Properties

Label 975.2.i.q.601.4
Level $975$
Weight $2$
Character 975.601
Analytic conductor $7.785$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [975,2,Mod(451,975)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("975.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(975, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,6,-4,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 8x^{10} + 48x^{8} - 2x^{7} + 116x^{6} - 32x^{5} + 208x^{4} - 32x^{3} + 100x^{2} + 12x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.4
Root \(0.421315 - 0.729738i\) of defining polynomial
Character \(\chi\) \(=\) 975.601
Dual form 975.2.i.q.451.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.421315 + 0.729738i) q^{2} +(0.500000 + 0.866025i) q^{3} +(0.644988 - 1.11715i) q^{4} +(-0.421315 + 0.729738i) q^{6} +(0.200681 - 0.347589i) q^{7} +2.77223 q^{8} +(-0.500000 + 0.866025i) q^{9} +(2.45354 + 4.24965i) q^{11} +1.28998 q^{12} +(0.572960 - 3.55974i) q^{13} +0.338199 q^{14} +(-0.121995 - 0.211302i) q^{16} +(3.54033 - 6.13203i) q^{17} -0.842629 q^{18} +(-1.12724 + 1.95244i) q^{19} +0.401361 q^{21} +(-2.06742 + 3.58088i) q^{22} +(-0.497500 - 0.861695i) q^{23} +(1.38611 + 2.40082i) q^{24} +(2.83907 - 1.08166i) q^{26} -1.00000 q^{27} +(-0.258873 - 0.448381i) q^{28} +(3.94133 + 6.82658i) q^{29} -6.30120 q^{31} +(2.87503 - 4.97969i) q^{32} +(-2.45354 + 4.24965i) q^{33} +5.96637 q^{34} +(0.644988 + 1.11715i) q^{36} +(4.40338 + 7.62688i) q^{37} -1.89969 q^{38} +(3.36930 - 1.28367i) q^{39} +(-2.65994 - 4.60715i) q^{41} +(0.169099 + 0.292889i) q^{42} +(1.00699 - 1.74416i) q^{43} +6.33001 q^{44} +(0.419208 - 0.726090i) q^{46} -4.62317 q^{47} +(0.121995 - 0.211302i) q^{48} +(3.41945 + 5.92267i) q^{49} +7.08066 q^{51} +(-3.60721 - 2.93607i) q^{52} +10.8496 q^{53} +(-0.421315 - 0.729738i) q^{54} +(0.556333 - 0.963596i) q^{56} -2.25448 q^{57} +(-3.32108 + 5.75228i) q^{58} +(1.52224 - 2.63659i) q^{59} +(3.55088 - 6.15031i) q^{61} +(-2.65479 - 4.59822i) q^{62} +(0.200681 + 0.347589i) q^{63} +4.35718 q^{64} -4.13484 q^{66} +(3.07665 + 5.32891i) q^{67} +(-4.56694 - 7.91018i) q^{68} +(0.497500 - 0.861695i) q^{69} +(-3.16446 + 5.48101i) q^{71} +(-1.38611 + 2.40082i) q^{72} -1.01273 q^{73} +(-3.71042 + 6.42663i) q^{74} +(1.45411 + 2.51860i) q^{76} +1.96951 q^{77} +(2.35628 + 1.91788i) q^{78} -10.2755 q^{79} +(-0.500000 - 0.866025i) q^{81} +(2.24134 - 3.88212i) q^{82} -10.5337 q^{83} +(0.258873 - 0.448381i) q^{84} +1.69704 q^{86} +(-3.94133 + 6.82658i) q^{87} +(6.80177 + 11.7810i) q^{88} +(-0.262260 - 0.454247i) q^{89} +(-1.12234 - 0.913524i) q^{91} -1.28353 q^{92} +(-3.15060 - 5.45700i) q^{93} +(-1.94781 - 3.37371i) q^{94} +5.75005 q^{96} +(-4.71106 + 8.15979i) q^{97} +(-2.88133 + 4.99061i) q^{98} -4.90707 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} - 4 q^{4} - 2 q^{7} - 6 q^{9} + 2 q^{11} - 8 q^{12} - 8 q^{13} - 12 q^{14} + 8 q^{16} - 6 q^{17} + 8 q^{19} - 4 q^{21} - 14 q^{22} - 4 q^{23} - 24 q^{26} - 12 q^{27} - 8 q^{28} + 6 q^{29}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.421315 + 0.729738i 0.297914 + 0.516003i 0.975659 0.219295i \(-0.0703757\pi\)
−0.677744 + 0.735298i \(0.737042\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0.644988 1.11715i 0.322494 0.558576i
\(5\) 0 0
\(6\) −0.421315 + 0.729738i −0.172001 + 0.297914i
\(7\) 0.200681 0.347589i 0.0758501 0.131376i −0.825606 0.564248i \(-0.809166\pi\)
0.901456 + 0.432871i \(0.142500\pi\)
\(8\) 2.77223 0.980131
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 2.45354 + 4.24965i 0.739769 + 1.28132i 0.952599 + 0.304228i \(0.0983985\pi\)
−0.212830 + 0.977089i \(0.568268\pi\)
\(12\) 1.28998 0.372384
\(13\) 0.572960 3.55974i 0.158911 0.987293i
\(14\) 0.338199 0.0903874
\(15\) 0 0
\(16\) −0.121995 0.211302i −0.0304988 0.0528254i
\(17\) 3.54033 6.13203i 0.858656 1.48724i −0.0145544 0.999894i \(-0.504633\pi\)
0.873211 0.487343i \(-0.162034\pi\)
\(18\) −0.842629 −0.198610
\(19\) −1.12724 + 1.95244i −0.258607 + 0.447920i −0.965869 0.259031i \(-0.916597\pi\)
0.707262 + 0.706952i \(0.249930\pi\)
\(20\) 0 0
\(21\) 0.401361 0.0875842
\(22\) −2.06742 + 3.58088i −0.440776 + 0.763446i
\(23\) −0.497500 0.861695i −0.103736 0.179676i 0.809485 0.587140i \(-0.199746\pi\)
−0.913221 + 0.407465i \(0.866413\pi\)
\(24\) 1.38611 + 2.40082i 0.282940 + 0.490066i
\(25\) 0 0
\(26\) 2.83907 1.08166i 0.556788 0.212130i
\(27\) −1.00000 −0.192450
\(28\) −0.258873 0.448381i −0.0489224 0.0847361i
\(29\) 3.94133 + 6.82658i 0.731886 + 1.26766i 0.956076 + 0.293119i \(0.0946932\pi\)
−0.224190 + 0.974546i \(0.571973\pi\)
\(30\) 0 0
\(31\) −6.30120 −1.13173 −0.565864 0.824499i \(-0.691457\pi\)
−0.565864 + 0.824499i \(0.691457\pi\)
\(32\) 2.87503 4.97969i 0.508238 0.880293i
\(33\) −2.45354 + 4.24965i −0.427106 + 0.739769i
\(34\) 5.96637 1.02322
\(35\) 0 0
\(36\) 0.644988 + 1.11715i 0.107498 + 0.186192i
\(37\) 4.40338 + 7.62688i 0.723912 + 1.25385i 0.959420 + 0.281980i \(0.0909910\pi\)
−0.235509 + 0.971872i \(0.575676\pi\)
\(38\) −1.89969 −0.308171
\(39\) 3.36930 1.28367i 0.539520 0.205552i
\(40\) 0 0
\(41\) −2.65994 4.60715i −0.415413 0.719517i 0.580059 0.814575i \(-0.303030\pi\)
−0.995472 + 0.0950582i \(0.969696\pi\)
\(42\) 0.169099 + 0.292889i 0.0260926 + 0.0451937i
\(43\) 1.00699 1.74416i 0.153565 0.265982i −0.778971 0.627060i \(-0.784258\pi\)
0.932536 + 0.361078i \(0.117591\pi\)
\(44\) 6.33001 0.954284
\(45\) 0 0
\(46\) 0.419208 0.726090i 0.0618088 0.107056i
\(47\) −4.62317 −0.674359 −0.337180 0.941440i \(-0.609473\pi\)
−0.337180 + 0.941440i \(0.609473\pi\)
\(48\) 0.121995 0.211302i 0.0176085 0.0304988i
\(49\) 3.41945 + 5.92267i 0.488494 + 0.846096i
\(50\) 0 0
