 4.02484i
\(425\) 0 0
\(426\) −1894.95 −0.215518
\(427\) 37.6573i 0.00426783i
\(428\) −23949.4 −2.70476
\(429\) 239.640 389.815i 0.0269695 0.0438705i
\(430\) 0 0
\(431\) 6348.22i 0.709473i 0.934966 + 0.354736i \(0.115429\pi\)
−0.934966 + 0.354736i \(0.884571\pi\)
\(432\) −10249.6 −1.14151
\(433\) 4286.27 0.475716 0.237858 0.971300i \(-0.423555\pi\)
0.237858 + 0.971300i \(0.423555\pi\)
\(434\) 24.0878i 0.00266417i
\(435\) 0 0
\(436\) 42531.6i 4.67177i
\(437\) 22701.6i 2.48504i
\(438\) −3380.72 −0.368806
\(439\) −898.674 −0.0977024 −0.0488512 0.998806i \(-0.515556\pi\)
−0.0488512 + 0.998806i \(0.515556\pi\)
\(440\) 0 0
\(441\) −8958.97 −0.967387
\(442\) −7229.96 + 11760.8i −0.778041 + 1.26562i
\(443\) −4981.83 −0.534297 −0.267149 0.963655i \(-0.586081\pi\)
−0.267149 + 0.963655i \(0.586081\pi\)
\(444\) 4027.05i 0.430440i
\(445\) 0 0
\(446\) −2549.91 −0.270721
\(447\) 298.698i 0.0316062i
\(448\) 266.541i 0.0281091i
\(449\) 4494.76i 0.472429i −0.971701 0.236215i \(-0.924093\pi\)
0.971701 0.236215i \(-0.0759068\pi\)
\(450\) 0 0
\(451\) −2972.71 −0.310375
\(452\) −25488.4 −2.65238
\(453\) 442.763i 0.0459223i
\(454\) −8397.27 −0.868069
\(455\) 0 0
\(456\) −8394.95 −0.862126
\(457\) 2924.71i 0.299370i −0.988734 0.149685i \(-0.952174\pi\)
0.988734 0.149685i \(-0.0478259\pi\)
\(458\) −15747.9 −1.60666
\(459\) −2725.80 −0.277188
\(460\) 0 0
\(461\) 10122.2i 1.02264i −0.859390 0.511320i \(-0.829157\pi\)
0.859390 0.511320i \(-0.170843\pi\)
\(462\) 10.5912i 0.00106655i
\(463\) 5225.27i 0.524490i 0.965001 + 0.262245i \(0.0844628\pi\)
−0.965001 + 0.262245i \(0.915537\pi\)
\(464\) 22048.5 2.20598
\(465\) 0 0
\(466\) 14979.5i 1.48908i
\(467\) 5596.68 0.554569 0.277284 0.960788i \(-0.410566\pi\)
0.277284 + 0.960788i \(0.410566\pi\)
\(468\) −21811.7 13408.8i −2.15437 1.32440i
\(469\) −186.793 −0.0183909
\(470\) 0 0
\(471\) −2021.38 −0.197750
\(472\) −47079.5 −4.59112
\(473\) 3354.11i 0.326051i
\(474\) 2989.21i 0.289660i
\(475\) 0 0
\(476\) 231.117i 0.0222547i
\(477\) 13223.0 1.26927
\(478\) 13380.9 1.28040
\(479\) 14342.8i 1.36814i 0.729418 + 0.684069i \(0.239791\pi\)
−0.729418 + 0.684069i \(0.760209\pi\)
\(480\) 0 0
\(481\) −5046.71 + 8209.33i −0.478399 + 0.778198i
\(482\) 26027.5 2.45959
\(483\) 33.2356i 0.00313100i
\(484\) −25561.0 −2.40055
\(485\) 0 0
\(486\) 10541.7i 0.983915i
\(487\) 19369.6i 1.80230i −0.433512 0.901148i \(-0.642726\pi\)
0.433512 0.901148i \(-0.357274\pi\)
\(488\) 12956.1i 1.20183i
\(489\) 2325.85i 0.215089i
\(490\) 0 0
\(491\) 12486.5 1.14768 0.573838 0.818969i \(-0.305454\pi\)
0.573838 + 0.818969i \(0.305454\pi\)
\(492\) 5587.15i 0.511967i
\(493\) 5863.64 0.535670
\(494\) −27717.6 17039.5i −2.52444 1.55191i
\(495\) 0 0
\(496\) 4573.22i 0.413999i
