Properties

Label 585.2.bs.b.289.8
Level $585$
Weight $2$
Character 585.289
Analytic conductor $4.671$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [585,2,Mod(289,585)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("585.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 289.8
Character \(\chi\) \(=\) 585.289
Dual form 585.2.bs.b.334.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.729738 - 0.421315i) q^{2} +(-0.644988 + 1.11715i) q^{4} +(-2.23540 + 0.0545741i) q^{5} +(0.347589 + 0.200681i) q^{7} +2.77223i q^{8} +(-1.60827 + 0.981632i) q^{10} +(-2.45354 - 4.24965i) q^{11} +(-3.55974 - 0.572960i) q^{13} +0.338199 q^{14} +(-0.121995 - 0.211302i) q^{16} +(-6.13203 - 3.54033i) q^{17} +(1.12724 - 1.95244i) q^{19} +(1.38084 - 2.53248i) q^{20} +(-3.58088 - 2.06742i) q^{22} +(0.861695 - 0.497500i) q^{23} +(4.99404 - 0.243990i) q^{25} +(-2.83907 + 1.08166i) q^{26} +(-0.448381 + 0.258873i) q^{28} +(3.94133 + 6.82658i) q^{29} -6.30120 q^{31} +(-4.97969 - 2.87503i) q^{32} -5.96637 q^{34} +(-0.787953 - 0.429632i) q^{35} +(-7.62688 + 4.40338i) q^{37} -1.89969i q^{38} +(-0.151292 - 6.19705i) q^{40} +(2.65994 + 4.60715i) q^{41} +(-1.74416 - 1.00699i) q^{43} +6.33001 q^{44} +(0.419208 - 0.726090i) q^{46} +4.62317i q^{47} +(-3.41945 - 5.92267i) q^{49} +(3.54155 - 2.28211i) q^{50} +(2.93607 - 3.60721i) q^{52} +10.8496i q^{53} +(5.71656 + 9.36577i) q^{55} +(-0.556333 + 0.963596i) q^{56} +(5.75228 + 3.32108i) q^{58} +(1.52224 - 2.63659i) q^{59} +(3.55088 - 6.15031i) q^{61} +(-4.59822 + 2.65479i) q^{62} -4.35718 q^{64} +(7.98871 + 1.08653i) q^{65} +(-5.32891 + 3.07665i) q^{67} +(7.91018 - 4.56694i) q^{68} +(-0.756010 + 0.0184569i) q^{70} +(3.16446 - 5.48101i) q^{71} +1.01273i q^{73} +(-3.71042 + 6.42663i) q^{74} +(1.45411 + 2.51860i) q^{76} -1.96951i q^{77} +10.2755 q^{79} +(0.284240 + 0.465687i) q^{80} +(3.88212 + 2.24134i) q^{82} -10.5337i q^{83} +(13.9008 + 7.57941i) q^{85} -1.69704 q^{86} +(11.7810 - 6.80177i) q^{88} +(-0.262260 - 0.454247i) q^{89} +(-1.12234 - 0.913524i) q^{91} +1.28353i q^{92} +(1.94781 + 3.37371i) q^{94} +(-2.41329 + 4.42601i) q^{95} +(-8.15979 - 4.71106i) q^{97} +(-4.99061 - 2.88133i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 4 q^{5} - 4 q^{10} - 4 q^{11} - 24 q^{14} + 16 q^{16} - 16 q^{19} + 16 q^{20} - 16 q^{25} + 48 q^{26} + 12 q^{29} + 8 q^{31} - 32 q^{34} - 10 q^{35} - 48 q^{40} + 40 q^{41} - 40 q^{44}+ \cdots + 28 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.729738 0.421315i 0.516003 0.297914i −0.219295 0.975659i \(-0.570376\pi\)
0.735298 + 0.677744i \(0.237042\pi\)
\(3\) 0 0
\(4\) −0.644988 + 1.11715i −0.322494 + 0.558576i
\(5\) −2.23540 + 0.0545741i −0.999702 + 0.0244063i
\(6\) 0 0
\(7\) 0.347589 + 0.200681i 0.131376 + 0.0758501i 0.564248 0.825606i \(-0.309166\pi\)
−0.432871 + 0.901456i \(0.642500\pi\)
\(8\) 2.77223i 0.980131i
\(9\) 0 0
\(10\) −1.60827 + 0.981632i −0.508578 + 0.310419i
\(11\) −2.45354 4.24965i −0.739769 1.28132i −0.952599 0.304228i \(-0.901601\pi\)
0.212830 0.977089i \(-0.431732\pi\)
\(12\) 0 0
\(13\) −3.55974 0.572960i −0.987293 0.158911i
\(14\) 0.338199 0.0903874
\(15\) 0 0
\(16\) −0.121995 0.211302i −0.0304988 0.0528254i
\(17\) −6.13203 3.54033i −1.48724 0.858656i −0.487343 0.873211i \(-0.662034\pi\)
−0.999894 + 0.0145544i \(0.995367\pi\)
\(18\) 0 0
\(19\) 1.12724 1.95244i 0.258607 0.447920i −0.707262 0.706952i \(-0.750070\pi\)
0.965869 + 0.259031i \(0.0834032\pi\)
\(20\) 1.38084 2.53248i 0.308765 0.566281i
\(21\) 0 0
\(22\) −3.58088 2.06742i −0.763446 0.440776i
\(23\) 0.861695 0.497500i 0.179676 0.103736i −0.407465 0.913221i \(-0.633587\pi\)
0.587140 + 0.809485i \(0.300254\pi\)
\(24\) 0 0
\(25\) 4.99404 0.243990i 0.998809 0.0487981i
\(26\) −2.83907 + 1.08166i −0.556788 + 0.212130i
\(27\) 0 0
\(28\) −0.448381 + 0.258873i −0.0847361 + 0.0489224i
\(29\) 3.94133 + 6.82658i 0.731886 + 1.26766i 0.956076 + 0.293119i \(0.0946932\pi\)
−0.224190 + 0.974546i \(0.571973\pi\)
\(30\) 0 0
\(31\) −6.30120 −1.13173 −0.565864 0.824499i \(-0.691457\pi\)
−0.565864 + 0.824499i \(0.691457\pi\)
\(32\) −4.97969 2.87503i −0.880293 0.508238i
\(33\) 0 0
\(34\) −5.96637 −1.02322
\(35\) −0.787953 0.429632i −0.133188 0.0726211i
\(36\) 0 0
\(37\) −7.62688 + 4.40338i −1.25385 + 0.723912i −0.971872 0.235509i \(-0.924324\pi\)
−0.281980 + 0.959420i \(0.590991\pi\)
\(38\) 1.89969i 0.308171i
\(39\) 0 0
\(40\) −0.151292 6.19705i −0.0239214 0.979839i
\(41\) 2.65994 + 4.60715i 0.415413 + 0.719517i 0.995472 0.0950582i \(-0.0303037\pi\)
−0.580059 + 0.814575i \(0.696970\pi\)
\(42\) 0 0
\(43\) −1.74416 1.00699i −0.265982 0.153565i 0.361078 0.932536i \(-0.382409\pi\)
−0.627060 + 0.778971i \(0.715742\pi\)
\(44\) 6.33001 0.954284
\(45\) 0 0
\(46\) 0.419208 0.726090i 0.0618088 0.107056i
\(47\) 4.62317i 0.674359i 0.941440 + 0.337180i \(0.109473\pi\)
−0.941440 + 0.337180i \(0.890527\pi\)
\(48\) 0 0
\(49\) −3.41945 5.92267i −0.488494 0.846096i
\(50\) 3.54155 2.28211i 0.500851 0.322739i
\(51\) 0 0
\(52\) 2.93607 3.60721i 0.407160 0.500230i
\(53\) 10.8496i 1.49031i 0.666890 + 0.745156i \(0.267625\pi\)
−0.666890 + 0.745156i \(0.732375\pi\)
\(54\) 0 0
\(55\) 5.71656 + 9.36577i 0.770821 + 1.26288i
\(56\) −0.556333 + 0.963596i −0.0743431 + 0.128766i
\(57\) 0 0
\(58\) 5.75228 + 3.32108i 0.755311 + 0.436079i
\(59\) 1.52224 2.63659i 0.198178 0.343255i −0.749759 0.661711i \(-0.769831\pi\)
0.947938 + 0.318455i \(0.103164\pi\)
\(60\) 0 0
\(61\) 3.55088 6.15031i 0.454644 0.787466i −0.544024 0.839070i \(-0.683100\pi\)
0.998668 + 0.0516038i \(0.0164333\pi\)
\(62\) −4.59822 + 2.65479i −0.583975 + 0.337158i
\(63\) 0 0
\(64\) −4.35718 −0.544648
\(65\) 7.98871 + 1.08653i 0.990877 + 0.134767i
\(66\) 0 0
\(67\) −5.32891 + 3.07665i −0.651030 + 0.375873i −0.788851 0.614585i \(-0.789324\pi\)
0.137821 + 0.990457i \(0.455990\pi\)
\(68\) 7.91018 4.56694i 0.959250 0.553823i
\(69\) 0 0
\(70\) −0.756010 + 0.0184569i −0.0903604 + 0.00220602i
\(71\) 3.16446 5.48101i 0.375553 0.650476i −0.614857 0.788639i \(-0.710786\pi\)
0.990410 + 0.138162i \(0.0441196\pi\)
\(72\) 0 0