\(51\) 7.08066 0.991491
\(52\) −3.60721 2.93607i −0.500230 0.407160i
\(53\) 10.8496 1.49031 0.745156 0.666890i \(-0.232375\pi\)
0.745156 + 0.666890i \(0.232375\pi\)
\(54\) −0.421315 0.729738i −0.0573337 0.0993048i
\(55\) 0 0
\(56\) 0.556333 0.963596i 0.0743431 0.128766i
\(57\) −2.25448 −0.298614
\(58\) −3.32108 + 5.75228i −0.436079 + 0.755311i
\(59\) 1.52224 2.63659i 0.198178 0.343255i −0.749759 0.661711i \(-0.769831\pi\)
0.947938 + 0.318455i \(0.103164\pi\)
\(60\) 0 0
\(61\) 3.55088 6.15031i 0.454644 0.787466i −0.544024 0.839070i \(-0.683100\pi\)
0.998668 + 0.0516038i \(0.0164333\pi\)
\(62\) −2.65479 4.59822i −0.337158 0.583975i
\(63\) 0.200681 + 0.347589i 0.0252834 + 0.0437921i
\(64\) 4.35718 0.544648
\(65\) 0 0
\(66\) −4.13484 −0.508964
\(67\) 3.07665 + 5.32891i 0.375873 + 0.651030i 0.990457 0.137821i \(-0.0440097\pi\)
−0.614585 + 0.788851i \(0.710676\pi\)
\(68\) −4.56694 7.91018i −0.553823 0.959250i
\(69\) 0.497500 0.861695i 0.0598920 0.103736i
\(70\) 0 0
\(71\) −3.16446 + 5.48101i −0.375553 + 0.650476i −0.990410 0.138162i \(-0.955880\pi\)
0.614857 + 0.788639i \(0.289214\pi\)
\(72\) −1.38611 + 2.40082i −0.163355 + 0.282940i
\(73\) −1.01273 −0.118531 −0.0592655 0.998242i \(-0.518876\pi\)
−0.0592655 + 0.998242i \(0.518876\pi\)
\(74\) −3.71042 + 6.42663i −0.431327 + 0.747081i
\(75\) 0 0
\(76\) 1.45411 + 2.51860i 0.166798 + 0.288903i
\(77\) 1.96951 0.224446
\(78\) 2.35628 + 1.91788i 0.266796 + 0.217157i
\(79\) −10.2755 −1.15608 −0.578042 0.816007i \(-0.696183\pi\)
−0.578042 + 0.816007i \(0.696183\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.24134 3.88212i 0.247515 0.428709i
\(83\) −10.5337 −1.15623 −0.578114 0.815956i \(-0.696211\pi\)
−0.578114 + 0.815956i \(0.696211\pi\)
\(84\) 0.258873 0.448381i 0.0282454 0.0489224i
\(85\) 0 0
\(86\) 1.69704 0.182997
\(87\) −3.94133 + 6.82658i −0.422555 + 0.731886i
\(88\) 6.80177 + 11.7810i 0.725071 + 1.25586i
\(89\) −0.262260 0.454247i −0.0277995 0.0481501i 0.851791 0.523882i \(-0.175517\pi\)
−0.879590 + 0.475732i \(0.842183\pi\)
\(90\) 0 0
\(91\) −1.12234 0.913524i −0.117653 0.0957634i
\(92\) −1.28353 −0.133817
\(93\) −3.15060 5.45700i −0.326702 0.565864i
\(94\) −1.94781 3.37371i −0.200901 0.347971i
\(95\) 0 0
\(96\) 5.75005 0.586862
\(97\) −4.71106 + 8.15979i −0.478336 + 0.828502i −0.999691 0.0248378i \(-0.992093\pi\)
0.521356 + 0.853339i \(0.325426\pi\)
\(98\) −2.88133 + 4.99061i −0.291059 + 0.504128i
\(99\) −4.90707 −0.493179
\(100\) 0 0
\(101\) 2.87707 + 4.98324i 0.286280 + 0.495851i 0.972919 0.231148i \(-0.0742481\pi\)
−0.686639 + 0.726998i \(0.740915\pi\)
\(102\) 2.98319 + 5.16703i 0.295379 + 0.511612i
\(103\) −15.3992 −1.51733 −0.758665 0.651481i \(-0.774148\pi\)
−0.758665 + 0.651481i \(0.774148\pi\)
\(104\) 1.58838 9.86840i 0.155753 0.967677i
\(105\) 0 0
\(106\) 4.57111 + 7.91739i 0.443985 + 0.769005i
\(107\) −7.44919 12.9024i −0.720141 1.24732i −0.960943 0.276746i \(-0.910744\pi\)
0.240802 0.970574i \(-0.422589\pi\)
\(108\) −0.644988 + 1.11715i −0.0620640 + 0.107498i
\(109\) −1.69762 −0.162602 −0.0813011 0.996690i \(-0.525908\pi\)
−0.0813011 + 0.996690i \(0.525908\pi\)
\(110\) 0 0
\(111\) −4.40338 + 7.62688i −0.417951 + 0.723912i
\(112\) −0.0979282 −0.00925335
\(113\) 1.12402 1.94685i 0.105739 0.183145i −0.808301 0.588769i \(-0.799613\pi\)
0.914040 + 0.405625i \(0.132946\pi\)
\(114\) −0.949847 1.64518i −0.0889613 0.154086i
\(115\) 0 0
\(116\) 10.1684 0.944116
\(117\) 2.79634 + 2.27607i 0.258522 + 0.210422i
\(118\) 2.56536 0.236161
\(119\) −1.42095 2.46116i −0.130258 0.225614i
\(120\) 0 0
\(121\) −6.53968 + 11.3271i −0.594516 + 1.02973i
\(122\) 5.98415 0.541780
\(123\) 2.65994 4.60715i 0.239839 0.415413i
\(124\) −4.06420 + 7.03939i −0.364976 + 0.632156i
\(125\) 0 0
\(126\) −0.169099 + 0.292889i −0.0150646 + 0.0260926i
\(127\) −8.63173 14.9506i −0.765942 1.32665i −0.939747 0.341871i \(-0.888939\pi\)
0.173804 0.984780i \(-0.444394\pi\)
\(128\) −3.91431 6.77978i −0.345979 0.599254i
\(129\) 2.01398 0.177321
\(130\) 0 0
\(131\) −4.59071 −0.401092 −0.200546 0.979684i \(-0.564272\pi\)
−0.200546 + 0.979684i \(0.564272\pi\)
\(132\) 3.16500 + 5.48195i 0.275478 + 0.477142i
\(133\) 0.452431 + 0.783633i 0.0392307 + 0.0679496i
\(134\) −2.59247 + 4.49030i −0.223956 + 0.387903i
\(135\) 0 0
\(136\) 9.81461 16.9994i 0.841596 1.45769i
\(137\) 2.47524 4.28724i 0.211474 0.366284i −0.740702 0.671834i \(-0.765507\pi\)
0.952176 + 0.305550i \(0.0988403\pi\)
\(138\) 0.838416 0.0713707
\(139\) 6.63214 11.4872i 0.562530 0.974331i −0.434744 0.900554i \(-0.643161\pi\)
0.997275 0.0737774i \(-0.0235054\pi\)
\(140\) 0 0
\(141\) −2.31159 4.00379i −0.194671 0.337180i
\(142\) −5.33294 −0.447530
\(143\) 16.5334 6.29906i 1.38259 0.526754i
\(144\) 0.243990 0.0203325
\(145\) 0 0
\(146\) −0.426678 0.739028i −0.0353121 0.0611624i
\(147\) −3.41945 + 5.92267i −0.282032 + 0.488494i
\(148\) 11.3605 0.933829
\(149\) 1.57886 2.73467i 0.129345 0.224033i −0.794078 0.607816i \(-0.792046\pi\)
0.923423 + 0.383783i \(0.125379\pi\)
\(150\) 0 0
\(151\) −18.5878 −1.51266 −0.756328 0.654193i \(-0.773009\pi\)
−0.756328 + 0.654193i \(0.773009\pi\)
\(152\) −3.12497 + 5.41261i −0.253469 + 0.439021i
\(153\) 3.54033 + 6.13203i 0.286219 + 0.495746i
\(154\) 0.829782 + 1.43723i 0.0668658 + 0.115815i
\(155\) 0 0
\(156\) 0.739105 4.59197i 0.0591758 0.367652i
\(157\) −10.7802 −0.860351 −0.430175 0.902745i \(-0.641548\pi\)
−0.430175 + 0.902745i \(0.641548\pi\)
\(158\) −4.32922 7.49843i −0.344414 0.596543i
\(159\) 5.42482 + 9.39606i 0.430216 + 0.745156i
\(160\) 0 0
\(161\) −0.399354 −0.0314735
\(162\) 0.421315 0.729738i 0.0331016 0.0573337i
\(163\) −0.786941 + 1.36302i −0.0616380 + 0.106760i −0.895198 0.445669i \(-0.852966\pi\)