\(497\) 75.9128 0.00685142
\(498\) 2144.35 0.192953
\(499\) 15364.4i 1.37837i 0.724585 + 0.689186i \(0.242032\pi\)
−0.724585 + 0.689186i \(0.757968\pi\)
\(500\) 0 0
\(501\) 1464.40i 0.130588i
\(502\) 47.2060i 0.00419703i
\(503\) −15778.4 −1.39866 −0.699328 0.714800i \(-0.746517\pi\)
−0.699328 + 0.714800i \(0.746517\pi\)
\(504\) 365.896 0.0323379
\(505\) 0 0
\(506\) 9853.87 0.865727
\(507\) 929.101 + 1836.32i 0.0813863 + 0.160856i
\(508\) −25491.0 −2.22634
\(509\) 6252.54i 0.544478i −0.962230 0.272239i \(-0.912236\pi\)
0.962230 0.272239i \(-0.0877641\pi\)
\(510\) 0 0
\(511\) 135.433 0.0117245
\(512\) 662.049i 0.0571459i
\(513\) 6424.13i 0.552889i
\(514\) 8603.22i 0.738272i
\(515\) 0 0
\(516\) 6303.99 0.537825
\(517\) −3959.33 −0.336811
\(518\) 223.046i 0.0189190i
\(519\) −2608.89 −0.220651
\(520\) 0 0
\(521\) −13016.7 −1.09457 −0.547287 0.836945i \(-0.684340\pi\)
−0.547287 + 0.836945i \(0.684340\pi\)
\(522\) 15035.2i 1.26068i
\(523\) 16344.2 1.36650 0.683251 0.730183i \(-0.260565\pi\)
0.683251 + 0.730183i \(0.260565\pi\)
\(524\) −16883.2 −1.40753
\(525\) 0 0
\(526\) 16400.8i 1.35952i
\(527\) 1216.21i 0.100530i
\(528\) 2010.81i 0.165737i
\(529\) 18754.9 1.54145
\(530\) 0 0
\(531\) 17715.9i 1.44785i
\(532\) 544.694 0.0443900
\(533\) 7001.82 11389.7i 0.569010 0.925592i
\(534\) 713.571 0.0578263
\(535\) 0 0
\(536\) −64266.6 −5.17891
\(537\) −3140.10 −0.252337
\(538\) 33167.7i 2.65792i
\(539\) 3574.26i 0.285630i
\(540\) 0 0
\(541\) 21385.8i 1.69953i 0.527158 + 0.849767i \(0.323258\pi\)
−0.527158 + 0.849767i \(0.676742\pi\)
\(542\) −13038.5 −1.03331
\(543\) 3254.42 0.257202
\(544\) 30245.1i 2.38373i
\(545\) 0 0
\(546\) −40.5792 24.9462i −0.00318064 0.00195531i
\(547\) 22836.7 1.78505 0.892527 0.450993i \(-0.148930\pi\)
0.892527 + 0.450993i \(0.148930\pi\)
\(548\) 519.929i 0.0405297i
\(549\) 4875.35 0.379007
\(550\) 0 0
\(551\) 13819.4i 1.06847i
\(552\) 11434.8i 0.881696i
\(553\) 119.749i 0.00920842i
\(554\) 23888.0i 1.83195i
\(555\) 0 0
\(556\) 28259.9 2.15555
\(557\) 14375.7i 1.09357i 0.837274 + 0.546784i \(0.184148\pi\)
−0.837274 + 0.546784i \(0.815852\pi\)
\(558\) −3118.55 −0.236593
\(559\) 12851.0 + 7900.17i 0.972340 + 0.597749i
\(560\) 0 0
\(561\) 534.760i 0.0402452i
\(562\) −1922.89 −0.144328
\(563\) −2088.93 −0.156373 −0.0781866 0.996939i \(-0.524913\pi\)
−0.0781866 + 0.996939i \(0.524913\pi\)
\(564\) 7441.49i 0.555573i
\(565\) 0 0
\(566\) 8461.65i 0.628392i
\(567\) 132.906i 0.00984395i
\(568\) 26118.0 1.92937
\(569\) 7775.20 0.572853 0.286426 0.958102i \(-0.407533\pi\)
0.286426 + 0.958102i \(0.407533\pi\)
\(570\) 0 0
\(571\) 21491.9 1.57515 0.787573 0.616221i \(-0.211337\pi\)
0.787573 + 0.616221i \(0.211337\pi\)
\(572\) −5349.56 + 8701.97i −0.391043 + 0.636097i