\(73\) 1.01273i 0.118531i 0.998242 + 0.0592655i \(0.0188759\pi\)
−0.998242 + 0.0592655i \(0.981124\pi\)
\(74\) −3.71042 + 6.42663i −0.431327 + 0.747081i
\(75\) 0 0
\(76\) 1.45411 + 2.51860i 0.166798 + 0.288903i
\(77\) 1.96951i 0.224446i
\(78\) 0 0
\(79\) 10.2755 1.15608 0.578042 0.816007i \(-0.303817\pi\)
0.578042 + 0.816007i \(0.303817\pi\)
\(80\) 0.284240 + 0.465687i 0.0317790 + 0.0520653i
\(81\) 0 0
\(82\) 3.88212 + 2.24134i 0.428709 + 0.247515i
\(83\) 10.5337i 1.15623i −0.815956 0.578114i \(-0.803789\pi\)
0.815956 0.578114i \(-0.196211\pi\)
\(84\) 0 0
\(85\) 13.9008 + 7.57941i 1.50775 + 0.822103i
\(86\) −1.69704 −0.182997
\(87\) 0 0
\(88\) 11.7810 6.80177i 1.25586 0.725071i
\(89\) −0.262260 0.454247i −0.0277995 0.0481501i 0.851791 0.523882i \(-0.175517\pi\)
−0.879590 + 0.475732i \(0.842183\pi\)
\(90\) 0 0
\(91\) −1.12234 0.913524i −0.117653 0.0957634i
\(92\) 1.28353i 0.133817i
\(93\) 0 0
\(94\) 1.94781 + 3.37371i 0.200901 + 0.347971i
\(95\) −2.41329 + 4.42601i −0.247598 + 0.454099i
\(96\) 0 0
\(97\) −8.15979 4.71106i −0.828502 0.478336i 0.0248378 0.999691i \(-0.492093\pi\)
−0.853339 + 0.521356i \(0.825426\pi\)
\(98\) −4.99061 2.88133i −0.504128 0.291059i
\(99\) 0 0
\(100\) −2.94852 + 5.73648i −0.294852 + 0.573648i
\(101\) −2.87707 4.98324i −0.286280 0.495851i 0.686639 0.726998i \(-0.259085\pi\)
−0.972919 + 0.231148i \(0.925752\pi\)
\(102\) 0 0
\(103\) 15.3992i 1.51733i 0.651481 + 0.758665i \(0.274148\pi\)
−0.651481 + 0.758665i \(0.725852\pi\)
\(104\) 1.58838 9.86840i 0.155753 0.967677i
\(105\) 0 0
\(106\) 4.57111 + 7.91739i 0.443985 + 0.769005i
\(107\) −12.9024 + 7.44919i −1.24732 + 0.720141i −0.970574 0.240802i \(-0.922589\pi\)
−0.276746 + 0.960943i \(0.589256\pi\)
\(108\) 0 0
\(109\) 1.69762 0.162602 0.0813011 0.996690i \(-0.474092\pi\)
0.0813011 + 0.996690i \(0.474092\pi\)
\(110\) 8.11753 + 4.42609i 0.773976 + 0.422011i
\(111\) 0 0
\(112\) 0.0979282i 0.00925335i
\(113\) 1.94685 + 1.12402i 0.183145 + 0.105739i 0.588769 0.808301i \(-0.299613\pi\)
−0.405625 + 0.914040i \(0.632946\pi\)
\(114\) 0 0
\(115\) −1.89908 + 1.15914i −0.177091 + 0.108090i
\(116\) −10.1684 −0.944116
\(117\) 0 0
\(118\) 2.56536i 0.236161i
\(119\) −1.42095 2.46116i −0.130258 0.225614i
\(120\) 0 0
\(121\) −6.53968 + 11.3271i −0.594516 + 1.02973i
\(122\) 5.98415i 0.541780i
\(123\) 0 0
\(124\) 4.06420 7.03939i 0.364976 0.632156i
\(125\) −11.1504 + 0.817962i −0.997320 + 0.0731607i
\(126\) 0 0
\(127\) 14.9506 8.63173i 1.32665 0.765942i 0.341871 0.939747i \(-0.388939\pi\)
0.984780 + 0.173804i \(0.0556060\pi\)
\(128\) 6.77978 3.91431i 0.599254 0.345979i
\(129\) 0 0
\(130\) 6.28744 2.57288i 0.551445 0.225656i
\(131\) 4.59071 0.401092 0.200546 0.979684i \(-0.435728\pi\)
0.200546 + 0.979684i \(0.435728\pi\)
\(132\) 0 0
\(133\) 0.783633 0.452431i 0.0679496 0.0392307i
\(134\) −2.59247 + 4.49030i −0.223956 + 0.387903i
\(135\) 0 0
\(136\) 9.81461 16.9994i 0.841596 1.45769i
\(137\) −4.28724 2.47524i −0.366284 0.211474i 0.305550 0.952176i \(-0.401160\pi\)
−0.671834 + 0.740702i \(0.734493\pi\)
\(138\) 0 0
\(139\) −6.63214 + 11.4872i −0.562530 + 0.974331i 0.434744 + 0.900554i \(0.356839\pi\)
−0.997275 + 0.0737774i \(0.976495\pi\)
\(140\) 0.988185 0.603155i 0.0835169 0.0509759i
\(141\) 0 0
\(142\) 5.33294i 0.447530i
\(143\) 6.29906 + 16.5334i 0.526754 + 1.38259i
\(144\) 0 0
\(145\) −9.18301 15.0451i −0.762607 1.24942i
\(146\) 0.426678 + 0.739028i 0.0353121 + 0.0611624i
\(147\) 0 0
\(148\) 11.3605i 0.933829i
\(149\) 1.57886 2.73467i 0.129345 0.224033i −0.794078 0.607816i \(-0.792046\pi\)
0.923423 + 0.383783i \(0.125379\pi\)
\(150\) 0 0
\(151\) −18.5878 −1.51266 −0.756328 0.654193i \(-0.773009\pi\)
−0.756328 + 0.654193i \(0.773009\pi\)
\(152\) 5.41261 + 3.12497i 0.439021 + 0.253469i
\(153\) 0 0
\(154\) −0.829782 1.43723i −0.0668658 0.115815i
\(155\) 14.0857 0.343882i 1.13139 0.0276213i
\(156\) 0 0
\(157\) 10.7802i 0.860351i −0.902745 0.430175i \(-0.858452\pi\)
0.902745 0.430175i \(-0.141548\pi\)
\(158\) 7.49843 4.32922i 0.596543 0.344414i
\(159\) 0 0
\(160\) 11.2885 + 6.15508i 0.892435 + 0.486602i
\(161\) 0.399354 0.0314735
\(162\) 0 0
\(163\) 1.36302 + 0.786941i 0.106760 + 0.0616380i 0.552429 0.833560i \(-0.313701\pi\)
−0.445669 + 0.895198i \(0.647034\pi\)
\(164\) −6.86252 −0.535873
\(165\) 0 0
\(166\) −4.43802 7.68687i −0.344457 0.596617i
\(167\) 13.0492 7.53397i 1.00978 0.582996i 0.0986516 0.995122i \(-0.468547\pi\)
0.911127 + 0.412126i \(0.135214\pi\)
\(168\) 0 0
\(169\) 12.3434 + 4.07917i 0.949495 + 0.313783i
\(170\) 13.3372 0.325610i 1.02292 0.0249731i
\(171\) 0 0
\(172\) 2.24993 1.29900i 0.171555 0.0990475i
\(173\) −2.94981 1.70307i −0.224270 0.129482i 0.383656 0.923476i \(-0.374665\pi\)
−0.607926 + 0.793994i \(0.707998\pi\)
\(174\) 0 0
\(175\) 1.78484 + 0.917399i 0.134921 + 0.0693488i
\(176\) −0.598639 + 1.03687i −0.0451241 + 0.0781572i
\(177\) 0 0
\(178\) −0.382762 0.220988i −0.0286892 0.0165637i
\(179\) 0.300516 + 0.520508i 0.0224616 + 0.0389046i 0.877038 0.480422i \(-0.159516\pi\)
−0.854576 + 0.519326i \(0.826183\pi\)
\(180\) 0 0
\(181\) −17.0607 −1.26811 −0.634056 0.773287i \(-0.718611\pi\)
−0.634056 + 0.773287i \(0.718611\pi\)
\(182\) −1.20390 0.193774i −0.0892388 0.0143635i
\(183\) 0 0
\(184\) 1.37918 + 2.38882i 0.101675 + 0.176106i
\(185\) 16.8088 10.2596i 1.23581 0.754298i
\(186\) 0 0
\(187\) 34.7453i 2.54083i
\(188\) −5.16479 2.98189i −0.376681 0.217477i
\(189\) 0 0
\(190\) 0.103674 + 4.24658i 0.00752131 + 0.308079i
\(191\) 3.10083 5.37079i 0.224368 0.388617i −0.731762 0.681561i \(-0.761302\pi\)
0.956130 + 0.292944i \(0.0946349\pi\)
\(192\) 0 0
\(193\) 7.91367 4.56896i 0.569639 0.328881i −0.187366 0.982290i \(-0.559995\pi\)
0.757005 + 0.653409i \(0.226662\pi\)
\(194\) −7.93935 −0.570012
\(195\) 0 0
\(196\) 8.82203 0.630145
\(197\) −18.7148 + 10.8050i −1.33337 + 0.769823i −0.985815 0.167836i \(-0.946322\pi\)
−0.347557 + 0.937659i \(0.612989\pi\)
\(198\) 0 0
\(199\) 1.27223 2.20357i 0.0901860 0.156207i −0.817403 0.576066i \(-0.804587\pi\)
0.907589 + 0.419859i \(0.137921\pi\)
\(200\) 0.676397 + 13.8446i 0.0478285 + 0.978964i