0.833560 + 0.552429i \(0.186299\pi\)
\(164\) −6.86252 −0.535873
\(165\) 0 0
\(166\) −4.43802 7.68687i −0.344457 0.596617i
\(167\) 7.53397 + 13.0492i 0.582996 + 1.00978i 0.995122 + 0.0986516i \(0.0314529\pi\)
−0.412126 + 0.911127i \(0.635214\pi\)
\(168\) 1.11267 0.0858440
\(169\) −12.3434 4.07917i −0.949495 0.313783i
\(170\) 0 0
\(171\) −1.12724 1.95244i −0.0862023 0.149307i
\(172\) −1.29900 2.24993i −0.0990475 0.171555i
\(173\) −1.70307 + 2.94981i −0.129482 + 0.224270i −0.923476 0.383656i \(-0.874665\pi\)
0.793994 + 0.607926i \(0.207998\pi\)
\(174\) −6.64216 −0.503541
\(175\) 0 0
\(176\) 0.598639 1.03687i 0.0451241 0.0781572i
\(177\) 3.04448 0.228837
\(178\) 0.220988 0.382762i 0.0165637 0.0286892i
\(179\) 0.300516 + 0.520508i 0.0224616 + 0.0389046i 0.877038 0.480422i \(-0.159516\pi\)
−0.854576 + 0.519326i \(0.826183\pi\)
\(180\) 0 0
\(181\) −17.0607 −1.26811 −0.634056 0.773287i \(-0.718611\pi\)
−0.634056 + 0.773287i \(0.718611\pi\)
\(182\) 0.193774 1.20390i 0.0143635 0.0892388i
\(183\) 7.10176 0.524977
\(184\) −1.37918 2.38882i −0.101675 0.176106i
\(185\) 0 0
\(186\) 2.65479 4.59822i 0.194658 0.337158i
\(187\) 34.7453 2.54083
\(188\) −2.98189 + 5.16479i −0.217477 + 0.376681i
\(189\) −0.200681 + 0.347589i −0.0145974 + 0.0252834i
\(190\) 0 0
\(191\) −3.10083 + 5.37079i −0.224368 + 0.388617i −0.956130 0.292944i \(-0.905365\pi\)
0.731762 + 0.681561i \(0.238698\pi\)
\(192\) 2.17859 + 3.77343i 0.157226 + 0.272324i
\(193\) 4.56896 + 7.91367i 0.328881 + 0.569639i 0.982290 0.187366i \(-0.0599952\pi\)
−0.653409 + 0.757005i \(0.726662\pi\)
\(194\) −7.93935 −0.570012
\(195\) 0 0
\(196\) 8.82203 0.630145
\(197\) −10.8050 18.7148i −0.769823 1.33337i −0.937659 0.347557i \(-0.887011\pi\)
0.167836 0.985815i \(-0.446322\pi\)
\(198\) −2.06742 3.58088i −0.146925 0.254482i
\(199\) −1.27223 + 2.20357i −0.0901860 + 0.156207i −0.907589 0.419859i \(-0.862079\pi\)
0.817403 + 0.576066i \(0.195413\pi\)
\(200\) 0 0
\(201\) −3.07665 + 5.32891i −0.217010 + 0.375873i
\(202\) −2.42431 + 4.19902i −0.170574 + 0.295442i
\(203\) 3.16379 0.222055
\(204\) 4.56694 7.91018i 0.319750 0.553823i
\(205\) 0 0
\(206\) −6.48792 11.2374i −0.452034 0.782947i
\(207\) 0.995000 0.0691573
\(208\) −0.822077 + 0.313203i −0.0570008 + 0.0217167i
\(209\) −11.0629 −0.765238
\(210\) 0 0
\(211\) 5.54061 + 9.59663i 0.381432 + 0.660659i 0.991267 0.131869i \(-0.0420978\pi\)
−0.609836 + 0.792528i \(0.708765\pi\)
\(212\) 6.99789 12.1207i 0.480617 0.832453i
\(213\) −6.32893 −0.433651
\(214\) 6.27691 10.8719i 0.429081 0.743189i
\(215\) 0 0
\(216\) −2.77223 −0.188626
\(217\) −1.26453 + 2.19023i −0.0858417 + 0.148682i
\(218\) −0.715231 1.23882i −0.0484416 0.0839032i
\(219\) −0.506365 0.877050i −0.0342170 0.0592655i
\(220\) 0 0
\(221\) −19.7999 16.1161i −1.33189 1.08408i
\(222\) −7.42084 −0.498054
\(223\) −0.265778 0.460340i −0.0177978 0.0308267i 0.856989 0.515334i \(-0.172332\pi\)
−0.874787 + 0.484507i \(0.838999\pi\)
\(224\) −1.15392 1.99865i −0.0770998 0.133541i
\(225\) 0 0
\(226\) 1.89426 0.126004
\(227\) 10.6937 18.5220i 0.709764 1.22935i −0.255180 0.966894i \(-0.582135\pi\)
0.964944 0.262454i \(-0.0845319\pi\)
\(228\) −1.45411 + 2.51860i −0.0963011 + 0.166798i
\(229\) −0.406502 −0.0268624 −0.0134312 0.999910i \(-0.504275\pi\)
−0.0134312 + 0.999910i \(0.504275\pi\)
\(230\) 0 0
\(231\) 0.984754 + 1.70564i 0.0647920 + 0.112223i
\(232\) 10.9263 + 18.9249i 0.717345 + 1.24248i
\(233\) 2.66379 0.174510 0.0872552 0.996186i \(-0.472190\pi\)
0.0872552 + 0.996186i \(0.472190\pi\)
\(234\) −0.482793 + 2.99954i −0.0315612 + 0.196086i
\(235\) 0 0
\(236\) −1.96365 3.40114i −0.127823 0.221395i
\(237\) −5.13775 8.89885i −0.333733 0.578042i
\(238\) 1.19734 2.07385i 0.0776117 0.134427i
\(239\) −15.8317 −1.02407 −0.512034 0.858965i \(-0.671108\pi\)
−0.512034 + 0.858965i \(0.671108\pi\)
\(240\) 0 0
\(241\) 11.6570 20.1906i 0.750895 1.30059i −0.196495 0.980505i \(-0.562956\pi\)
0.947390 0.320083i \(-0.103711\pi\)
\(242\) −11.0210 −0.708460
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) −4.58055 7.93375i −0.293240 0.507906i
\(245\) 0 0
\(246\) 4.48269 0.285806
\(247\) 6.30431 + 5.13135i 0.401133 + 0.326500i
\(248\) −17.4684 −1.10924
\(249\) −5.26687 9.12248i −0.333774 0.578114i
\(250\) 0 0
\(251\) −0.650814 + 1.12724i −0.0410790 + 0.0711509i −0.885834 0.464002i \(-0.846413\pi\)
0.844755 + 0.535153i \(0.179746\pi\)
\(252\) 0.517746 0.0326149
\(253\) 2.44127 4.22840i 0.153481 0.265837i
\(254\) 7.27335 12.5978i 0.456371 0.790457i
\(255\) 0 0
\(256\) 7.65549 13.2597i 0.478468 0.828731i
\(257\) 4.93694 + 8.55103i 0.307958 + 0.533399i 0.977915 0.209001i \(-0.0670211\pi\)
−0.669958 + 0.742399i \(0.733688\pi\)
\(258\) 0.848521 + 1.46968i 0.0528266 + 0.0914983i
\(259\) 3.53469 0.219635
\(260\) 0 0
\(261\) −7.88266 −0.487924
\(262\) −1.93413 3.35001i −0.119491 0.206965i
\(263\) −0.266805 0.462121i −0.0164519 0.0284956i 0.857682 0.514180i \(-0.171904\pi\)
−0.874134 + 0.485685i \(0.838570\pi\)
\(264\) −6.80177 + 11.7810i −0.418620 + 0.725071i
\(265\) 0 0
\(266\) −0.381232 + 0.660312i −0.0233748 + 0.0404864i
\(267\) 0.262260 0.454247i 0.0160500 0.0277995i
\(268\) 7.93761 0.484867
\(269\) 6.80199 11.7814i 0.414725 0.718324i −0.580675 0.814136i \(-0.697211\pi\)
0.995400 + 0.0958112i \(0.0305445\pi\)
\(270\) 0 0
\(271\) 11.9163 + 20.6396i 0.723862 + 1.25377i 0.959441 + 0.281911i \(0.0909681\pi\)
−0.235579 + 0.971855i \(0.575699\pi\)
\(272\) −1.72761 −0.104752
\(273\) 0.229964 1.42874i 0.0139181 0.0864712i
\(274\) 4.17142 0.252004
\(275\) 0 0
\(276\) −0.641763 1.11157i −0.0386296 0.0669084i
\(277\) −9.60639 + 16.6388i −0.577192 + 0.999726i 0.418608 + 0.908167i \(0.362518\pi\)