\(573\) −771.029 −0.0562133
\(574\) 309.454i 0.0225024i
\(575\) 0 0
\(576\) 34508.1 2.49625
\(577\) 4348.75i 0.313762i 0.987617 + 0.156881i \(0.0501440\pi\)
−0.987617 + 0.156881i \(0.949856\pi\)
\(578\) 10282.9i 0.739983i
\(579\) 174.287i 0.0125097i
\(580\) 0 0
\(581\) −85.9040 −0.00613407
\(582\) 2777.55 0.197823
\(583\) 5275.45i 0.374763i
\(584\) 46596.1 3.30165
\(585\) 0 0
\(586\) −23498.7 −1.65652
\(587\) 5800.67i 0.407870i 0.978984 + 0.203935i \(0.0653731\pi\)
−0.978984 + 0.203935i \(0.934627\pi\)
\(588\) −6717.77 −0.471150
\(589\) −2866.36 −0.200520
\(590\) 0 0
\(591\) 2842.95i 0.197874i
\(592\) 42346.6i 2.93993i
\(593\) 4577.14i 0.316966i −0.987362 0.158483i \(-0.949340\pi\)
0.987362 0.158483i \(-0.0506603\pi\)
\(594\) −2788.46 −0.192613
\(595\) 0 0
\(596\) 6667.94i 0.458271i
\(597\) 2519.89 0.172751
\(598\) −23209.5 + 37754.2i −1.58714 + 2.58175i
\(599\) 17537.7 1.19628 0.598140 0.801392i \(-0.295907\pi\)
0.598140 + 0.801392i \(0.295907\pi\)
\(600\) 0 0
\(601\) 13316.0 0.903780 0.451890 0.892074i \(-0.350750\pi\)
0.451890 + 0.892074i \(0.350750\pi\)
\(602\) −349.158 −0.0236389
\(603\) 24183.4i 1.63321i
\(604\) 9883.94i 0.665847i
\(605\) 0 0
\(606\) 6982.75i 0.468077i
\(607\) −2103.20 −0.140636 −0.0703182 0.997525i \(-0.522401\pi\)
−0.0703182 + 0.997525i \(0.522401\pi\)
\(608\) 71281.3 4.75467
\(609\) 20.2319i 0.00134620i
\(610\) 0 0
\(611\) 9325.69 15169.8i 0.617475 1.00443i
\(612\) 29921.9 1.97634
\(613\) 6984.21i 0.460178i −0.973170 0.230089i \(-0.926098\pi\)
0.973170 0.230089i \(-0.0739018\pi\)
\(614\) −21502.0 −1.41327
\(615\) 0 0
\(616\) 145.977i 0.00954805i
\(617\) 13605.0i 0.887713i 0.896098 + 0.443856i \(0.146390\pi\)
−0.896098 + 0.443856i \(0.853610\pi\)
\(618\) 5825.43i 0.379180i
\(619\) 24505.8i 1.59123i −0.605801 0.795616i \(-0.707147\pi\)
0.605801 0.795616i \(-0.292853\pi\)
\(620\) 0 0
\(621\) −8750.31 −0.565439
\(622\) 11377.9i 0.733458i
\(623\) −28.5860 −0.00183832
\(624\) −7704.23 4736.19i −0.494256 0.303845i
\(625\) 0 0
\(626\) 9300.65i 0.593816i
\(627\) −1260.32 −0.0802746
\(628\) 45123.8 2.86726
\(629\) 11261.8i 0.713890i
\(630\) 0 0
\(631\) 18694.2i 1.17940i 0.807621 + 0.589702i \(0.200755\pi\)
−0.807621 + 0.589702i \(0.799245\pi\)
\(632\) 41200.0i 2.59311i
\(633\) 1322.26 0.0830252
\(634\) −24931.7 −1.56177
\(635\) 0 0
\(636\) 9915.11 0.618175
\(637\) −13694.5 8418.72i −0.851797 0.523645i
\(638\) 5998.45 0.372227
\(639\) 9828.15i 0.608444i
\(640\) 0 0
\(641\) −22658.3 −1.39617 −0.698087 0.716013i \(-0.745965\pi\)
−0.698087 + 0.716013i \(0.745965\pi\)
\(642\) 5768.53i 0.354620i
\(643\) 18187.4i 1.11546i 0.830022 + 0.557730i \(0.188328\pi\)
−0.830022 + 0.557730i \(0.811672\pi\)
\(644\) 741.929i 0.0453976i
\(645\) 0 0
\(646\) 38023.8 2.31583