\(201\) 0 0
\(202\) −4.19902 2.42431i −0.295442 0.170574i
\(203\) 3.16379i 0.222055i
\(204\) 0 0
\(205\) −6.19747 10.1537i −0.432850 0.709164i
\(206\) 6.48792 + 11.2374i 0.452034 + 0.782947i
\(207\) 0 0
\(208\) 0.313203 + 0.822077i 0.0217167 + 0.0570008i
\(209\) −11.0629 −0.765238
\(210\) 0 0
\(211\) 5.54061 + 9.59663i 0.381432 + 0.660659i 0.991267 0.131869i \(-0.0420978\pi\)
−0.609836 + 0.792528i \(0.708765\pi\)
\(212\) −12.1207 6.99789i −0.832453 0.480617i
\(213\) 0 0
\(214\) −6.27691 + 10.8719i −0.429081 + 0.743189i
\(215\) 3.95386 + 2.15585i 0.269651 + 0.147027i
\(216\) 0 0
\(217\) −2.19023 1.26453i −0.148682 0.0858417i
\(218\) 1.23882 0.715231i 0.0839032 0.0484416i
\(219\) 0 0
\(220\) −14.1501 + 0.345455i −0.954000 + 0.0232905i
\(221\) 19.7999 + 16.1161i 1.33189 + 1.08408i
\(222\) 0 0
\(223\) −0.460340 + 0.265778i −0.0308267 + 0.0177978i −0.515334 0.856989i \(-0.672332\pi\)
0.484507 + 0.874787i \(0.338999\pi\)
\(224\) −1.15392 1.99865i −0.0770998 0.133541i
\(225\) 0 0
\(226\) 1.89426 0.126004
\(227\) −18.5220 10.6937i −1.22935 0.709764i −0.262454 0.964944i \(-0.584532\pi\)
−0.966894 + 0.255180i \(0.917865\pi\)
\(228\) 0 0
\(229\) 0.406502 0.0268624 0.0134312 0.999910i \(-0.495725\pi\)
0.0134312 + 0.999910i \(0.495725\pi\)
\(230\) −0.897473 + 1.64598i −0.0591776 + 0.108533i
\(231\) 0 0
\(232\) −18.9249 + 10.9263i −1.24248 + 0.717345i
\(233\) 2.66379i 0.174510i 0.996186 + 0.0872552i \(0.0278096\pi\)
−0.996186 + 0.0872552i \(0.972190\pi\)
\(234\) 0 0
\(235\) −0.252306 10.3347i −0.0164586 0.674158i
\(236\) 1.96365 + 3.40114i 0.127823 + 0.221395i
\(237\) 0 0
\(238\) −2.07385 1.19734i −0.134427 0.0776117i
\(239\) −15.8317 −1.02407 −0.512034 0.858965i \(-0.671108\pi\)
−0.512034 + 0.858965i \(0.671108\pi\)
\(240\) 0 0
\(241\) 11.6570 20.1906i 0.750895 1.30059i −0.196495 0.980505i \(-0.562956\pi\)
0.947390 0.320083i \(-0.103711\pi\)
\(242\) 11.0210i 0.708460i
\(243\) 0 0
\(244\) 4.58055 + 7.93375i 0.293240 + 0.507906i
\(245\) 7.96708 + 13.0529i 0.508998 + 0.833921i
\(246\) 0 0
\(247\) −5.13135 + 6.30431i −0.326500 + 0.401133i
\(248\) 17.4684i 1.10924i
\(249\) 0 0
\(250\) −7.79224 + 5.29472i −0.492824 + 0.334867i
\(251\) 0.650814 1.12724i 0.0410790 0.0711509i −0.844755 0.535153i \(-0.820254\pi\)
0.885834 + 0.464002i \(0.153587\pi\)
\(252\) 0 0
\(253\) −4.22840 2.44127i −0.265837 0.153481i
\(254\) 7.27335 12.5978i 0.456371 0.790457i
\(255\) 0 0
\(256\) 7.65549 13.2597i 0.478468 0.828731i
\(257\) 8.55103 4.93694i 0.533399 0.307958i −0.209001 0.977915i \(-0.567021\pi\)
0.742399 + 0.669958i \(0.233688\pi\)
\(258\) 0 0
\(259\) −3.53469 −0.219635
\(260\) −6.36644 + 8.22380i −0.394830 + 0.510019i
\(261\) 0 0
\(262\) 3.35001 1.93413i 0.206965 0.119491i
\(263\) 0.462121 0.266805i 0.0284956 0.0164519i −0.485685 0.874134i \(-0.661430\pi\)
0.514180 + 0.857682i \(0.328096\pi\)
\(264\) 0 0
\(265\) −0.592110 24.2533i −0.0363730 1.48987i
\(266\) 0.381232 0.660312i 0.0233748 0.0404864i
\(267\) 0 0
\(268\) 7.93761i 0.484867i
\(269\) 6.80199 11.7814i 0.414725 0.718324i −0.580675 0.814136i \(-0.697211\pi\)
0.995400 + 0.0958112i \(0.0305445\pi\)
\(270\) 0 0
\(271\) 11.9163 + 20.6396i 0.723862 + 1.25377i 0.959441 + 0.281911i \(0.0909681\pi\)
−0.235579 + 0.971855i \(0.575699\pi\)
\(272\) 1.72761i 0.104752i
\(273\) 0 0
\(274\) −4.17142 −0.252004
\(275\) −13.2899 20.6243i −0.801413 1.24369i
\(276\) 0 0
\(277\) −16.6388 9.60639i −0.999726 0.577192i −0.0915586 0.995800i \(-0.529185\pi\)
−0.908167 + 0.418608i \(0.862518\pi\)
\(278\) 11.1769i 0.670344i
\(279\) 0 0
\(280\) 1.19104 2.18439i 0.0711782 0.130542i
\(281\) −6.31792 −0.376895 −0.188448 0.982083i \(-0.560346\pi\)
−0.188448 + 0.982083i \(0.560346\pi\)
\(282\) 0 0
\(283\) −26.1587 + 15.1027i −1.55497 + 0.897765i −0.557249 + 0.830345i \(0.688143\pi\)
−0.997725 + 0.0674193i \(0.978523\pi\)
\(284\) 4.08208 + 7.07037i 0.242227 + 0.419549i
\(285\) 0 0
\(286\) 11.5624 + 9.41117i 0.683701 + 0.556494i
\(287\) 2.13519i 0.126037i
\(288\) 0 0
\(289\) 16.5679 + 28.6964i 0.974582 + 1.68803i
\(290\) −13.0399 7.11002i −0.765729 0.417515i
\(291\) 0 0
\(292\) −1.13137 0.653199i −0.0662086 0.0382256i
\(293\) −6.18072 3.56844i −0.361081 0.208470i 0.308474 0.951233i \(-0.400182\pi\)
−0.669555 + 0.742762i \(0.733515\pi\)
\(294\) 0 0
\(295\) −3.25892 + 5.97692i −0.189742 + 0.347990i
\(296\) −12.2072 21.1435i −0.709528 1.22894i
\(297\) 0 0
\(298\) 2.66079i 0.154135i
\(299\) −3.35245 + 1.27725i −0.193877 + 0.0738653i
\(300\) 0 0
\(301\) −0.404167 0.700038i −0.0232958 0.0403495i
\(302\) −13.5642 + 7.83132i −0.780535 + 0.450642i
\(303\) 0 0
\(304\) −0.550072 −0.0315488
\(305\) −7.60200 + 13.9422i −0.435289 + 0.798328i
\(306\) 0 0
\(307\) 9.91349i 0.565793i −0.959150 0.282897i \(-0.908705\pi\)
0.959150 0.282897i \(-0.0912953\pi\)
\(308\) 2.20024 + 1.27031i 0.125370 + 0.0723826i
\(309\) 0 0
\(310\) 10.1340 6.18546i 0.575572 0.351310i
\(311\) −6.04584 −0.342828 −0.171414 0.985199i \(-0.554834\pi\)
−0.171414 + 0.985199i \(0.554834\pi\)
\(312\) 0 0
\(313\) 4.62017i 0.261148i 0.991439 + 0.130574i \(0.0416820\pi\)
−0.991439 + 0.130574i \(0.958318\pi\)
\(314\) −4.54184 7.86670i −0.256311 0.443944i
\(315\) 0 0
\(316\) −6.62758 + 11.4793i −0.372830 + 0.645761i
\(317\) 25.0793i 1.40860i −0.709905 0.704298i \(-0.751262\pi\)
0.709905 0.704298i \(-0.248738\pi\)
\(318\) 0 0
\(319\) 19.3404 33.4985i 1.08285 1.87556i
\(320\) 9.74005 0.237789i 0.544486 0.0132928i
\(321\) 0 0
\(322\) 0.291424 0.168254i 0.0162404 0.00937642i
\(323\) −13.8246 + 7.98162i −0.769220 + 0.444109i
\(324\) 0 0
\(325\) −17.9173 1.99285i −0.993871 0.110543i
\(326\) 1.32620 0.0734514
\(327\) 0 0
\(328\) −12.7721 + 7.37397i −0.705221 + 0.407159i
\(329\) −0.927781 + 1.60696i −0.0511502 + 0.0885948i
\(330\) 0 0
\(331\) −6.84346 + 11.8532i −0.376150 + 0.651512i −0.990499 0.137524i \(-0.956086\pi\)
0.614348 + 0.789035i \(0.289419\pi\)
\(332\) 11.7678 + 6.79413i 0.645841 + 0.372877i
\(333\) 0 0
\(334\) 6.34834 10.9956i 0.347366 0.601655i
\(335\) 11.7444 7.16837i 0.641663 0.391650i
\(336\) 0 0