−0.995800 + 0.0915586i \(0.970815\pi\)
\(278\) 11.1769 0.670344
\(279\) 3.15060 5.45700i 0.188621 0.326702i
\(280\) 0 0
\(281\) 6.31792 0.376895 0.188448 0.982083i \(-0.439654\pi\)
0.188448 + 0.982083i \(0.439654\pi\)
\(282\) 1.94781 3.37371i 0.115990 0.200901i
\(283\) −15.1027 26.1587i −0.897765 1.55497i −0.830345 0.557249i \(-0.811857\pi\)
−0.0674193 0.997725i \(-0.521477\pi\)
\(284\) 4.08208 + 7.07037i 0.242227 + 0.419549i
\(285\) 0 0
\(286\) 11.5624 + 9.41117i 0.683701 + 0.556494i
\(287\) −2.13519 −0.126037
\(288\) 2.87503 + 4.97969i 0.169413 + 0.293431i
\(289\) −16.5679 28.6964i −0.974582 1.68803i
\(290\) 0 0
\(291\) −9.42212 −0.552334
\(292\) −0.653199 + 1.13137i −0.0382256 + 0.0662086i
\(293\) −3.56844 + 6.18072i −0.208470 + 0.361081i −0.951233 0.308474i \(-0.900182\pi\)
0.742762 + 0.669555i \(0.233515\pi\)
\(294\) −5.76266 −0.336085
\(295\) 0 0
\(296\) 12.2072 + 21.1435i 0.709528 + 1.22894i
\(297\) −2.45354 4.24965i −0.142369 0.246590i
\(298\) 2.66079 0.154135
\(299\) −3.35245 + 1.27725i −0.193877 + 0.0738653i
\(300\) 0 0
\(301\) −0.404167 0.700038i −0.0232958 0.0403495i
\(302\) −7.83132 13.5642i −0.450642 0.780535i
\(303\) −2.87707 + 4.98324i −0.165284 + 0.286280i
\(304\) 0.550072 0.0315488
\(305\) 0 0
\(306\) −2.98319 + 5.16703i −0.170537 + 0.295379i
\(307\) −9.91349 −0.565793 −0.282897 0.959150i \(-0.591295\pi\)
−0.282897 + 0.959150i \(0.591295\pi\)
\(308\) 1.27031 2.20024i 0.0723826 0.125370i
\(309\) −7.69961 13.3361i −0.438015 0.758665i
\(310\) 0 0
\(311\) 6.04584 0.342828 0.171414 0.985199i \(-0.445166\pi\)
0.171414 + 0.985199i \(0.445166\pi\)
\(312\) 9.34048 3.55863i 0.528800 0.201468i
\(313\) −4.62017 −0.261148 −0.130574 0.991439i \(-0.541682\pi\)
−0.130574 + 0.991439i \(0.541682\pi\)
\(314\) −4.54184 7.86670i −0.256311 0.443944i
\(315\) 0 0
\(316\) −6.62758 + 11.4793i −0.372830 + 0.645761i
\(317\) 25.0793 1.40860 0.704298 0.709905i \(-0.251262\pi\)
0.704298 + 0.709905i \(0.251262\pi\)
\(318\) −4.57111 + 7.91739i −0.256335 + 0.443985i
\(319\) −19.3404 + 33.4985i −1.08285 + 1.87556i
\(320\) 0 0
\(321\) 7.44919 12.9024i 0.415773 0.720141i
\(322\) −0.168254 0.291424i −0.00937642 0.0162404i
\(323\) 7.98162 + 13.8246i 0.444109 + 0.769220i
\(324\) −1.28998 −0.0716653
\(325\) 0 0
\(326\) −1.32620 −0.0734514
\(327\) −0.848809 1.47018i −0.0469392 0.0813011i
\(328\) −7.37397 12.7721i −0.407159 0.705221i
\(329\) −0.927781 + 1.60696i −0.0511502 + 0.0885948i
\(330\) 0 0
\(331\) −6.84346 + 11.8532i −0.376150 + 0.651512i −0.990499 0.137524i \(-0.956086\pi\)
0.614348 + 0.789035i \(0.289419\pi\)
\(332\) −6.79413 + 11.7678i −0.372877 + 0.645841i
\(333\) −8.80677 −0.482608
\(334\) −6.34834 + 10.9956i −0.347366 + 0.601655i
\(335\) 0 0
\(336\) −0.0489641 0.0848083i −0.00267121 0.00462667i
\(337\) −9.01512 −0.491085 −0.245543 0.969386i \(-0.578966\pi\)
−0.245543 + 0.969386i \(0.578966\pi\)
\(338\) −2.22374 10.7261i −0.120955 0.583422i
\(339\) 2.24803 0.122096
\(340\) 0 0
\(341\) −15.4602 26.7779i −0.837217 1.45010i
\(342\) 0.949847 1.64518i 0.0513618 0.0889613i
\(343\) 5.55440 0.299909
\(344\) 2.79161 4.83521i 0.150514 0.260697i
\(345\) 0 0
\(346\) −2.87012 −0.154299
\(347\) −5.43152 + 9.40767i −0.291579 + 0.505030i −0.974183 0.225758i \(-0.927514\pi\)
0.682604 + 0.730788i \(0.260847\pi\)
\(348\) 5.08422 + 8.80613i 0.272543 + 0.472058i
\(349\) 9.86492 + 17.0865i 0.528057 + 0.914622i 0.999465 + 0.0327066i \(0.0104127\pi\)
−0.471408 + 0.881915i \(0.656254\pi\)
\(350\) 0 0
\(351\) −0.572960 + 3.55974i −0.0305824 + 0.190005i
\(352\) 28.2159 1.50391
\(353\) 9.29831 + 16.1051i 0.494899 + 0.857190i 0.999983 0.00588009i \(-0.00187170\pi\)
−0.505084 + 0.863070i \(0.668538\pi\)
\(354\) 1.28268 + 2.22167i 0.0681738 + 0.118080i
\(355\) 0 0
\(356\) −0.676618 −0.0358607
\(357\) 1.42095 2.46116i 0.0752047 0.130258i
\(358\) −0.253223 + 0.438595i −0.0133833 + 0.0231805i
\(359\) 12.1448 0.640976 0.320488 0.947253i \(-0.396153\pi\)
0.320488 + 0.947253i \(0.396153\pi\)
\(360\) 0 0
\(361\) 6.95865 + 12.0527i 0.366245 + 0.634355i
\(362\) −7.18792 12.4498i −0.377789 0.654350i
\(363\) −13.0794 −0.686488
\(364\) −1.74444 + 0.664615i −0.0914337 + 0.0348353i
\(365\) 0 0
\(366\) 2.99208 + 5.18243i 0.156398 + 0.270890i
\(367\) −15.5168 26.8759i −0.809971 1.40291i −0.912884 0.408220i \(-0.866150\pi\)
0.102913 0.994690i \(-0.467184\pi\)
\(368\) −0.121385 + 0.210245i −0.00632764 + 0.0109598i
\(369\) 5.31988 0.276942
\(370\) 0 0
\(371\) 2.17731 3.77121i 0.113040 0.195792i
\(372\) −8.12839 −0.421437
\(373\) −5.21567 + 9.03380i −0.270057 + 0.467752i −0.968876 0.247546i \(-0.920376\pi\)
0.698819 + 0.715298i \(0.253709\pi\)
\(374\) 14.6387 + 25.3550i 0.756950 + 1.31108i
\(375\) 0 0
\(376\) −12.8165 −0.660961
\(377\) 26.5591 10.1187i 1.36786 0.521141i
\(378\) −0.338199 −0.0173951
\(379\) 15.3621 + 26.6080i 0.789099 + 1.36676i 0.926519 + 0.376247i \(0.122786\pi\)
−0.137420 + 0.990513i \(0.543881\pi\)
\(380\) 0 0
\(381\) 8.63173 14.9506i 0.442217 0.765942i
\(382\) −5.22569 −0.267370
\(383\) 4.25652 7.37251i 0.217498 0.376718i −0.736544 0.676389i \(-0.763544\pi\)
0.954042 + 0.299672i \(0.0968771\pi\)
\(384\) 3.91431 6.77978i 0.199751 0.345979i
\(385\) 0 0
\(386\) −3.84994 + 6.66829i −0.195957 + 0.339407i
\(387\) 1.00699 + 1.74416i 0.0511883 + 0.0886607i
\(388\) 6.07715 + 10.5259i 0.308521 + 0.534374i
\(389\) −21.6832 −1.09938 −0.549691 0.835368i \(-0.685255\pi\)
−0.549691 + 0.835368i \(0.685255\pi\)
\(390\) 0 0
\(391\) −7.04526 −0.356294
\(392\) 9.47951 + 16.4190i 0.478788 + 0.829285i
\(393\) −2.29535 3.97567i −0.115785 0.200546i
\(394\) 9.10459 15.7696i 0.458683 0.794461i
\(395\) 0 0