\(647\) −4755.08 −0.288936 −0.144468 0.989509i \(-0.546147\pi\)
−0.144468 + 0.989509i \(0.546147\pi\)
\(648\) 45726.5i 2.77208i
\(649\) −7067.94 −0.427490
\(650\) 0 0
\(651\) −4.19641 −0.000252643
\(652\) 51920.7i 3.11867i
\(653\) −731.494 −0.0438370 −0.0219185 0.999760i \(-0.506977\pi\)
−0.0219185 + 0.999760i \(0.506977\pi\)
\(654\) 10244.3 0.612514
\(655\) 0 0
\(656\) 58751.9i 3.49676i
\(657\) 17534.1i 1.04120i
\(658\) 412.161i 0.0244190i
\(659\) 16005.3 0.946099 0.473050 0.881036i \(-0.343153\pi\)
0.473050 + 0.881036i \(0.343153\pi\)
\(660\) 0 0
\(661\) 12332.1i 0.725664i 0.931855 + 0.362832i \(0.118190\pi\)
−0.931855 + 0.362832i \(0.881810\pi\)
\(662\) −12250.3 −0.719217
\(663\) −2048.88 1259.56i −0.120018 0.0737815i
\(664\) −29555.4 −1.72737
\(665\) 0 0
\(666\) 28876.9 1.68011
\(667\) 18823.4 1.09272
\(668\) 32690.2i 1.89344i
\(669\) 444.228i 0.0256724i
\(670\) 0 0
\(671\) 1945.07i 0.111905i
\(672\) 104.357 0.00599058
\(673\) −12183.0 −0.697799 −0.348899 0.937160i \(-0.613444\pi\)
−0.348899 + 0.937160i \(0.613444\pi\)
\(674\) 2256.69i 0.128968i
\(675\) 0 0
\(676\) −20740.6 40992.7i −1.18005 2.33231i
\(677\) −25830.0 −1.46637 −0.733183 0.680032i \(-0.761966\pi\)
−0.733183 + 0.680032i \(0.761966\pi\)
\(678\) 6139.24i 0.347752i
\(679\) −111.270 −0.00628888
\(680\) 0 0
\(681\) 1462.92i 0.0823189i
\(682\) 1244.18i 0.0698562i
\(683\) 6832.74i 0.382793i 0.981513 + 0.191396i \(0.0613016\pi\)
−0.981513 + 0.191396i \(0.938698\pi\)
\(684\) 70519.5i 3.94208i
\(685\) 0 0
\(686\) 744.196 0.0414191
\(687\) 2743.50i 0.152360i
\(688\) −66289.9 −3.67337
\(689\) 20212.4 + 12425.6i 1.11761 + 0.687052i
\(690\) 0 0
\(691\) 26068.7i 1.43517i −0.696472 0.717584i \(-0.745248\pi\)
0.696472 0.717584i \(-0.254752\pi\)
\(692\) 58239.1 3.19930
\(693\) 54.9311 0.00301106
\(694\) 2663.23i 0.145670i
\(695\) 0 0
\(696\) 6960.81i 0.379093i
\(697\) 15624.6i 0.849104i
\(698\) −23947.4 −1.29860
\(699\) −2609.63 −0.141209
\(700\) 0 0
\(701\) −31003.6 −1.67045 −0.835227 0.549905i \(-0.814664\pi\)
−0.835227 + 0.549905i \(0.814664\pi\)
\(702\) 6567.86 10683.7i 0.353117 0.574405i
\(703\) 26541.7 1.42395
\(704\) 13767.3i 0.737039i
\(705\) 0 0
\(706\) 63950.8 3.40909
\(707\) 279.733i 0.0148804i
\(708\) 13284.1i 0.705150i
\(709\) 19868.2i 1.05242i 0.850355 + 0.526209i \(0.176387\pi\)
−0.850355 + 0.526209i \(0.823613\pi\)
\(710\) 0 0
\(711\) 15503.5 0.817759
\(712\) −9835.08 −0.517676
\(713\) 3904.27i 0.205072i
\(714\) 55.6677 0.00291780
\(715\) 0 0
\(716\) 70097.4 3.65874
\(717\) 2331.14i 0.121420i
\(718\) −27644.8 −1.43690
\(719\) 2878.38 0.149298 0.0746491 0.997210i \(-0.476216\pi\)
0.0746491 + 0.997210i \(0.476216\pi\)
\(720\) 0 0
\(721\) 233.370i 0.0120543i
\(722\) 52734.2i 2.71823i