\(337\) 9.01512i 0.491085i −0.969386 0.245543i \(-0.921034\pi\)
0.969386 0.245543i \(-0.0789661\pi\)
\(338\) 10.7261 2.22374i 0.583422 0.120955i
\(339\) 0 0
\(340\) −17.4332 + 10.6406i −0.945447 + 0.577070i
\(341\) 15.4602 + 26.7779i 0.837217 + 1.45010i
\(342\) 0 0
\(343\) 5.55440i 0.299909i
\(344\) 2.79161 4.83521i 0.150514 0.260697i
\(345\) 0 0
\(346\) −2.87012 −0.154299
\(347\) 9.40767 + 5.43152i 0.505030 + 0.291579i 0.730788 0.682604i \(-0.239153\pi\)
−0.225758 + 0.974183i \(0.572486\pi\)
\(348\) 0 0
\(349\) −9.86492 17.0865i −0.528057 0.914622i −0.999465 0.0327066i \(-0.989587\pi\)
0.471408 0.881915i \(-0.343746\pi\)
\(350\) 1.68898 0.0825172i 0.0902797 0.00441073i
\(351\) 0 0
\(352\) 28.2159i 1.50391i
\(353\) −16.1051 + 9.29831i −0.857190 + 0.494899i −0.863070 0.505084i \(-0.831462\pi\)
0.00588009 + 0.999983i \(0.498128\pi\)
\(354\) 0 0
\(355\) −6.77473 + 12.4250i −0.359565 + 0.659448i
\(356\) 0.676618 0.0358607
\(357\) 0 0
\(358\) 0.438595 + 0.253223i 0.0231805 + 0.0133833i
\(359\) 12.1448 0.640976 0.320488 0.947253i \(-0.396153\pi\)
0.320488 + 0.947253i \(0.396153\pi\)
\(360\) 0 0
\(361\) 6.95865 + 12.0527i 0.366245 + 0.634355i
\(362\) −12.4498 + 7.18792i −0.654350 + 0.377789i
\(363\) 0 0
\(364\) 1.74444 0.664615i 0.0914337 0.0348353i
\(365\) −0.0552689 2.26386i −0.00289291 0.118496i
\(366\) 0 0
\(367\) 26.8759 15.5168i 1.40291 0.809971i 0.408220 0.912884i \(-0.366150\pi\)
0.994690 + 0.102913i \(0.0328163\pi\)
\(368\) −0.210245 0.121385i −0.0109598 0.00632764i
\(369\) 0 0
\(370\) 7.94355 14.5686i 0.412965 0.757386i
\(371\) −2.17731 + 3.77121i −0.113040 + 0.195792i
\(372\) 0 0
\(373\) 9.03380 + 5.21567i 0.467752 + 0.270057i 0.715298 0.698819i \(-0.246291\pi\)
−0.247546 + 0.968876i \(0.579624\pi\)
\(374\) 14.6387 + 25.3550i 0.756950 + 1.31108i
\(375\) 0 0
\(376\) −12.8165 −0.660961
\(377\) −10.1187 26.5591i −0.521141 1.36786i
\(378\) 0 0
\(379\) −15.3621 26.6080i −0.789099 1.36676i −0.926519 0.376247i \(-0.877214\pi\)
0.137420 0.990513i \(-0.456119\pi\)
\(380\) −3.38798 5.55073i −0.173800 0.284746i
\(381\) 0 0
\(382\) 5.22569i 0.267370i
\(383\) 7.37251 + 4.25652i 0.376718 + 0.217498i 0.676389 0.736544i \(-0.263544\pi\)
−0.299672 + 0.954042i \(0.596877\pi\)
\(384\) 0 0
\(385\) 0.107484 + 4.40264i 0.00547790 + 0.224379i
\(386\) 3.84994 6.66829i 0.195957 0.339407i
\(387\) 0 0
\(388\) 10.5259 6.07715i 0.534374 0.308521i
\(389\) −21.6832 −1.09938 −0.549691 0.835368i \(-0.685255\pi\)
−0.549691 + 0.835368i \(0.685255\pi\)
\(390\) 0 0
\(391\) −7.04526 −0.356294
\(392\) 16.4190 9.47951i 0.829285 0.478788i
\(393\) 0 0
\(394\) −9.10459 + 15.7696i −0.458683 + 0.794461i
\(395\) −22.9699 + 0.560777i −1.15574 + 0.0282157i
\(396\) 0 0
\(397\) −17.9986 10.3915i −0.903325 0.521535i −0.0250477 0.999686i \(-0.507974\pi\)
−0.878278 + 0.478151i \(0.841307\pi\)
\(398\) 2.14404i 0.107471i
\(399\) 0 0
\(400\) −0.660805 1.02548i −0.0330402 0.0512742i
\(401\) −18.3709 31.8194i −0.917400 1.58898i −0.803350 0.595508i \(-0.796951\pi\)
−0.114050 0.993475i \(-0.536382\pi\)
\(402\) 0 0
\(403\) 22.4306 + 3.61034i 1.11735 + 0.179844i
\(404\) 7.42271 0.369294
\(405\) 0 0
\(406\) 1.33295 + 2.30874i 0.0661533 + 0.114581i
\(407\) 37.4257 + 21.6077i 1.85512 + 1.07105i
\(408\) 0 0
\(409\) −1.60553 + 2.78087i −0.0793885 + 0.137505i −0.902986 0.429669i \(-0.858630\pi\)
0.823598 + 0.567174i \(0.191963\pi\)
\(410\) −8.80042 4.79844i −0.434622 0.236978i
\(411\) 0 0
\(412\) −17.2033 9.93231i −0.847544 0.489330i
\(413\) 1.05823 0.610967i 0.0520719 0.0300637i
\(414\) 0 0
\(415\) 0.574870 + 23.5471i 0.0282192 + 1.15588i
\(416\) 16.0791 + 13.0875i 0.788343 + 0.641667i
\(417\) 0 0
\(418\) −8.07303 + 4.66097i −0.394865 + 0.227975i
\(419\) 7.62605 + 13.2087i 0.372557 + 0.645288i 0.989958 0.141361i \(-0.0451477\pi\)
−0.617401 + 0.786649i \(0.711814\pi\)
\(420\) 0 0
\(421\) 0.122664 0.00597828 0.00298914 0.999996i \(-0.499049\pi\)
0.00298914 + 0.999996i \(0.499049\pi\)
\(422\) 8.08640 + 4.66868i 0.393640 + 0.227268i
\(423\) 0 0
\(424\) −30.0777 −1.46070
\(425\) −31.4874 16.1844i −1.52737 0.785059i
\(426\) 0 0
\(427\) 2.46849 1.42519i 0.119459 0.0689695i
\(428\) 19.2186i 0.928964i
\(429\) 0 0
\(430\) 3.79357 0.0926146i 0.182942 0.00446627i
\(431\) 0.809141 + 1.40147i 0.0389750 + 0.0675066i 0.884855 0.465867i \(-0.154257\pi\)
−0.845880 + 0.533373i \(0.820924\pi\)
\(432\) 0 0
\(433\) −13.4785 7.78179i −0.647733 0.373969i 0.139854 0.990172i \(-0.455337\pi\)
−0.787587 + 0.616203i \(0.788670\pi\)
\(434\) −2.13106 −0.102294
\(435\) 0 0
\(436\) −1.09494 + 1.89650i −0.0524383 + 0.0908257i
\(437\) 2.24321i 0.107307i
\(438\) 0 0
\(439\) −3.91196 6.77571i −0.186708 0.323387i 0.757443 0.652901i \(-0.226448\pi\)
−0.944151 + 0.329514i \(0.893115\pi\)
\(440\) −25.9641 + 15.8476i −1.23779 + 0.755506i
\(441\) 0 0
\(442\) 21.2387 + 3.41850i 1.01022 + 0.162601i
\(443\) 24.8136i 1.17893i 0.807794 + 0.589465i \(0.200662\pi\)
−0.807794 + 0.589465i \(0.799338\pi\)
\(444\) 0 0
\(445\) 0.611046 + 1.00111i 0.0289664 + 0.0474573i
\(446\) −0.223952 + 0.387896i −0.0106044 + 0.0183674i
\(447\) 0 0
\(448\) −1.51451 0.874402i −0.0715538 0.0413116i
\(449\) 16.7743 29.0539i 0.791626 1.37114i −0.133333 0.991071i \(-0.542568\pi\)
0.924959 0.380066i \(-0.124099\pi\)
\(450\) 0 0
\(451\) 13.0525 22.6076i 0.614619 1.06455i
\(452\) −2.51140 + 1.44995i −0.118126 + 0.0682001i
\(453\) 0 0
\(454\) −18.0216 −0.845796
\(455\) 2.55874 + 1.98084i 0.119956 + 0.0928634i
\(456\) 0 0
\(457\) 15.9839 9.22831i 0.747696 0.431682i −0.0771651 0.997018i \(-0.524587\pi\)
0.824861 + 0.565336i \(0.191254\pi\)
\(458\) 0.296640 0.171265i 0.0138611 0.00800271i
\(459\) 0 0
\(460\) −0.0700473 2.86920i −0.00326597 0.133777i
\(461\) 3.47162 6.01302i 0.161689 0.280054i −0.773785 0.633448i \(-0.781639\pi\)
0.935475 + 0.353394i \(0.114972\pi\)
\(462\) 0 0
\(463\) 41.2459i 1.91686i 0.285329 + 0.958430i \(0.407897\pi\)
−0.285329 + 0.958430i \(0.592103\pi\)
\(464\) 0.961646 1.66562i 0.0446433 0.0773245i
\(465\) 0 0
\(466\) 1.12229 + 1.94387i 0.0519892 + 0.0900479i
\(467\) 29.7045i 1.37456i 0.726393 + 0.687280i \(0.241195\pi\)