\(396\) −3.16500 + 5.48195i −0.159047 + 0.275478i
\(397\) −10.3915 + 17.9986i −0.521535 + 0.903325i 0.478151 + 0.878278i \(0.341307\pi\)
−0.999686 + 0.0250477i \(0.992026\pi\)
\(398\) −2.14404 −0.107471
\(399\) −0.452431 + 0.783633i −0.0226499 + 0.0392307i
\(400\) 0 0
\(401\) 18.3709 + 31.8194i 0.917400 + 1.58898i 0.803350 + 0.595508i \(0.203049\pi\)
0.114050 + 0.993475i \(0.463618\pi\)
\(402\) −5.18495 −0.258602
\(403\) −3.61034 + 22.4306i −0.179844 + 1.11735i
\(404\) 7.42271 0.369294
\(405\) 0 0
\(406\) 1.33295 + 2.30874i 0.0661533 + 0.114581i
\(407\) −21.6077 + 37.4257i −1.07105 + 1.85512i
\(408\) 19.6292 0.971791
\(409\) 1.60553 2.78087i 0.0793885 0.137505i −0.823598 0.567174i \(-0.808037\pi\)
0.902986 + 0.429669i \(0.141370\pi\)
\(410\) 0 0
\(411\) 4.95048 0.244189
\(412\) −9.93231 + 17.2033i −0.489330 + 0.847544i
\(413\) −0.610967 1.05823i −0.0300637 0.0520719i
\(414\) 0.419208 + 0.726090i 0.0206029 + 0.0356854i
\(415\) 0 0
\(416\) −16.0791 13.0875i −0.788343 0.641667i
\(417\) 13.2643 0.649554
\(418\) −4.66097 8.07303i −0.227975 0.394865i
\(419\) 7.62605 + 13.2087i 0.372557 + 0.645288i 0.989958 0.141361i \(-0.0451477\pi\)
−0.617401 + 0.786649i \(0.711814\pi\)
\(420\) 0 0
\(421\) 0.122664 0.00597828 0.00298914 0.999996i \(-0.499049\pi\)
0.00298914 + 0.999996i \(0.499049\pi\)
\(422\) −4.66868 + 8.08640i −0.227268 + 0.393640i
\(423\) 2.31159 4.00379i 0.112393 0.194671i
\(424\) 30.0777 1.46070
\(425\) 0 0
\(426\) −2.66647 4.61846i −0.129191 0.223765i
\(427\) −1.42519 2.46849i −0.0689695 0.119459i
\(428\) −19.2186 −0.928964
\(429\) 13.7218 + 11.1688i 0.662497 + 0.539236i
\(430\) 0 0
\(431\) −0.809141 1.40147i −0.0389750 0.0675066i 0.845880 0.533373i \(-0.179076\pi\)
−0.884855 + 0.465867i \(0.845743\pi\)
\(432\) 0.121995 + 0.211302i 0.00586949 + 0.0101663i
\(433\) 7.78179 13.4785i 0.373969 0.647733i −0.616203 0.787587i \(-0.711330\pi\)
0.990172 + 0.139854i \(0.0446633\pi\)
\(434\) −2.13106 −0.102294
\(435\) 0 0
\(436\) −1.09494 + 1.89650i −0.0524383 + 0.0908257i
\(437\) 2.24321 0.107307
\(438\) 0.426678 0.739028i 0.0203875 0.0353121i
\(439\) 3.91196 + 6.77571i 0.186708 + 0.323387i 0.944151 0.329514i \(-0.106885\pi\)
−0.757443 + 0.652901i \(0.773552\pi\)
\(440\) 0 0
\(441\) −6.83891 −0.325662
\(442\) 3.41850 21.2387i 0.162601 1.01022i
\(443\) 24.8136 1.17893 0.589465 0.807794i \(-0.299338\pi\)
0.589465 + 0.807794i \(0.299338\pi\)
\(444\) 5.68026 + 9.83850i 0.269573 + 0.466914i
\(445\) 0 0
\(446\) 0.223952 0.387896i 0.0106044 0.0183674i
\(447\) 3.15772 0.149355
\(448\) 0.874402 1.51451i 0.0413116 0.0715538i
\(449\) 16.7743 29.0539i 0.791626 1.37114i −0.133333 0.991071i \(-0.542568\pi\)
0.924959 0.380066i \(-0.124099\pi\)
\(450\) 0 0
\(451\) 13.0525 22.6076i 0.614619 1.06455i
\(452\) −1.44995 2.51140i −0.0682001 0.118126i
\(453\) −9.29391 16.0975i −0.436666 0.756328i
\(454\) 18.0216 0.845796
\(455\) 0 0
\(456\) −6.24995 −0.292681
\(457\) −9.22831 15.9839i −0.431682 0.747696i 0.565336 0.824861i \(-0.308746\pi\)
−0.997018 + 0.0771651i \(0.975413\pi\)
\(458\) −0.171265 0.296640i −0.00800271 0.0138611i
\(459\) −3.54033 + 6.13203i −0.165249 + 0.286219i
\(460\) 0 0
\(461\) −3.47162 + 6.01302i −0.161689 + 0.280054i −0.935475 0.353394i \(-0.885028\pi\)
0.773785 + 0.633448i \(0.218361\pi\)
\(462\) −0.829782 + 1.43723i −0.0386050 + 0.0668658i
\(463\) −41.2459 −1.91686 −0.958430 0.285329i \(-0.907897\pi\)
−0.958430 + 0.285329i \(0.907897\pi\)
\(464\) 0.961646 1.66562i 0.0446433 0.0773245i
\(465\) 0 0
\(466\) 1.12229 + 1.94387i 0.0519892 + 0.0900479i
\(467\) −29.7045 −1.37456 −0.687280 0.726393i \(-0.741195\pi\)
−0.687280 + 0.726393i \(0.741195\pi\)
\(468\) 4.34632 1.65590i 0.200909 0.0765441i
\(469\) 2.46969 0.114040
\(470\) 0 0
\(471\) −5.39008 9.33590i −0.248362 0.430175i
\(472\) 4.21999 7.30924i 0.194241 0.336435i
\(473\) 9.88276 0.454410
\(474\) 4.32922 7.49843i 0.198848 0.344414i
\(475\) 0 0
\(476\) −3.66599 −0.168030
\(477\) −5.42482 + 9.39606i −0.248385 + 0.430216i
\(478\) −6.67013 11.5530i −0.305084 0.528422i
\(479\) 9.86981 + 17.0950i 0.450963 + 0.781091i 0.998446 0.0557257i \(-0.0177472\pi\)
−0.547483 + 0.836817i \(0.684414\pi\)
\(480\) 0 0
\(481\) 29.6726 11.3050i 1.35296 0.515463i
\(482\) 19.6451 0.894809
\(483\) −0.199677 0.345851i −0.00908562 0.0157368i
\(484\) 8.43603 + 14.6116i 0.383456 + 0.664165i
\(485\) 0 0
\(486\) 0.842629 0.0382224
\(487\) 12.1517 21.0473i 0.550645 0.953745i −0.447583 0.894242i \(-0.647715\pi\)
0.998228 0.0595026i \(-0.0189515\pi\)
\(488\) 9.84386 17.0501i 0.445610 0.771820i
\(489\) −1.57388 −0.0711734
\(490\) 0 0
\(491\) −3.45543 5.98497i −0.155941 0.270098i 0.777460 0.628932i \(-0.216508\pi\)
−0.933401 + 0.358834i \(0.883174\pi\)
\(492\) −3.43126 5.94312i −0.154693 0.267936i
\(493\) 55.8144 2.51376
\(494\) −1.08845 + 6.76241i −0.0489716 + 0.304255i
\(495\) 0 0
\(496\) 0.768715 + 1.33145i 0.0345163 + 0.0597840i
\(497\) 1.27009 + 2.19986i 0.0569714 + 0.0986774i
\(498\) 4.43802 7.68687i 0.198872 0.344457i
\(499\) 2.21036 0.0989495 0.0494747 0.998775i \(-0.484245\pi\)
0.0494747 + 0.998775i \(0.484245\pi\)
\(500\) 0 0
\(501\) −7.53397 + 13.0492i −0.336593 + 0.582996i
\(502\) −1.09679 −0.0489521
\(503\) −14.6140 + 25.3122i −0.651607 + 1.12862i 0.331126 + 0.943587i \(0.392572\pi\)
−0.982733 + 0.185030i \(0.940762\pi\)
\(504\) 0.556333 + 0.963596i 0.0247810 + 0.0429220i
\(505\) 0 0
\(506\) 4.11417 0.182897
\(507\) −2.63905 12.7293i −0.117204 0.565329i
\(508\) −22.2695 −0.988047
\(509\) 3.60746 + 6.24830i 0.159898 + 0.276951i 0.934832 0.355091i \(-0.115550\pi\)
−0.774934 + 0.632042i \(0.782217\pi\)
\(510\) 0 0
\(511\) −0.203235 + 0.352014i −0.00899060 + 0.0155722i
