Properties

Label 325.4
Level 325
Weight 4
Dimension 11249
Nonzero newspaces 24
Sturm bound 33600
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 24 \)
Sturm bound: \(33600\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(325))\).

Total New Old
Modular forms 12936 11699 1237
Cusp forms 12264 11249 1015
Eisenstein series 672 450 222

Trace form

\( 11249 q - 74 q^{2} - 50 q^{3} - 26 q^{4} - 86 q^{5} - 122 q^{6} - 70 q^{7} - 130 q^{8} - 150 q^{9} - 36 q^{10} + 98 q^{11} + 240 q^{12} - 112 q^{14} - 96 q^{15} + 166 q^{16} + 497 q^{17} + 382 q^{18} + 138 q^{19}+ \cdots - 21546 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(325))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
325.4.a \(\chi_{325}(1, \cdot)\) 325.4.a.a 1 1
325.4.a.b 1
325.4.a.c 1
325.4.a.d 1
325.4.a.e 2
325.4.a.f 2
325.4.a.g 2
325.4.a.h 2
325.4.a.i 5
325.4.a.j 5
325.4.a.k 5
325.4.a.l 7
325.4.a.m 7
325.4.a.n 8
325.4.a.o 8
325.4.b \(\chi_{325}(274, \cdot)\) 325.4.b.a 2 1
325.4.b.b 2
325.4.b.c 4
325.4.b.d 4
325.4.b.e 4
325.4.b.f 4
325.4.b.g 10
325.4.b.h 10
325.4.b.i 14
325.4.c \(\chi_{325}(51, \cdot)\) 325.4.c.a 2 1
325.4.c.b 2
325.4.c.c 2
325.4.c.d 14
325.4.c.e 14
325.4.c.f 14
325.4.c.g 16
325.4.d \(\chi_{325}(324, \cdot)\) 325.4.d.a 2 1
325.4.d.b 2
325.4.d.c 14
325.4.d.d 14
325.4.d.e 28
325.4.e \(\chi_{325}(126, \cdot)\) n/a 126 2
325.4.f \(\chi_{325}(18, \cdot)\) n/a 122 2
325.4.k \(\chi_{325}(57, \cdot)\) n/a 122 2
325.4.l \(\chi_{325}(66, \cdot)\) n/a 360 4
325.4.m \(\chi_{325}(49, \cdot)\) n/a 120 2
325.4.n \(\chi_{325}(101, \cdot)\) n/a 128 2
325.4.o \(\chi_{325}(74, \cdot)\) n/a 124 2
325.4.p \(\chi_{325}(64, \cdot)\) n/a 416 4
325.4.q \(\chi_{325}(116, \cdot)\) n/a 408 4
325.4.r \(\chi_{325}(14, \cdot)\) n/a 360 4
325.4.s \(\chi_{325}(32, \cdot)\) n/a 244 4
325.4.x \(\chi_{325}(7, \cdot)\) n/a 244 4
325.4.y \(\chi_{325}(16, \cdot)\) n/a 832 8
325.4.z \(\chi_{325}(8, \cdot)\) n/a 824 8
325.4.be \(\chi_{325}(47, \cdot)\) n/a 824 8
325.4.bf \(\chi_{325}(9, \cdot)\) n/a 816 8
325.4.bg \(\chi_{325}(36, \cdot)\) n/a 816 8
325.4.bh \(\chi_{325}(4, \cdot)\) n/a 832 8
325.4.bi \(\chi_{325}(28, \cdot)\) n/a 1648 16
325.4.bn \(\chi_{325}(2, \cdot)\) n/a 1648 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(325))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(325)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(65))\)\(^{\oplus 2}\)