−0.726393 + 0.687280i \(0.758805\pi\)
\(468\) 0 0
\(469\) −2.46969 −0.114040
\(470\) −4.53826 7.43529i −0.209334 0.342964i
\(471\) 0 0
\(472\) 7.30924 + 4.21999i 0.336435 + 0.194241i
\(473\) 9.88276i 0.454410i
\(474\) 0 0
\(475\) 5.15312 10.0256i 0.236441 0.460006i
\(476\) 3.66599 0.168030
\(477\) 0 0
\(478\) −11.5530 + 6.67013i −0.528422 + 0.305084i
\(479\) 9.86981 + 17.0950i 0.450963 + 0.781091i 0.998446 0.0557257i \(-0.0177472\pi\)
−0.547483 + 0.836817i \(0.684414\pi\)
\(480\) 0 0
\(481\) 29.6726 11.3050i 1.35296 0.515463i
\(482\) 19.6451i 0.894809i
\(483\) 0 0
\(484\) −8.43603 14.6116i −0.383456 0.664165i
\(485\) 18.4975 + 10.0858i 0.839929 + 0.457972i
\(486\) 0 0
\(487\) 21.0473 + 12.1517i 0.953745 + 0.550645i 0.894242 0.447583i \(-0.147715\pi\)
0.0595026 + 0.998228i \(0.481049\pi\)
\(488\) 17.0501 + 9.84386i 0.771820 + 0.445610i
\(489\) 0 0
\(490\) 11.3133 + 6.16858i 0.511082 + 0.278668i
\(491\) 3.45543 + 5.98497i 0.155941 + 0.270098i 0.933401 0.358834i \(-0.116826\pi\)
−0.777460 + 0.628932i \(0.783492\pi\)
\(492\) 0 0
\(493\) 55.8144i 2.51376i
\(494\) −1.08845 + 6.76241i −0.0489716 + 0.304255i
\(495\) 0 0
\(496\) 0.768715 + 1.33145i 0.0345163 + 0.0597840i
\(497\) 2.19986 1.27009i 0.0986774 0.0569714i
\(498\) 0 0
\(499\) −2.21036 −0.0989495 −0.0494747 0.998775i \(-0.515755\pi\)
−0.0494747 + 0.998775i \(0.515755\pi\)
\(500\) 6.27807 12.9842i 0.280764 0.580673i
\(501\) 0 0
\(502\) 1.09679i 0.0489521i
\(503\) −25.3122 14.6140i −1.12862 0.651607i −0.185030 0.982733i \(-0.559238\pi\)
−0.943587 + 0.331126i \(0.892572\pi\)
\(504\) 0 0
\(505\) 6.70337 + 10.9825i 0.298296 + 0.488716i
\(506\) −4.11417 −0.182897
\(507\) 0 0
\(508\) 22.2695i 0.988047i
\(509\) 3.60746 + 6.24830i 0.159898 + 0.276951i 0.934832 0.355091i \(-0.115550\pi\)
−0.774934 + 0.632042i \(0.782217\pi\)
\(510\) 0 0
\(511\) −0.203235 + 0.352014i −0.00899060 + 0.0155722i
\(512\) 2.75575i 0.121788i
\(513\) 0 0
\(514\) 4.16001 7.20535i 0.183490 0.317814i
\(515\) −0.840399 34.4234i −0.0370324 1.51688i
\(516\) 0 0
\(517\) 19.6469 11.3431i 0.864068 0.498870i
\(518\) −2.57940 + 1.48922i −0.113332 + 0.0654325i
\(519\) 0 0
\(520\) −3.01210 + 22.1465i −0.132089 + 0.971190i
\(521\) −38.0923 −1.66886 −0.834428 0.551118i \(-0.814202\pi\)
−0.834428 + 0.551118i \(0.814202\pi\)
\(522\) 0 0
\(523\) −0.0687721 + 0.0397056i −0.00300719 + 0.00173620i −0.501503 0.865156i \(-0.667219\pi\)
0.498496 + 0.866892i \(0.333886\pi\)
\(524\) −2.96095 + 5.12852i −0.129350 + 0.224040i
\(525\) 0 0
\(526\) 0.224818 0.389396i 0.00980253 0.0169785i
\(527\) 38.6391 + 22.3083i 1.68315 + 0.971766i
\(528\) 0 0
\(529\) −11.0050 + 19.0612i −0.478478 + 0.828748i
\(530\) −10.6504 17.4491i −0.462622 0.757940i
\(531\) 0 0
\(532\) 1.16725i 0.0506067i
\(533\) −6.82897 17.9243i −0.295796 0.776387i
\(534\) 0 0
\(535\) 28.4355 17.3561i 1.22937 0.750369i
\(536\) −8.52918 14.7730i −0.368404 0.638095i
\(537\) 0 0
\(538\) 11.4631i 0.494210i
\(539\) −16.7795 + 29.0630i −0.722745 + 1.25183i
\(540\) 0 0
\(541\) −29.1429 −1.25295 −0.626476 0.779441i \(-0.715503\pi\)
−0.626476 + 0.779441i \(0.715503\pi\)
\(542\) 17.3915 + 10.0410i 0.747030 + 0.431298i
\(543\) 0 0
\(544\) 20.3571 + 35.2595i 0.872803 + 1.51174i
\(545\) −3.79486 + 0.0926460i −0.162554 + 0.00396852i
\(546\) 0 0
\(547\) 12.9652i 0.554354i 0.960819 + 0.277177i \(0.0893988\pi\)
−0.960819 + 0.277177i \(0.910601\pi\)
\(548\) 5.53043 3.19300i 0.236248 0.136398i
\(549\) 0 0
\(550\) −18.3875 9.45109i −0.784045 0.402996i
\(551\) 17.7713 0.757084
\(552\) 0 0
\(553\) 3.57165 + 2.06209i 0.151882 + 0.0876891i
\(554\) −16.1892 −0.687815
\(555\) 0 0
\(556\) −8.55530 14.8182i −0.362825 0.628432i
\(557\) 27.7896 16.0443i 1.17748 0.679820i 0.222051 0.975035i \(-0.428725\pi\)
0.955431 + 0.295215i \(0.0953914\pi\)
\(558\) 0 0
\(559\) 5.63178 + 4.58396i 0.238199 + 0.193881i
\(560\) 0.00534435 + 0.218909i 0.000225840 + 0.00925059i
\(561\) 0 0
\(562\) −4.61043 + 2.66183i −0.194479 + 0.112283i
\(563\) −1.31596 0.759773i −0.0554613 0.0320206i 0.472013 0.881592i \(-0.343528\pi\)
−0.527474 + 0.849571i \(0.676861\pi\)
\(564\) 0 0
\(565\) −4.41334 2.40638i −0.185671 0.101237i
\(566\) −12.7260 + 22.0421i −0.534914 + 0.926498i
\(567\) 0 0
\(568\) 15.1946 + 8.77262i 0.637552 + 0.368091i
\(569\) −9.90956 17.1639i −0.415430 0.719546i 0.580043 0.814586i \(-0.303036\pi\)
−0.995474 + 0.0950394i \(0.969702\pi\)
\(570\) 0 0
\(571\) 43.8106 1.83342 0.916708 0.399558i \(-0.130836\pi\)
0.916708 + 0.399558i \(0.130836\pi\)
\(572\) −22.5331 3.62684i −0.942158 0.151646i
\(573\) 0 0
\(574\) 0.899588 + 1.55813i 0.0375481 + 0.0650352i
\(575\) 4.18196 2.69478i 0.174400 0.112380i
\(576\) 0 0
\(577\) 11.7411i 0.488787i 0.969676 + 0.244393i \(0.0785888\pi\)
−0.969676 + 0.244393i \(0.921411\pi\)
\(578\) 24.1805 + 13.9606i 1.00577 + 0.580684i
\(579\) 0 0
\(580\) 22.7306 0.554934i 0.943835 0.0230424i
\(581\) 2.11392 3.66141i 0.0877000 0.151901i
\(582\) 0 0
\(583\) 46.1071 26.6200i 1.90956 1.10249i
\(584\) −2.80752 −0.116176
\(585\) 0 0
\(586\) −6.01374 −0.248425
\(587\) 22.3360 12.8957i 0.921907 0.532263i 0.0376643 0.999290i \(-0.488008\pi\)
0.884243 + 0.467027i \(0.154675\pi\)
\(588\) 0 0
\(589\) −7.10297 + 12.3027i −0.292673 + 0.506924i
\(590\) 0.140003 + 5.73462i 0.00576381 + 0.236091i
\(591\) 0 0
\(592\) 1.86089 + 1.07438i 0.0764819 + 0.0441569i
\(593\) 10.5017i 0.431252i −0.976476 0.215626i \(-0.930821\pi\)
0.976476 0.215626i \(-0.0691792\pi\)
\(594\) 0 0
\(595\) 3.31071 + 5.42413i 0.135726 + 0.222368i
\(596\) 2.03669 + 3.52766i 0.0834262 + 0.144498i
\(597\) 0 0
\(598\) −1.90829 + 2.34450i −0.0780358 + 0.0958736i
\(599\) 37.8214 1.54534 0.772669 0.634809i \(-0.218921\pi\)
0.772669 + 0.634809i \(0.218921\pi\)
\(600\) 0 0
\(601\) 14.8477 + 25.7170i 0.605652 + 1.04902i 0.991948 + 0.126645i \(0.0404208\pi\)
−0.386297 + 0.922375i \(0.626246\pi\)
\(602\) −0.589873 0.340563i −0.0240414 0.0138803i
\(603\) 0 0
\(604\) 11.9889 20.7654i 0.487823 0.844933i
\(605\) 14.0006 25.6774i 0.569207 1.04394i
\(606\) 0 0