\(512\) −2.75575 −0.121788
\(513\) 1.12724 1.95244i 0.0497689 0.0862023i
\(514\) −4.16001 + 7.20535i −0.183490 + 0.317814i
\(515\) 0 0
\(516\) 1.29900 2.24993i 0.0571851 0.0990475i
\(517\) −11.3431 19.6469i −0.498870 0.864068i
\(518\) 1.48922 + 2.57940i 0.0654325 + 0.113332i
\(519\) −3.40615 −0.149513
\(520\) 0 0
\(521\) 38.0923 1.66886 0.834428 0.551118i \(-0.185798\pi\)
0.834428 + 0.551118i \(0.185798\pi\)
\(522\) −3.32108 5.75228i −0.145360 0.251770i
\(523\) −0.0397056 0.0687721i −0.00173620 0.00300719i 0.865156 0.501503i \(-0.167219\pi\)
−0.866892 + 0.498496i \(0.833886\pi\)
\(524\) −2.96095 + 5.12852i −0.129350 + 0.224040i
\(525\) 0 0
\(526\) 0.224818 0.389396i 0.00980253 0.0169785i
\(527\) −22.3083 + 38.6391i −0.971766 + 1.68315i
\(528\) 1.19728 0.0521048
\(529\) 11.0050 19.0612i 0.478478 0.828748i
\(530\) 0 0
\(531\) 1.52224 + 2.63659i 0.0660595 + 0.114418i
\(532\) 1.16725 0.0506067
\(533\) −17.9243 + 6.82897i −0.776387 + 0.295796i
\(534\) 0.441976 0.0191262
\(535\) 0 0
\(536\) 8.52918 + 14.7730i 0.368404 + 0.638095i
\(537\) −0.300516 + 0.520508i −0.0129682 + 0.0224616i
\(538\) 11.4631 0.494210
\(539\) −16.7795 + 29.0630i −0.722745 + 1.25183i
\(540\) 0 0
\(541\) −29.1429 −1.25295 −0.626476 0.779441i \(-0.715503\pi\)
−0.626476 + 0.779441i \(0.715503\pi\)
\(542\) −10.0410 + 17.3915i −0.431298 + 0.747030i
\(543\) −8.53035 14.7750i −0.366072 0.634056i
\(544\) −20.3571 35.2595i −0.872803 1.51174i
\(545\) 0 0
\(546\) 1.13949 0.434135i 0.0487658 0.0185793i
\(547\) 12.9652 0.554354 0.277177 0.960819i \(-0.410601\pi\)
0.277177 + 0.960819i \(0.410601\pi\)
\(548\) −3.19300 5.53043i −0.136398 0.236248i
\(549\) 3.55088 + 6.15031i 0.151548 + 0.262489i
\(550\) 0 0
\(551\) −17.7713 −0.757084
\(552\) 1.37918 2.38882i 0.0587020 0.101675i
\(553\) −2.06209 + 3.57165i −0.0876891 + 0.151882i
\(554\) −16.1892 −0.687815
\(555\) 0 0
\(556\) −8.55530 14.8182i −0.362825 0.628432i
\(557\) 16.0443 + 27.7896i 0.679820 + 1.17748i 0.975035 + 0.222051i \(0.0712753\pi\)
−0.295215 + 0.955431i \(0.595391\pi\)
\(558\) 5.30957 0.224772
\(559\) −5.63178 4.58396i −0.238199 0.193881i
\(560\) 0 0
\(561\) 17.3727 + 30.0903i 0.733474 + 1.27041i
\(562\) 2.66183 + 4.61043i 0.112283 + 0.194479i
\(563\) −0.759773 + 1.31596i −0.0320206 + 0.0554613i −0.881592 0.472013i \(-0.843528\pi\)
0.849571 + 0.527474i \(0.176861\pi\)
\(564\) −5.96378 −0.251121
\(565\) 0 0
\(566\) 12.7260 22.0421i 0.534914 0.926498i
\(567\) −0.401361 −0.0168556
\(568\) −8.77262 + 15.1946i −0.368091 + 0.637552i
\(569\) −9.90956 17.1639i −0.415430 0.719546i 0.580043 0.814586i \(-0.303036\pi\)
−0.995474 + 0.0950394i \(0.969702\pi\)
\(570\) 0 0
\(571\) 43.8106 1.83342 0.916708 0.399558i \(-0.130836\pi\)
0.916708 + 0.399558i \(0.130836\pi\)
\(572\) 3.62684 22.5331i 0.151646 0.942158i
\(573\) −6.20165 −0.259078
\(574\) −0.899588 1.55813i −0.0375481 0.0650352i
\(575\) 0 0
\(576\) −2.17859 + 3.77343i −0.0907746 + 0.157226i
\(577\) 11.7411 0.488787 0.244393 0.969676i \(-0.421411\pi\)
0.244393 + 0.969676i \(0.421411\pi\)
\(578\) 13.9606 24.1805i 0.580684 1.00577i
\(579\) −4.56896 + 7.91367i −0.189880 + 0.328881i
\(580\) 0 0
\(581\) −2.11392 + 3.66141i −0.0877000 + 0.151901i
\(582\) −3.96968 6.87568i −0.164548 0.285006i
\(583\) 26.6200 + 46.1071i 1.10249 + 1.90956i
\(584\) −2.80752 −0.116176
\(585\) 0 0
\(586\) −6.01374 −0.248425
\(587\) 12.8957 + 22.3360i 0.532263 + 0.921907i 0.999290 + 0.0376643i \(0.0119918\pi\)
−0.467027 + 0.884243i \(0.654675\pi\)
\(588\) 4.41101 + 7.64010i 0.181907 + 0.315072i
\(589\) 7.10297 12.3027i 0.292673 0.506924i
\(590\) 0 0
\(591\) 10.8050 18.7148i 0.444457 0.769823i
\(592\) 1.07438 1.86089i 0.0441569 0.0764819i
\(593\) −10.5017 −0.431252 −0.215626 0.976476i \(-0.569179\pi\)
−0.215626 + 0.976476i \(0.569179\pi\)
\(594\) 2.06742 3.58088i 0.0848273 0.146925i
\(595\) 0 0
\(596\) −2.03669 3.52766i −0.0834262 0.144498i
\(597\) −2.54446 −0.104138
\(598\) −2.34450 1.90829i −0.0958736 0.0780358i
\(599\) 37.8214 1.54534 0.772669 0.634809i \(-0.218921\pi\)
0.772669 + 0.634809i \(0.218921\pi\)
\(600\) 0 0
\(601\) 14.8477 + 25.7170i 0.605652 + 1.04902i 0.991948 + 0.126645i \(0.0404208\pi\)
−0.386297 + 0.922375i \(0.626246\pi\)
\(602\) 0.340563 0.589873i 0.0138803 0.0240414i
\(603\) −6.15330 −0.250582
\(604\) −11.9889 + 20.7654i −0.487823 + 0.844933i
\(605\) 0 0
\(606\) −4.84861 −0.196961
\(607\) 8.09298 14.0175i 0.328484 0.568951i −0.653727 0.756730i \(-0.726796\pi\)
0.982211 + 0.187779i \(0.0601289\pi\)
\(608\) 6.48170 + 11.2266i 0.262868 + 0.455300i
\(609\) 1.58190 + 2.73992i 0.0641017 + 0.111027i
\(610\) 0 0
\(611\) −2.64890 + 16.4573i −0.107163 + 0.665790i
\(612\) 9.13389 0.369215
\(613\) 12.7520 + 22.0871i 0.515048 + 0.892089i 0.999847 + 0.0174640i \(0.00555924\pi\)
−0.484799 + 0.874625i \(0.661107\pi\)
\(614\) −4.17670 7.23426i −0.168558 0.291951i
\(615\) 0 0
\(616\) 5.45993 0.219987
\(617\) −5.87440 + 10.1748i −0.236494 + 0.409620i −0.959706 0.281006i \(-0.909332\pi\)
0.723212 + 0.690626i \(0.242665\pi\)
\(618\) 6.48792 11.2374i 0.260982 0.452034i
\(619\) −9.49031 −0.381448 −0.190724 0.981644i \(-0.561083\pi\)
−0.190724 + 0.981644i \(0.561083\pi\)
\(620\) 0 0
\(621\) 0.497500 + 0.861695i 0.0199640 + 0.0345786i
\(622\) 2.54720 + 4.41188i 0.102133 + 0.176900i
\(623\) −0.210522 −0.00843438
\(624\) −0.682280 0.555338i −0.0273131 0.0222313i
\(625\) 0 0
\(626\) −1.94655 3.37152i −0.0777997 0.134753i
\(627\) −5.53146 9.58076i −0.220905 0.382619i
\(628\) −6.95308 + 12.0431i −0.277458 + 0.480571i
\(629\) 62.3577 2.48637
\(630\) 0 0
\(631\) −11.7563 + 20.3625i −0.468010 + 0.810617i −0.999332 0.0365534i \(-0.988362\pi\)
0.531322 + 0.847170i \(0.321695\pi\)