\(723\) 4534.35i 0.233242i
\(724\) −72649.4 −3.72927
\(725\) 0 0
\(726\) 6156.73i 0.314735i
\(727\) 22798.9 1.16309 0.581543 0.813516i \(-0.302449\pi\)
0.581543 + 0.813516i \(0.302449\pi\)
\(728\) 559.300 + 343.831i 0.0284739 + 0.0175044i
\(729\) −15948.3 −0.810257
\(730\) 0 0
\(731\) −17629.3 −0.891989
\(732\) 3655.72 0.184589
\(733\) 27940.5i 1.40792i 0.710240 + 0.703960i \(0.248586\pi\)
−0.710240 + 0.703960i \(0.751414\pi\)
\(734\) 50600.4i 2.54454i
\(735\) 0 0
\(736\) 97092.3i 4.86259i
\(737\) −9648.21 −0.482220
\(738\) −40063.9 −1.99834
\(739\) 30468.8i 1.51666i −0.651871 0.758330i \(-0.726016\pi\)
0.651871 0.758330i \(-0.273984\pi\)
\(740\) 0 0
\(741\) 2968.51 4828.79i 0.147167 0.239393i
\(742\) −549.166 −0.0271705
\(743\) 17528.7i 0.865501i −0.901514 0.432750i \(-0.857543\pi\)
0.901514 0.432750i \(-0.142457\pi\)
\(744\) −1443.78 −0.0711447
\(745\) 0 0
\(746\) 26845.7i 1.31755i
\(747\) 11121.7i 0.544740i
\(748\) 11937.6i 0.583532i
\(749\) 231.091i 0.0112735i
\(750\) 0 0
\(751\) −4371.31 −0.212399 −0.106199 0.994345i \(-0.533868\pi\)
−0.106199 + 0.994345i \(0.533868\pi\)
\(752\) 78251.4i 3.79459i
\(753\) 8.22393 0.000398003
\(754\) −14128.6 + 22982.5i −0.682404 + 1.11005i
\(755\) 0 0
\(756\) 209.952i 0.0101004i
\(757\) −2920.51 −0.140221 −0.0701107 0.997539i \(-0.522335\pi\)
−0.0701107 + 0.997539i \(0.522335\pi\)
\(758\) 13102.3 0.627831
\(759\) 1716.68i 0.0820968i
\(760\) 0 0
\(761\) 40352.4i 1.92217i 0.276246 + 0.961087i \(0.410909\pi\)
−0.276246 + 0.961087i \(0.589091\pi\)
\(762\) 6139.85i 0.291894i
\(763\) −410.393 −0.0194721
\(764\) 17211.9 0.815060
\(765\) 0 0
\(766\) −55895.0 −2.63651
\(767\) 16647.6 27080.2i 0.783717 1.27485i
\(768\) 3627.81 0.170452
\(769\) 27282.1i 1.27935i −0.768646 0.639674i \(-0.779069\pi\)
0.768646 0.639674i \(-0.220931\pi\)
\(770\) 0 0
\(771\) −1498.80 −0.0700102
\(772\) 3890.67i 0.181384i
\(773\) 10121.3i 0.470942i −0.971881 0.235471i \(-0.924337\pi\)
0.971881 0.235471i \(-0.0756633\pi\)
\(774\) 45204.2i 2.09926i
\(775\) 0 0
\(776\) −38282.7 −1.77096
\(777\) 38.8575 0.00179409
\(778\) 74589.9i 3.43725i
\(779\) −36824.0 −1.69365
\(780\) 0 0
\(781\) 3921.03 0.179649
\(782\) 51792.3i 2.36840i
\(783\) −5326.67 −0.243116
\(784\) 70641.0 3.21798
\(785\) 0 0
\(786\) 4066.55i 0.184541i
\(787\) 17973.2i 0.814072i 0.913412 + 0.407036i \(0.133438\pi\)
−0.913412 + 0.407036i \(0.866562\pi\)
\(788\) 63464.2i 2.86906i
\(789\) 2857.23 0.128923
\(790\) 0 0
\(791\) 245.941i 0.0110552i
\(792\) 18899.2 0.847920
\(793\) 7452.35 + 4581.36i 0.333721 + 0.205156i
\(794\) 11916.0 0.532598
\(795\) 0 0
\(796\) −56252.3 −2.50479
\(797\) 1050.61 0.0466931 0.0233465 0.999727i \(-0.492568\pi\)
0.0233465 + 0.999727i \(0.492568\pi\)
\(798\) 131.197i 0.00581996i