\(607\) 14.0175 + 8.09298i 0.568951 + 0.328484i 0.756730 0.653727i \(-0.226796\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(608\) −11.2266 + 6.48170i −0.455300 + 0.262868i
\(609\) 0 0
\(610\) 0.326580 + 13.3770i 0.0132228 + 0.541618i
\(611\) 2.64890 16.4573i 0.107163 0.665790i
\(612\) 0 0
\(613\) 22.0871 12.7520i 0.892089 0.515048i 0.0174640 0.999847i \(-0.494441\pi\)
0.874625 + 0.484799i \(0.161107\pi\)
\(614\) −4.17670 7.23426i −0.168558 0.291951i
\(615\) 0 0
\(616\) 5.45993 0.219987
\(617\) 10.1748 + 5.87440i 0.409620 + 0.236494i 0.690626 0.723212i \(-0.257335\pi\)
−0.281006 + 0.959706i \(0.590668\pi\)
\(618\) 0 0
\(619\) 9.49031 0.381448 0.190724 0.981644i \(-0.438917\pi\)
0.190724 + 0.981644i \(0.438917\pi\)
\(620\) −8.70094 + 15.9577i −0.349438 + 0.640876i
\(621\) 0 0
\(622\) −4.41188 + 2.54720i −0.176900 + 0.102133i
\(623\) 0.210522i 0.00843438i
\(624\) 0 0
\(625\) 24.8809 2.43700i 0.995237 0.0974798i
\(626\) 1.94655 + 3.37152i 0.0777997 + 0.134753i
\(627\) 0 0
\(628\) 12.0431 + 6.95308i 0.480571 + 0.277458i
\(629\) 62.3577 2.48637
\(630\) 0 0
\(631\) −11.7563 + 20.3625i −0.468010 + 0.810617i −0.999332 0.0365534i \(-0.988362\pi\)
0.531322 + 0.847170i \(0.321695\pi\)
\(632\) 28.4861i 1.13311i
\(633\) 0 0
\(634\) −10.5663 18.3014i −0.419641 0.726839i
\(635\) −32.9495 + 20.1113i −1.30756 + 0.798093i
\(636\) 0 0
\(637\) 8.77890 + 23.0423i 0.347833 + 0.912971i
\(638\) 32.5935i 1.29039i
\(639\) 0 0
\(640\) −14.9419 + 9.12005i −0.590631 + 0.360502i
\(641\) 9.54940 16.5400i 0.377179 0.653292i −0.613472 0.789717i \(-0.710228\pi\)
0.990651 + 0.136424i \(0.0435610\pi\)
\(642\) 0 0
\(643\) −37.7938 21.8202i −1.49044 0.860506i −0.490500 0.871441i \(-0.663186\pi\)
−0.999940 + 0.0109350i \(0.996519\pi\)
\(644\) −0.257579 + 0.446139i −0.0101500 + 0.0175804i
\(645\) 0 0
\(646\) −6.72555 + 11.6490i −0.264613 + 0.458323i
\(647\) 2.86660 1.65503i 0.112698 0.0650661i −0.442592 0.896723i \(-0.645941\pi\)
0.555289 + 0.831657i \(0.312608\pi\)
\(648\) 0 0
\(649\) −14.9395 −0.586425
\(650\) −13.9145 + 6.09455i −0.545773 + 0.239048i
\(651\) 0 0
\(652\) −1.75827 + 1.01514i −0.0688590 + 0.0397558i
\(653\) −3.12790 + 1.80589i −0.122404 + 0.0706701i −0.559952 0.828525i \(-0.689180\pi\)
0.437548 + 0.899195i \(0.355847\pi\)
\(654\) 0 0
\(655\) −10.2621 + 0.250534i −0.400972 + 0.00978917i
\(656\) 0.649000 1.12410i 0.0253392 0.0438888i
\(657\) 0 0
\(658\) 1.56355i 0.0609536i
\(659\) −21.5161 + 37.2670i −0.838148 + 1.45172i 0.0532932 + 0.998579i \(0.483028\pi\)
−0.891441 + 0.453136i \(0.850305\pi\)
\(660\) 0 0
\(661\) −18.8524 32.6533i −0.733273 1.27007i −0.955477 0.295066i \(-0.904658\pi\)
0.222204 0.975000i \(-0.428675\pi\)
\(662\) 11.5330i 0.448242i
\(663\) 0 0
\(664\) 29.2019 1.13325
\(665\) −1.72704 + 1.05413i −0.0669719 + 0.0408775i
\(666\) 0 0
\(667\) 6.79245 + 3.92162i 0.263005 + 0.151846i
\(668\) 19.4373i 0.752051i
\(669\) 0 0
\(670\) 5.55017 10.1791i 0.214422 0.393253i
\(671\) −34.8489 −1.34532
\(672\) 0 0
\(673\) −38.7794 + 22.3893i −1.49484 + 0.863045i −0.999982 0.00593030i \(-0.998112\pi\)
−0.494855 + 0.868975i \(0.664779\pi\)
\(674\) −3.79820 6.57868i −0.146301 0.253401i
\(675\) 0 0
\(676\) −12.5184 + 11.1585i −0.481478 + 0.429172i
\(677\) 41.0024i 1.57585i −0.615770 0.787926i \(-0.711155\pi\)
0.615770 0.787926i \(-0.288845\pi\)
\(678\) 0 0
\(679\) −1.89084 3.27502i −0.0725636 0.125684i
\(680\) −21.0119 + 38.5361i −0.805769 + 1.47779i
\(681\) 0 0
\(682\) 22.5638 + 13.0272i 0.864013 + 0.498838i
\(683\) −17.7354 10.2395i −0.678627 0.391805i 0.120711 0.992688i \(-0.461483\pi\)
−0.799338 + 0.600882i \(0.794816\pi\)
\(684\) 0 0
\(685\) 9.71879 + 5.29918i 0.371336 + 0.202471i
\(686\) −2.34015 4.05326i −0.0893473 0.154754i
\(687\) 0 0
\(688\) 0.491392i 0.0187342i
\(689\) 6.21641 38.6218i 0.236826 1.47137i
\(690\) 0 0
\(691\) −13.8702 24.0240i −0.527649 0.913915i −0.999481 0.0322263i \(-0.989740\pi\)
0.471832 0.881689i \(-0.343593\pi\)
\(692\) 3.80518 2.19692i 0.144651 0.0835145i
\(693\) 0 0
\(694\) 9.15352 0.347463
\(695\) 14.1986 26.0404i 0.538583 0.987770i
\(696\) 0 0
\(697\) 37.6683i 1.42679i
\(698\) −14.3976 8.31247i −0.544958 0.314632i
\(699\) 0 0
\(700\) −2.17607 + 1.40222i −0.0822478 + 0.0529991i
\(701\) 6.02633 0.227611 0.113806 0.993503i \(-0.463696\pi\)
0.113806 + 0.993503i \(0.463696\pi\)
\(702\) 0 0
\(703\) 19.8547i 0.748835i
\(704\) 10.6905 + 18.5165i 0.402913 + 0.697867i
\(705\) 0 0
\(706\) −7.83503 + 13.5707i −0.294875 + 0.510739i
\(707\) 2.30949i 0.0868573i
\(708\) 0 0
\(709\) −11.3864 + 19.7218i −0.427625 + 0.740668i −0.996662 0.0816444i \(-0.973983\pi\)
0.569037 + 0.822312i \(0.307316\pi\)
\(710\) 0.291041 + 11.9213i 0.0109226 + 0.447397i
\(711\) 0 0
\(712\) 1.25928 0.727045i 0.0471934 0.0272471i
\(713\) −5.42971 + 3.13484i −0.203344 + 0.117401i
\(714\) 0 0
\(715\) −14.9832 36.6150i −0.560341 1.36932i
\(716\) −0.775316 −0.0289749
\(717\) 0 0
\(718\) 8.86250 5.11677i 0.330746 0.190956i
\(719\) −13.1830 + 22.8336i −0.491643 + 0.851551i −0.999954 0.00962269i \(-0.996937\pi\)
0.508310 + 0.861174i \(0.330270\pi\)
\(720\) 0 0
\(721\) −3.09032 + 5.35260i −0.115090 + 0.199341i
\(722\) 10.1560 + 5.86356i 0.377967 + 0.218219i
\(723\) 0 0
\(724\) 11.0039 19.0594i 0.408959 0.708337i
\(725\) 21.3488 + 33.1306i 0.792874 + 1.23044i
\(726\) 0 0
\(727\) 1.91130i 0.0708862i 0.999372 + 0.0354431i \(0.0112842\pi\)
−0.999372 + 0.0354431i \(0.988716\pi\)
\(728\) 2.53250 3.11139i 0.0938607 0.115316i
\(729\) 0 0
\(730\) −0.994129 1.62874i −0.0367944 0.0602823i
\(731\) 7.13017 + 12.3498i 0.263719 + 0.456774i
\(732\) 0 0
\(733\) 18.4077i 0.679904i 0.940443 + 0.339952i \(0.110411\pi\)
−0.940443 + 0.339952i \(0.889589\pi\)
\(734\) 13.0749 22.6464i 0.482604 0.835894i
\(735\) 0 0
\(736\) −5.72130 −0.210890
\(737\) 26.1494 + 15.0973i 0.963224 + 0.556118i
\(738\) 0 0
\(739\) −0.909425 1.57517i −0.0334538 0.0579436i 0.848814 0.528692i \(-0.177317\pi\)
−0.882268 + 0.470748i \(0.843984\pi\)
\(740\) 0.619990 + 25.3953i 0.0227913 + 0.933551i
\(741\) 0 0
\(742\) 3.66933i 0.134705i
\(743\) −7.61880 + 4.39871i −0.279507 + 0.161373i −0.633200 0.773988i \(-0.718259\pi\)