\(632\) −28.4861 −1.13311
\(633\) −5.54061 + 9.59663i −0.220220 + 0.381432i
\(634\) 10.5663 + 18.3014i 0.419641 + 0.726839i
\(635\) 0 0
\(636\) 13.9958 0.554968
\(637\) 23.0423 8.77890i 0.912971 0.347833i
\(638\) −32.5935 −1.29039
\(639\) −3.16446 5.48101i −0.125184 0.216825i
\(640\) 0 0
\(641\) −9.54940 + 16.5400i −0.377179 + 0.653292i −0.990651 0.136424i \(-0.956439\pi\)
0.613472 + 0.789717i \(0.289772\pi\)
\(642\) 12.5538 0.495460
\(643\) 21.8202 37.7938i 0.860506 1.49044i −0.0109350 0.999940i \(-0.503481\pi\)
0.871441 0.490500i \(-0.163186\pi\)
\(644\) −0.257579 + 0.446139i −0.0101500 + 0.0175804i
\(645\) 0 0
\(646\) −6.72555 + 11.6490i −0.264613 + 0.458323i
\(647\) 1.65503 + 2.86660i 0.0650661 + 0.112698i 0.896723 0.442592i \(-0.145941\pi\)
−0.831657 + 0.555289i \(0.812608\pi\)
\(648\) −1.38611 2.40082i −0.0544517 0.0943132i
\(649\) 14.9395 0.586425
\(650\) 0 0
\(651\) −2.52905 −0.0991215
\(652\) 1.01514 + 1.75827i 0.0397558 + 0.0688590i
\(653\) 1.80589 + 3.12790i 0.0706701 + 0.122404i 0.899195 0.437548i \(-0.144153\pi\)
−0.828525 + 0.559952i \(0.810820\pi\)
\(654\) 0.715231 1.23882i 0.0279677 0.0484416i
\(655\) 0 0
\(656\) −0.649000 + 1.12410i −0.0253392 + 0.0438888i
\(657\) 0.506365 0.877050i 0.0197552 0.0342170i
\(658\) −1.56355 −0.0609536
\(659\) −21.5161 + 37.2670i −0.838148 + 1.45172i 0.0532932 + 0.998579i \(0.483028\pi\)
−0.891441 + 0.453136i \(0.850305\pi\)
\(660\) 0 0
\(661\) −18.8524 32.6533i −0.733273 1.27007i −0.955477 0.295066i \(-0.904658\pi\)
0.222204 0.975000i \(-0.428675\pi\)
\(662\) −11.5330 −0.448242
\(663\) 4.05694 25.2053i 0.157558 0.978892i
\(664\) −29.2019 −1.13325
\(665\) 0 0
\(666\) −3.71042 6.42663i −0.143776 0.249027i
\(667\) 3.92162 6.79245i 0.151846 0.263005i
\(668\) 19.4373 0.752051
\(669\) 0.265778 0.460340i 0.0102756 0.0177978i
\(670\) 0 0
\(671\) 34.8489 1.34532
\(672\) 1.15392 1.99865i 0.0445136 0.0770998i
\(673\) −22.3893 38.7794i −0.863045 1.49484i −0.868975 0.494855i \(-0.835221\pi\)
0.00593030 0.999982i \(-0.498112\pi\)
\(674\) −3.79820 6.57868i −0.146301 0.253401i
\(675\) 0 0
\(676\) −12.5184 + 11.1585i −0.481478 + 0.429172i
\(677\) 41.0024 1.57585 0.787926 0.615770i \(-0.211155\pi\)
0.787926 + 0.615770i \(0.211155\pi\)
\(678\) 0.947129 + 1.64048i 0.0363743 + 0.0630021i
\(679\) 1.89084 + 3.27502i 0.0725636 + 0.125684i
\(680\) 0 0
\(681\) 21.3874 0.819565
\(682\) 13.0272 22.5638i 0.498838 0.864013i
\(683\) −10.2395 + 17.7354i −0.391805 + 0.678627i −0.992688 0.120711i \(-0.961483\pi\)
0.600882 + 0.799338i \(0.294816\pi\)
\(684\) −2.90823 −0.111199
\(685\) 0 0
\(686\) 2.34015 + 4.05326i 0.0893473 + 0.154754i
\(687\) −0.203251 0.352041i −0.00775452 0.0134312i
\(688\) −0.491392 −0.0187342
\(689\) 6.21641 38.6218i 0.236826 1.47137i
\(690\) 0 0
\(691\) −13.8702 24.0240i −0.527649 0.913915i −0.999481 0.0322263i \(-0.989740\pi\)
0.471832 0.881689i \(-0.343593\pi\)
\(692\) 2.19692 + 3.80518i 0.0835145 + 0.144651i
\(693\) −0.984754 + 1.70564i −0.0374077 + 0.0647920i
\(694\) −9.15352 −0.347463
\(695\) 0 0
\(696\) −10.9263 + 18.9249i −0.414159 + 0.717345i
\(697\) −37.6683 −1.42679
\(698\) −8.31247 + 14.3976i −0.314632 + 0.544958i
\(699\) 1.33189 + 2.30691i 0.0503768 + 0.0872552i
\(700\) 0 0
\(701\) −6.02633 −0.227611 −0.113806 0.993503i \(-0.536304\pi\)
−0.113806 + 0.993503i \(0.536304\pi\)
\(702\) −2.83907 + 1.08166i −0.107154 + 0.0408245i
\(703\) −19.8547 −0.748835
\(704\) 10.6905 + 18.5165i 0.402913 + 0.697867i
\(705\) 0 0
\(706\) −7.83503 + 13.5707i −0.294875 + 0.510739i
\(707\) 2.30949 0.0868573
\(708\) 1.96365 3.40114i 0.0737985 0.127823i
\(709\) 11.3864 19.7218i 0.427625 0.740668i −0.569037 0.822312i \(-0.692684\pi\)
0.996662 + 0.0816444i \(0.0260172\pi\)
\(710\) 0 0
\(711\) 5.13775 8.89885i 0.192681 0.333733i
\(712\) −0.727045 1.25928i −0.0272471 0.0471934i
\(713\) 3.13484 + 5.42971i 0.117401 + 0.203344i
\(714\) 2.39467 0.0896183
\(715\) 0 0
\(716\) 0.775316 0.0289749
\(717\) −7.91585 13.7107i −0.295623 0.512034i
\(718\) 5.11677 + 8.86250i 0.190956 + 0.330746i
\(719\) −13.1830 + 22.8336i −0.491643 + 0.851551i −0.999954 0.00962269i \(-0.996937\pi\)
0.508310 + 0.861174i \(0.330270\pi\)
\(720\) 0 0
\(721\) −3.09032 + 5.35260i −0.115090 + 0.199341i
\(722\) −5.86356 + 10.1560i −0.218219 + 0.377967i
\(723\) 23.3140 0.867058
\(724\) −11.0039 + 19.0594i −0.408959 + 0.708337i
\(725\) 0 0
\(726\) −5.51052 9.54451i −0.204515 0.354230i
\(727\) 1.91130 0.0708862 0.0354431 0.999372i \(-0.488716\pi\)
0.0354431 + 0.999372i \(0.488716\pi\)
\(728\) −3.11139 2.53250i −0.115316 0.0938607i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −7.13017 12.3498i −0.263719 0.456774i
\(732\) 4.58055 7.93375i 0.169302 0.293240i
\(733\) −18.4077 −0.679904 −0.339952 0.940443i \(-0.610411\pi\)
−0.339952 + 0.940443i \(0.610411\pi\)
\(734\) 13.0749 22.6464i 0.482604 0.835894i
\(735\) 0 0
\(736\) −5.72130 −0.210890
\(737\) −15.0973 + 26.1494i −0.556118 + 0.963224i
\(738\) 2.24134 + 3.88212i 0.0825050 + 0.142903i
\(739\) 0.909425 + 1.57517i 0.0334538 + 0.0579436i 0.882268 0.470748i \(-0.156016\pi\)
−0.848814 + 0.528692i \(0.822683\pi\)
\(740\) 0 0
\(741\) −1.29173 + 8.02537i −0.0474529 + 0.294819i
\(742\) 3.66933 0.134705
\(743\) 4.39871 + 7.61880i 0.161373 + 0.279507i 0.935361 0.353693i \(-0.115074\pi\)
−0.773988 + 0.633200i \(0.781741\pi\)
\(744\) −8.73418 15.1280i −0.320211 0.554621i
\(745\) 0 0
\(746\) −8.78974 −0.321815
\(747\) 5.26687 9.12248i 0.192705 0.333774i
\(748\) 22.4103 38.8158i 0.819402 1.41925i
\(749\) −5.97963 −0.218491
\(750\) 0 0
\(751\) −18.0751 31.3070i −0.659571 1.14241i −0.980727 0.195384i \(-0.937405\pi\)
0.321156 0.947026i \(-0.395929\pi\)