\(799\) 20810.4i 0.921425i
\(800\) 0 0
\(801\) 3700.93i 0.163253i
\(802\) −65209.2 −2.87109
\(803\) 6995.38 0.307424
\(804\) 18133.6i 0.795428i
\(805\) 0 0
\(806\) −4766.95 2930.49i −0.208323 0.128067i
\(807\) −5778.26 −0.252050
\(808\) 96242.6i 4.19035i
\(809\) −10131.7 −0.440310 −0.220155 0.975465i \(-0.570656\pi\)
−0.220155 + 0.975465i \(0.570656\pi\)
\(810\) 0 0
\(811\) 3463.42i 0.149959i 0.997185 + 0.0749797i \(0.0238892\pi\)
−0.997185 + 0.0749797i \(0.976111\pi\)
\(812\) 451.642i 0.0195191i
\(813\) 2271.49i 0.0979884i
\(814\) 11520.7i 0.496069i
\(815\) 0 0
\(816\) 10568.9 0.453412
\(817\) 41548.6i 1.77919i
\(818\) 14818.5 0.633393
\(819\) −129.383 + 210.464i −0.00552016 + 0.00897948i
\(820\) 0 0
\(821\) 9876.00i 0.419823i −0.977720 0.209912i \(-0.932682\pi\)
0.977720 0.209912i \(-0.0673176\pi\)
\(822\) −125.232 −0.00531383
\(823\) 7199.95 0.304951 0.152475 0.988307i \(-0.451276\pi\)
0.152475 + 0.988307i \(0.451276\pi\)
\(824\) 80291.3i 3.39452i
\(825\) 0 0
\(826\) 735.763i 0.0309933i
\(827\) 16864.4i 0.709110i 0.935035 + 0.354555i \(0.115368\pi\)
−0.935035 + 0.354555i \(0.884632\pi\)
\(828\) 96054.7 4.03156
\(829\) 26061.1 1.09184 0.545922 0.837836i \(-0.316180\pi\)
0.545922 + 0.837836i \(0.316180\pi\)
\(830\) 0 0
\(831\) −4161.61 −0.173724
\(832\) 52748.3 + 32427.2i 2.19798 + 1.35121i
\(833\) 18786.5 0.781407
\(834\) 6806.78i 0.282613i
\(835\) 0 0
\(836\) 28134.4 1.16393
\(837\) 1104.84i 0.0456258i
\(838\) 2247.17i 0.0926338i
\(839\) 35491.9i 1.46045i −0.683208 0.730224i \(-0.739416\pi\)
0.683208 0.730224i \(-0.260584\pi\)
\(840\) 0 0
\(841\) −12930.4 −0.530175
\(842\) 40990.6 1.67771
\(843\) 334.993i 0.0136866i
\(844\) −29517.1 −1.20382
\(845\) 0 0
\(846\) −53360.9 −2.16854
\(847\) 246.642i 0.0100056i
\(848\) −104263. −4.22217
\(849\) −1474.13 −0.0595903
\(850\) 0 0
\(851\) 36152.4i 1.45627i
\(852\) 7369.51i 0.296332i
\(853\) 10763.1i 0.432029i 0.976390 + 0.216014i \(0.0693058\pi\)
−0.976390 + 0.216014i \(0.930694\pi\)
\(854\) −202.479 −0.00811321
\(855\) 0 0
\(856\) 79507.2i 3.17465i
\(857\) 3344.32 0.133302 0.0666511 0.997776i \(-0.478769\pi\)
0.0666511 + 0.997776i \(0.478769\pi\)
\(858\) −2095.99 1288.51i −0.0833984 0.0512694i
\(859\) −31361.2 −1.24567 −0.622836 0.782353i \(-0.714020\pi\)
−0.622836 + 0.782353i \(0.714020\pi\)
\(860\) 0 0
\(861\) −53.9111 −0.00213390
\(862\) 34133.6 1.34872
\(863\) 9576.65i 0.377744i −0.982002 0.188872i \(-0.939517\pi\)
0.982002 0.188872i \(-0.0604831\pi\)
\(864\) 27475.3i 1.08186i
\(865\) 0 0
\(866\) 23046.8i 0.904342i
\(867\) −1791.41 −0.0701725
\(868\) 93.6778 0.00366317
\(869\) 6185.26i 0.241451i
\(870\) 0 0
\(871\) 22725.1 36966.2i 0.884054 1.43806i
\(872\) −141196. −5.48339
\(873\) 14405.7i 0.558487i