0.353693 + 0.935361i \(0.384926\pi\)
\(744\) 0 0
\(745\) −3.38015 + 6.19925i −0.123839 + 0.227123i
\(746\) 8.78974 0.321815
\(747\) 0 0
\(748\) −38.8158 22.4103i −1.41925 0.819402i
\(749\) −5.97963 −0.218491
\(750\) 0 0
\(751\) −18.0751 31.3070i −0.659571 1.14241i −0.980727 0.195384i \(-0.937405\pi\)
0.321156 0.947026i \(-0.395929\pi\)
\(752\) 0.976885 0.564005i 0.0356233 0.0205671i
\(753\) 0 0
\(754\) −18.5737 15.1180i −0.676416 0.550565i
\(755\) 41.5513 1.01441i 1.51221 0.0369183i
\(756\) 0 0
\(757\) 25.1967 14.5473i 0.915789 0.528731i 0.0334996 0.999439i \(-0.489335\pi\)
0.882289 + 0.470708i \(0.156001\pi\)
\(758\) −22.4207 12.9446i −0.814355 0.470168i
\(759\) 0 0
\(760\) −12.2699 6.69018i −0.445076 0.242678i
\(761\) −13.2927 + 23.0236i −0.481859 + 0.834603i −0.999783 0.0208228i \(-0.993371\pi\)
0.517925 + 0.855426i \(0.326705\pi\)
\(762\) 0 0
\(763\) 0.590073 + 0.340679i 0.0213621 + 0.0123334i
\(764\) 3.99999 + 6.92819i 0.144715 + 0.250653i
\(765\) 0 0
\(766\) 7.17334 0.259183
\(767\) −6.92943 + 8.51339i −0.250207 + 0.307401i
\(768\) 0 0
\(769\) 12.4145 + 21.5026i 0.447679 + 0.775403i 0.998235 0.0593958i \(-0.0189174\pi\)
−0.550556 + 0.834799i \(0.685584\pi\)
\(770\) 1.93333 + 3.16749i 0.0696725 + 0.114148i
\(771\) 0 0
\(772\) 11.7877i 0.424249i
\(773\) −15.4061 8.89469i −0.554117 0.319920i 0.196664 0.980471i \(-0.436989\pi\)
−0.750781 + 0.660551i \(0.770323\pi\)
\(774\) 0 0
\(775\) −31.4684 + 1.53743i −1.13038 + 0.0552261i
\(776\) 13.0601 22.6208i 0.468832 0.812040i
\(777\) 0 0
\(778\) −15.8231 + 9.13545i −0.567285 + 0.327522i
\(779\) 11.9936 0.429715
\(780\) 0 0
\(781\) −31.0565 −1.11129
\(782\) −5.14120 + 2.96827i −0.183849 + 0.106145i
\(783\) 0 0
\(784\) −0.834314 + 1.44507i −0.0297969 + 0.0516098i
\(785\) 0.588318 + 24.0980i 0.0209980 + 0.860095i
\(786\) 0 0
\(787\) −19.7092 11.3791i −0.702557 0.405622i 0.105742 0.994394i \(-0.466278\pi\)
−0.808299 + 0.588772i \(0.799612\pi\)
\(788\) 27.8763i 0.993053i
\(789\) 0 0
\(790\) −16.5257 + 10.0868i −0.587959 + 0.358871i
\(791\) 0.451137 + 0.781392i 0.0160406 + 0.0277831i
\(792\) 0 0
\(793\) −16.1641 + 19.8589i −0.574003 + 0.705212i
\(794\) −17.5124 −0.621491
\(795\) 0 0
\(796\) 1.64115 + 2.84255i 0.0581689 + 0.100751i
\(797\) 20.7232 + 11.9646i 0.734055 + 0.423807i 0.819904 0.572501i \(-0.194027\pi\)
−0.0858488 + 0.996308i \(0.527360\pi\)
\(798\) 0 0
\(799\) 16.3676 28.3495i 0.579043 1.00293i
\(800\) −25.5703 13.1430i −0.904046 0.464676i
\(801\) 0 0
\(802\) −26.8119 15.4799i −0.946762 0.546613i
\(803\) 4.30375 2.48477i 0.151876 0.0876856i
\(804\) 0 0
\(805\) −0.892717 + 0.0217944i −0.0314641 + 0.000768152i
\(806\) 17.8895 6.81574i 0.630132 0.240074i
\(807\) 0 0
\(808\) 13.8147 7.97591i 0.485999 0.280592i
\(809\) −8.39474 14.5401i −0.295143 0.511203i 0.679875 0.733328i \(-0.262034\pi\)
−0.975018 + 0.222125i \(0.928701\pi\)
\(810\) 0 0
\(811\) 14.0218 0.492373 0.246186 0.969222i \(-0.420822\pi\)
0.246186 + 0.969222i \(0.420822\pi\)
\(812\) −3.53444 2.04061i −0.124034 0.0716113i
\(813\) 0 0
\(814\) 36.4146 1.27633
\(815\) −3.08985 1.68474i −0.108233 0.0590140i
\(816\) 0 0
\(817\) −3.93218 + 2.27025i −0.137570 + 0.0794259i
\(818\) 2.70574i 0.0946040i
\(819\) 0 0
\(820\) 15.3405 0.374516i 0.535713 0.0130787i
\(821\) 19.4895 + 33.7568i 0.680189 + 1.17812i 0.974923 + 0.222542i \(0.0714355\pi\)
−0.294734 + 0.955579i \(0.595231\pi\)
\(822\) 0 0
\(823\) −9.60038 5.54278i −0.334648 0.193209i 0.323255 0.946312i \(-0.395223\pi\)
−0.657903 + 0.753103i \(0.728556\pi\)
\(824\) −42.6902 −1.48718
\(825\) 0 0
\(826\) 0.514819 0.891692i 0.0179128 0.0310259i
\(827\) 41.0529i 1.42755i −0.700375 0.713775i \(-0.746984\pi\)
0.700375 0.713775i \(-0.253016\pi\)
\(828\) 0 0
\(829\) 10.4901 + 18.1694i 0.364337 + 0.631051i 0.988670 0.150108i \(-0.0479622\pi\)
−0.624332 + 0.781159i \(0.714629\pi\)
\(830\) 10.3403 + 16.9410i 0.358916 + 0.588032i
\(831\) 0 0
\(832\) 15.5104 + 2.49649i 0.537727 + 0.0865503i
\(833\) 48.4240i 1.67779i
\(834\) 0 0
\(835\) −28.7591 + 17.5536i −0.995249 + 0.607467i
\(836\) 7.13545 12.3590i 0.246785 0.427443i
\(837\) 0 0
\(838\) 11.1300 + 6.42594i 0.384481 + 0.221980i
\(839\) 5.27731 9.14057i 0.182193 0.315568i −0.760434 0.649415i \(-0.775014\pi\)
0.942627 + 0.333848i \(0.108347\pi\)
\(840\) 0 0
\(841\) −16.5682 + 28.6969i −0.571316 + 0.989548i
\(842\) 0.0895126 0.0516801i 0.00308481 0.00178101i
\(843\) 0 0
\(844\) −14.2945 −0.492038
\(845\) −27.8152 8.44496i −0.956870 0.290516i
\(846\) 0 0
\(847\) −4.54624 + 2.62477i −0.156211 + 0.0901882i
\(848\) 2.29255 1.32360i 0.0787264 0.0454527i
\(849\) 0 0
\(850\) −29.7963 + 1.45574i −1.02201 + 0.0499314i
\(851\) −4.38137 + 7.58875i −0.150191 + 0.260139i
\(852\) 0 0
\(853\) 32.3455i 1.10749i −0.832687 0.553744i \(-0.813199\pi\)
0.832687 0.553744i \(-0.186801\pi\)
\(854\) 1.20090 2.08002i 0.0410940 0.0711770i
\(855\) 0 0
\(856\) −20.6509 35.7684i −0.705832 1.22254i
\(857\) 23.8618i 0.815103i −0.913182 0.407551i \(-0.866383\pi\)
0.913182 0.407551i \(-0.133617\pi\)
\(858\) 0 0
\(859\) −20.6605 −0.704926 −0.352463 0.935826i \(-0.614656\pi\)
−0.352463 + 0.935826i \(0.614656\pi\)
\(860\) −4.95860 + 3.02656i −0.169087 + 0.103205i
\(861\) 0 0
\(862\) 1.18092 + 0.681806i 0.0402224 + 0.0232224i
\(863\) 0.461666i 0.0157153i −0.999969 0.00785765i \(-0.997499\pi\)
0.999969 0.00785765i \(-0.00250119\pi\)
\(864\) 0 0
\(865\) 6.68695 + 3.64607i 0.227363 + 0.123970i
\(866\) −13.1143 −0.445643
\(867\) 0 0
\(868\) 2.82534 1.63121i 0.0958982 0.0553669i
\(869\) −25.2113 43.6673i −0.855235 1.48131i
\(870\) 0 0
\(871\) 20.7323 7.89880i 0.702488 0.267641i
\(872\) 4.70619i 0.159372i
\(873\) 0 0
\(874\) −0.945098 1.63696i −0.0319684 0.0553709i
\(875\) −4.03990 1.95335i −0.136573 0.0660353i
\(876\) 0 0
\(877\) 17.6624 + 10.1974i 0.596417 + 0.344342i 0.767631 0.640892i \(-0.221435\pi\)
−0.171214 + 0.985234i \(0.554769\pi\)
\(878\) −5.70941 3.29633i −0.192683 0.111246i
\(879\) 0 0
\(880\) 1.28161 2.35050i 0.0432031 0.0792353i
\(881\) −12.6173 21.8538i −0.425087 0.736272i 0.571342 0.820712i \(-0.306423\pi\)