\(874\) 122064. 4.72410
\(875\) 0 0
\(876\) 13147.7i 0.507100i
\(877\) 28993.5i 1.11635i −0.829722 0.558177i \(-0.811501\pi\)
0.829722 0.558177i \(-0.188499\pi\)
\(878\) 4832.06i 0.185734i
\(879\) 4093.79i 0.157088i
\(880\) 0 0
\(881\) 23068.0 0.882156 0.441078 0.897469i \(-0.354596\pi\)
0.441078 + 0.897469i \(0.354596\pi\)
\(882\) 48171.3i 1.83901i
\(883\) 29675.0 1.13097 0.565483 0.824760i \(-0.308690\pi\)
0.565483 + 0.824760i \(0.308690\pi\)
\(884\) 45737.9 + 28117.5i 1.74019 + 1.06979i
\(885\) 0 0
\(886\) 26786.7i 1.01571i
\(887\) 5118.12 0.193742 0.0968712 0.995297i \(-0.469117\pi\)
0.0968712 + 0.995297i \(0.469117\pi\)
\(888\) 13369.0 0.505219
\(889\) 245.966i 0.00927944i
\(890\) 0 0
\(891\) 6864.82i 0.258115i
\(892\) 9916.64i 0.372235i
\(893\) −49045.7 −1.83791
\(894\) 1606.06 0.0600837
\(895\) 0 0
\(896\) −541.906 −0.0202052
\(897\) −6577.30 4043.41i −0.244827 0.150508i
\(898\) −24167.8 −0.898094
\(899\) 2376.69i 0.0881725i
\(900\) 0 0
\(901\) −27727.9 −1.02525
\(902\) 15983.9i 0.590027i
\(903\) 60.8280i 0.00224167i
\(904\) 84616.6i 3.11317i
\(905\) 0 0
\(906\) 2380.68 0.0872989
\(907\) −37154.2 −1.36018 −0.680091 0.733128i \(-0.738060\pi\)
−0.680091 + 0.733128i \(0.738060\pi\)
\(908\) 32657.2i 1.19358i
\(909\) 36216.0 1.32146
\(910\) 0 0
\(911\) 7888.56 0.286893 0.143447 0.989658i \(-0.454181\pi\)
0.143447 + 0.989658i \(0.454181\pi\)
\(912\) 24908.6i 0.904393i
\(913\) −4437.09 −0.160839
\(914\) −15725.8 −0.569106
\(915\) 0 0
\(916\) 61244.1i 2.20913i
\(917\) 162.908i 0.00586664i
\(918\) 14656.3i 0.526938i
\(919\) −32292.7 −1.15913 −0.579563 0.814927i \(-0.696777\pi\)
−0.579563 + 0.814927i \(0.696777\pi\)
\(920\) 0 0
\(921\) 3745.93i 0.134020i
\(922\) −54425.7 −1.94405
\(923\) −9235.48 + 15023.1i −0.329350 + 0.535743i
\(924\) 41.1894 0.00146648
\(925\) 0 0
\(926\) 28095.6 0.997062
\(927\) 30213.5 1.07049
\(928\) 59104.0i 2.09072i
\(929\) 7931.61i 0.280116i −0.990143 0.140058i \(-0.955271\pi\)
0.990143 0.140058i \(-0.0447289\pi\)
\(930\) 0 0
\(931\) 44275.7i 1.55862i
\(932\) 58255.6 2.04745
\(933\) 1982.18 0.0695537
\(934\) 30092.7i 1.05424i
\(935\) 0 0
\(936\) −44514.5 + 72410.5i −1.55449 + 2.52864i
\(937\) −35368.6 −1.23313 −0.616565 0.787304i \(-0.711476\pi\)
−0.616565 + 0.787304i \(0.711476\pi\)
\(938\) 1004.36i 0.0349613i
\(939\) −1620.30 −0.0563115
\(940\) 0 0
\(941\) 21319.4i 0.738569i 0.929316 + 0.369285i \(0.120397\pi\)
−0.929316 + 0.369285i \(0.879603\pi\)
\(942\) 10868.7i 0.375925i
\(943\) 50158.0i 1.73210i
\(944\) 139689.i 4.81621i
\(945\) 0 0
\(946\) −18034.6 −0.619827
\(947\) 16623.5i 0.570422i −0.958465 0.285211i \(-0.907936\pi\)
0.958465 0.285211i \(-0.0920637\pi\)
\(948\) 11625.1 0.398276
\(949\) −16476.7 + 26802.2i −0.563600 + 0.916792i
\(950\) 0 0
\(951\) 4343.44i 0.148103i
\(952\) −767.263 −0.0261209
\(953\) −25047.2 −0.851374 −0.425687 0.904870i \(-0.639968\pi\)
−0.425687 + 0.904870i \(0.639968\pi\)
\(954\) 71098.5i 2.41289i
\(955\) 0 0
\(956\) 52038.8i 1.76052i
\(957\) 1045.01i 0.0352982i
\(958\) 77119.3 2.60085
\(959\) 5.01687 0.000168929
\(960\) 0 0
\(961\) 29298.0 0.983453
\(962\) 44140.5 + 27135.5i 1.47936 + 0.909443i
\(963\) −29918.4 −1.00115
\(964\) 101222.i 3.38188i
\(965\) 0 0
\(966\) 178.704 0.00595207
\(967\) 13656.8i 0.454161i −0.973876 0.227081i \(-0.927082\pi\)
0.973876 0.227081i \(-0.0729181\pi\)
\(968\) 84857.7i 2.81759i
\(969\) 6624.26i 0.219610i
\(970\) 0 0
\(971\) 2265.67 0.0748803 0.0374401 0.999299i \(-0.488080\pi\)
0.0374401 + 0.999299i \(0.488080\pi\)
\(972\) −40997.0 −1.35286
\(973\) 272.683i 0.00898440i
\(974\) −104148. −3.42619
\(975\) 0 0
\(976\) −38441.9 −1.26075
\(977\) 20144.9i 0.659666i −0.944039 0.329833i \(-0.893008\pi\)
0.944039 0.329833i \(-0.106992\pi\)
\(978\) 12505.8 0.408888
\(979\) −1476.52 −0.0482020
\(980\) 0 0
\(981\) 53132.0i 1.72923i
\(982\) 67138.5i 2.18175i
\(983\) 10526.6i 0.341552i −0.985310 0.170776i \(-0.945373\pi\)
0.985310 0.170776i \(-0.0546274\pi\)
\(984\) −18548.2 −0.600910
\(985\) 0 0
\(986\) 31528.1i 1.01831i
\(987\) −71.8039 −0.00231565
\(988\) −66267.0 + 107795.i −2.13384 + 3.47105i
\(989\) −56593.4 −1.81958
\(990\) 0 0
\(991\) 55992.7 1.79482 0.897410 0.441198i \(-0.145446\pi\)
0.897410 + 0.441198i \(0.145446\pi\)
\(992\) 12259.1 0.392367
\(993\) 2134.17i 0.0682032i
\(994\) 408.174i 0.0130246i
\(995\) 0 0
\(996\) 8339.43i 0.265306i
\(997\) −48578.5 −1.54312 −0.771562 0.636154i \(-0.780524\pi\)
−0.771562 + 0.636154i \(0.780524\pi\)
\(998\) 82612.7 2.62030
\(999\) 10230.5i 0.324002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.4.c.e.51.1 14
5.2 odd 4 325.4.d.d.324.13 14
5.3 odd 4 325.4.d.c.324.2 14
5.4 even 2 65.4.c.a.51.14 yes 14
13.12 even 2 inner 325.4.c.e.51.14 14
15.14 odd 2 585.4.b.e.181.1 14
20.19 odd 2 1040.4.k.d.961.8 14
65.12 odd 4 325.4.d.c.324.1 14
65.34 odd 4 845.4.a.i.1.1 7
65.38 odd 4 325.4.d.d.324.14 14
65.44 odd 4 845.4.a.l.1.7 7
65.64 even 2 65.4.c.a.51.1 14
195.194 odd 2 585.4.b.e.181.14 14
260.259 odd 2 1040.4.k.d.961.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.4.c.a.51.1 14 65.64 even 2
65.4.c.a.51.14 yes 14 5.4 even 2
325.4.c.e.51.1 14 1.1 even 1 trivial
325.4.c.e.51.14 14 13.12 even 2 inner
325.4.d.c.324.1 14 65.12 odd 4
325.4.d.c.324.2 14 5.3 odd 4
325.4.d.d.324.13 14 5.2 odd 4
325.4.d.d.324.14 14 65.38 odd 4
585.4.b.e.181.1 14 15.14 odd 2
585.4.b.e.181.14 14 195.194 odd 2
845.4.a.i.1.1 7 65.34 odd 4
845.4.a.l.1.7 7 65.44 odd 4
1040.4.k.d.961.7 14 260.259 odd 2
1040.4.k.d.961.8 14 20.19 odd 2