−0.996429 + 0.0844405i \(0.973090\pi\)
\(882\) 0 0
\(883\) 8.44125i 0.284071i 0.989862 + 0.142035i \(0.0453647\pi\)
−0.989862 + 0.142035i \(0.954635\pi\)
\(884\) −30.7748 + 11.7249i −1.03507 + 0.394351i
\(885\) 0 0
\(886\) 10.4543 + 18.1075i 0.351221 + 0.608332i
\(887\) −32.3709 + 18.6894i −1.08691 + 0.627527i −0.932752 0.360519i \(-0.882600\pi\)
−0.154157 + 0.988046i \(0.549266\pi\)
\(888\) 0 0
\(889\) 6.92888 0.232387
\(890\) 0.867687 + 0.473108i 0.0290849 + 0.0158586i
\(891\) 0 0
\(892\) 0.685693i 0.0229587i
\(893\) 9.02647 + 5.21144i 0.302059 + 0.174394i
\(894\) 0 0
\(895\) −0.700179 1.14714i −0.0234044 0.0383448i
\(896\) 3.14210 0.104970
\(897\) 0 0
\(898\) 28.2690i 0.943348i
\(899\) −24.8351 43.0156i −0.828297 1.43465i
\(900\) 0 0
\(901\) 38.4113 66.5303i 1.27967 2.21645i
\(902\) 21.9969i 0.732416i
\(903\) 0 0
\(904\) −3.11603 + 5.39713i −0.103638 + 0.179506i
\(905\) 38.1375 0.931073i 1.26773 0.0309499i
\(906\) 0 0
\(907\) −42.5419 + 24.5616i −1.41258 + 0.815553i −0.995631 0.0933771i \(-0.970234\pi\)
−0.416948 + 0.908930i \(0.636900\pi\)
\(908\) 23.8929 13.7946i 0.792915 0.457789i
\(909\) 0 0
\(910\) 2.70177 + 0.367462i 0.0895628 + 0.0121812i
\(911\) −46.1927 −1.53043 −0.765217 0.643773i \(-0.777368\pi\)
−0.765217 + 0.643773i \(0.777368\pi\)
\(912\) 0 0
\(913\) −44.7647 + 25.8449i −1.48149 + 0.855341i
\(914\) 7.77604 13.4685i 0.257209 0.445499i
\(915\) 0 0
\(916\) −0.262189 + 0.454125i −0.00866297 + 0.0150047i
\(917\) 1.59568 + 0.921265i 0.0526939 + 0.0304229i
\(918\) 0 0
\(919\) −14.7292 + 25.5118i −0.485872 + 0.841556i −0.999868 0.0162371i \(-0.994831\pi\)
0.513996 + 0.857793i \(0.328165\pi\)
\(920\) −3.21340 5.26470i −0.105943 0.173572i
\(921\) 0 0
\(922\) 5.85057i 0.192678i
\(923\) −14.4051 + 17.6978i −0.474148 + 0.582531i
\(924\) 0 0
\(925\) −37.0146 + 23.8516i −1.21703 + 0.784235i
\(926\) 17.3775 + 30.0987i 0.571060 + 0.989105i
\(927\) 0 0
\(928\) 45.3257i 1.48789i
\(929\) −11.3931 + 19.7334i −0.373795 + 0.647432i −0.990146 0.140040i \(-0.955277\pi\)
0.616351 + 0.787472i \(0.288610\pi\)
\(930\) 0 0
\(931\) −15.4182 −0.505311
\(932\) −2.97585 1.71811i −0.0974773 0.0562786i
\(933\) 0 0
\(934\) 12.5149 + 21.6765i 0.409501 + 0.709277i
\(935\) −1.89620 77.6698i −0.0620122 2.54007i
\(936\) 0 0
\(937\) 33.3968i 1.09103i −0.838102 0.545513i \(-0.816335\pi\)
0.838102 0.545513i \(-0.183665\pi\)
\(938\) −1.80223 + 1.04052i −0.0588449 + 0.0339741i
\(939\) 0 0
\(940\) 11.7081 + 6.38386i 0.381877 + 0.208219i
\(941\) 4.59203 0.149696 0.0748480 0.997195i \(-0.476153\pi\)
0.0748480 + 0.997195i \(0.476153\pi\)
\(942\) 0 0
\(943\) 4.58412 + 2.64664i 0.149279 + 0.0861865i
\(944\) −0.742822 −0.0241768
\(945\) 0 0
\(946\) 4.16375 + 7.21183i 0.135375 + 0.234477i
\(947\) −8.35815 + 4.82558i −0.271603 + 0.156810i −0.629616 0.776906i \(-0.716788\pi\)
0.358013 + 0.933717i \(0.383454\pi\)
\(948\) 0 0
\(949\) 0.580254 3.60505i 0.0188359 0.117025i
\(950\) −0.463507 9.48715i −0.0150381 0.307804i
\(951\) 0 0
\(952\) 6.82290 3.93920i 0.221131 0.127670i
\(953\) 29.3593 + 16.9506i 0.951040 + 0.549083i 0.893404 0.449254i \(-0.148310\pi\)
0.0576363 + 0.998338i \(0.481644\pi\)
\(954\) 0 0
\(955\) −6.63849 + 12.1751i −0.214816 + 0.393977i
\(956\) 10.2113 17.6864i 0.330256 0.572020i
\(957\) 0 0
\(958\) 14.4048 + 8.31659i 0.465397 + 0.268697i
\(959\) −0.993464 1.72073i −0.0320806 0.0555653i
\(960\) 0 0
\(961\) 8.70507 0.280809
\(962\) 16.8903 20.7512i 0.544566 0.669045i
\(963\) 0 0
\(964\) 15.0373 + 26.0453i 0.484318 + 0.838863i
\(965\) −17.4409 + 10.6453i −0.561442 + 0.342686i
\(966\) 0 0
\(967\) 20.9057i 0.672283i 0.941812 + 0.336141i \(0.109122\pi\)
−0.941812 + 0.336141i \(0.890878\pi\)
\(968\) −31.4012 18.1295i −1.00927 0.582704i
\(969\) 0 0
\(970\) 17.7476 0.433283i 0.569842 0.0139119i
\(971\) 24.1043 41.7499i 0.773545 1.33982i −0.162064 0.986780i \(-0.551815\pi\)
0.935609 0.353038i \(-0.114851\pi\)
\(972\) 0 0
\(973\) −4.61051 + 2.66188i −0.147806 + 0.0853360i
\(974\) 20.4787 0.656180
\(975\) 0 0
\(976\) −1.73276 −0.0554643
\(977\) −28.5119 + 16.4614i −0.912177 + 0.526646i −0.881131 0.472872i \(-0.843217\pi\)
−0.0310460 + 0.999518i \(0.509884\pi\)
\(978\) 0 0
\(979\) −1.28693 + 2.22902i −0.0411304 + 0.0712399i
\(980\) −19.7208 + 0.481455i −0.629957 + 0.0153795i
\(981\) 0 0
\(982\) 5.04311 + 2.91164i 0.160932 + 0.0929143i
\(983\) 11.0460i 0.352312i −0.984362 0.176156i \(-0.943634\pi\)
0.984362 0.176156i \(-0.0563663\pi\)
\(984\) 0 0
\(985\) 41.2454 25.1748i 1.31419 0.802136i
\(986\) −23.5154 40.7299i −0.748884 1.29711i
\(987\) 0 0
\(988\) −3.73321 9.79870i −0.118769 0.311738i
\(989\) −2.00391 −0.0637207
\(990\) 0 0
\(991\) 4.83587 + 8.37598i 0.153617 + 0.266072i 0.932554 0.361029i \(-0.117575\pi\)
−0.778938 + 0.627101i \(0.784241\pi\)
\(992\) 31.3780 + 18.1161i 0.996253 + 0.575187i
\(993\) 0 0
\(994\) 1.07022 1.85367i 0.0339452 0.0587948i
\(995\) −2.72369 + 4.99529i −0.0863467 + 0.158361i
\(996\) 0 0
\(997\) −43.6735 25.2149i −1.38315 0.798565i −0.390623 0.920551i \(-0.627740\pi\)
−0.992532 + 0.121986i \(0.961074\pi\)
\(998\) −1.61299 + 0.931258i −0.0510582 + 0.0294785i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.bs.b.289.8 24
3.2 odd 2 195.2.ba.a.94.5 24
5.4 even 2 inner 585.2.bs.b.289.5 24
13.9 even 3 inner 585.2.bs.b.334.5 24
15.2 even 4 975.2.i.o.601.3 12
15.8 even 4 975.2.i.q.601.4 12
15.14 odd 2 195.2.ba.a.94.8 yes 24
39.35 odd 6 195.2.ba.a.139.8 yes 24
65.9 even 6 inner 585.2.bs.b.334.8 24
195.74 odd 6 195.2.ba.a.139.5 yes 24
195.113 even 12 975.2.i.q.451.4 12
195.152 even 12 975.2.i.o.451.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.ba.a.94.5 24 3.2 odd 2
195.2.ba.a.94.8 yes 24 15.14 odd 2
195.2.ba.a.139.5 yes 24 195.74 odd 6
195.2.ba.a.139.8 yes 24 39.35 odd 6
585.2.bs.b.289.5 24 5.4 even 2 inner
585.2.bs.b.289.8 24 1.1 even 1 trivial
585.2.bs.b.334.5 24 13.9 even 3 inner
585.2.bs.b.334.8 24 65.9 even 6 inner
975.2.i.o.451.3 12 195.152 even 12
975.2.i.o.601.3 12 15.2 even 4
975.2.i.q.451.4 12 195.113 even 12
975.2.i.q.601.4 12 15.8 even 4