\(752\) 0.564005 + 0.976885i 0.0205671 + 0.0356233i
\(753\) −1.30163 −0.0474339
\(754\) 18.5737 + 15.1180i 0.676416 + 0.550565i
\(755\) 0 0
\(756\) 0.258873 + 0.448381i 0.00941512 + 0.0163075i
\(757\) −14.5473 25.1967i −0.528731 0.915789i −0.999439 0.0334996i \(-0.989335\pi\)
0.470708 0.882289i \(-0.343999\pi\)
\(758\) −12.9446 + 22.4207i −0.470168 + 0.814355i
\(759\) 4.88254 0.177225
\(760\) 0 0
\(761\) 13.2927 23.0236i 0.481859 0.834603i −0.517925 0.855426i \(-0.673295\pi\)
0.999783 + 0.0208228i \(0.00662858\pi\)
\(762\) 14.5467 0.526971
\(763\) −0.340679 + 0.590073i −0.0123334 + 0.0213621i
\(764\) 3.99999 + 6.92819i 0.144715 + 0.250653i
\(765\) 0 0
\(766\) 7.17334 0.259183
\(767\) −8.51339 6.92943i −0.307401 0.250207i
\(768\) 15.3110 0.552488
\(769\) −12.4145 21.5026i −0.447679 0.775403i 0.550556 0.834799i \(-0.314416\pi\)
−0.998235 + 0.0593958i \(0.981083\pi\)
\(770\) 0 0
\(771\) −4.93694 + 8.55103i −0.177800 + 0.307958i
\(772\) 11.7877 0.424249
\(773\) −8.89469 + 15.4061i −0.319920 + 0.554117i −0.980471 0.196664i \(-0.936989\pi\)
0.660551 + 0.750781i \(0.270323\pi\)
\(774\) −0.848521 + 1.46968i −0.0304994 + 0.0528266i
\(775\) 0 0
\(776\) −13.0601 + 22.6208i −0.468832 + 0.812040i
\(777\) 1.76735 + 3.06113i 0.0634032 + 0.109818i
\(778\) −9.13545 15.8231i −0.327522 0.567285i
\(779\) 11.9936 0.429715
\(780\) 0 0
\(781\) −31.0565 −1.11129
\(782\) −2.96827 5.14120i −0.106145 0.183849i
\(783\) −3.94133 6.82658i −0.140852 0.243962i
\(784\) 0.834314 1.44507i 0.0297969 0.0516098i
\(785\) 0 0
\(786\) 1.93413 3.35001i 0.0689882 0.119491i
\(787\) −11.3791 + 19.7092i −0.405622 + 0.702557i −0.994394 0.105742i \(-0.966278\pi\)
0.588772 + 0.808299i \(0.299612\pi\)
\(788\) −27.8763 −0.993053
\(789\) 0.266805 0.462121i 0.00949852 0.0164519i
\(790\) 0 0
\(791\) −0.451137 0.781392i −0.0160406 0.0277831i
\(792\) −13.6035 −0.483380
\(793\) −19.8589 16.1641i −0.705212 0.574003i
\(794\) −17.5124 −0.621491
\(795\) 0 0
\(796\) 1.64115 + 2.84255i 0.0581689 + 0.100751i
\(797\) −11.9646 + 20.7232i −0.423807 + 0.734055i −0.996308 0.0858488i \(-0.972640\pi\)
0.572501 + 0.819904i \(0.305973\pi\)
\(798\) −0.762463 −0.0269909
\(799\) −16.3676 + 28.3495i −0.579043 + 1.00293i
\(800\) 0 0
\(801\) 0.524520 0.0185330
\(802\) −15.4799 + 26.8119i −0.546613 + 0.946762i
\(803\) −2.48477 4.30375i −0.0876856 0.151876i
\(804\) 3.96880 + 6.87417i 0.139969 + 0.242433i
\(805\) 0 0
\(806\) −17.8895 + 6.81574i −0.630132 + 0.240074i
\(807\) 13.6040 0.478883
\(808\) 7.97591 + 13.8147i 0.280592 + 0.485999i
\(809\) −8.39474 14.5401i −0.295143 0.511203i 0.679875 0.733328i \(-0.262034\pi\)
−0.975018 + 0.222125i \(0.928701\pi\)
\(810\) 0 0
\(811\) 14.0218 0.492373 0.246186 0.969222i \(-0.420822\pi\)
0.246186 + 0.969222i \(0.420822\pi\)
\(812\) 2.04061 3.53444i 0.0716113 0.124034i
\(813\) −11.9163 + 20.6396i −0.417922 + 0.723862i
\(814\) −36.4146 −1.27633
\(815\) 0 0
\(816\) −0.863806 1.49616i −0.0302393 0.0523760i
\(817\) 2.27025 + 3.93218i 0.0794259 + 0.137570i
\(818\) 2.70574 0.0946040
\(819\) 1.35231 0.515215i 0.0472534 0.0180031i
\(820\) 0 0
\(821\) −19.4895 33.7568i −0.680189 1.17812i −0.974923 0.222542i \(-0.928564\pi\)
0.294734 0.955579i \(-0.404769\pi\)
\(822\) 2.08571 + 3.61255i 0.0727474 + 0.126002i
\(823\) 5.54278 9.60038i 0.193209 0.334648i −0.753103 0.657903i \(-0.771444\pi\)
0.946312 + 0.323255i \(0.104777\pi\)
\(824\) −42.6902 −1.48718
\(825\) 0 0
\(826\) 0.514819 0.891692i 0.0179128 0.0310259i
\(827\) 41.0529 1.42755 0.713775 0.700375i \(-0.246984\pi\)
0.713775 + 0.700375i \(0.246984\pi\)
\(828\) 0.641763 1.11157i 0.0223028 0.0386296i
\(829\) −10.4901 18.1694i −0.364337 0.631051i 0.624332 0.781159i \(-0.285371\pi\)
−0.988670 + 0.150108i \(0.952038\pi\)
\(830\) 0 0
\(831\) −19.2128 −0.666484
\(832\) 2.49649 15.5104i 0.0865503 0.537727i
\(833\) 48.4240 1.67779
\(834\) 5.58843 + 9.67945i 0.193512 + 0.335172i
\(835\) 0 0
\(836\) −7.13545 + 12.3590i −0.246785 + 0.427443i
\(837\) 6.30120 0.217801
\(838\) −6.42594 + 11.1300i −0.221980 + 0.384481i
\(839\) 5.27731 9.14057i 0.182193 0.315568i −0.760434 0.649415i \(-0.775014\pi\)
0.942627 + 0.333848i \(0.108347\pi\)
\(840\) 0 0
\(841\) −16.5682 + 28.6969i −0.571316 + 0.989548i
\(842\) 0.0516801 + 0.0895126i 0.00178101 + 0.00308481i
\(843\) 3.15896 + 5.47148i 0.108800 + 0.188448i
\(844\) 14.2945 0.492038
\(845\) 0 0
\(846\) 3.89562 0.133934
\(847\) 2.62477 + 4.54624i 0.0901882 + 0.156211i
\(848\) −1.32360 2.29255i −0.0454527 0.0787264i
\(849\) 15.1027 26.1587i 0.518325 0.897765i
\(850\) 0 0
\(851\) 4.38137 7.58875i 0.150191 0.260139i
\(852\) −4.08208 + 7.07037i −0.139850 + 0.242227i
\(853\) 32.3455 1.10749 0.553744 0.832687i \(-0.313199\pi\)
0.553744 + 0.832687i \(0.313199\pi\)
\(854\) 1.20090 2.08002i 0.0410940 0.0711770i
\(855\) 0 0
\(856\) −20.6509 35.7684i −0.705832 1.22254i
\(857\) 23.8618 0.815103 0.407551 0.913182i \(-0.366383\pi\)
0.407551 + 0.913182i \(0.366383\pi\)
\(858\) −2.36910 + 14.7189i −0.0808798 + 0.502496i
\(859\) 20.6605 0.704926 0.352463 0.935826i \(-0.385344\pi\)
0.352463 + 0.935826i \(0.385344\pi\)
\(860\) 0 0
\(861\) −1.06760 1.84913i −0.0363836 0.0630183i
\(862\) 0.681806 1.18092i 0.0232224 0.0402224i
\(863\) −0.461666 −0.0157153 −0.00785765 0.999969i \(-0.502501\pi\)
−0.00785765 + 0.999969i \(0.502501\pi\)
\(864\) −2.87503 + 4.97969i −0.0978104 + 0.169413i
\(865\) 0 0
\(866\) 13.1143 0.445643
\(867\) 16.5679 28.6964i 0.562675 0.974582i
\(868\) 1.63121 + 2.82534i 0.0553669 + 0.0958982i
\(869\) −25.2113 43.6673i −0.855235 1.48131i
\(870\) 0 0
\(871\) 20.7323 7.89880i 0.702488 0.267641i
\(872\) −4.70619 −0.159372
\(873\) −4.71106 8.15979i −0.159445 0.276167i
\(874\) 0.945098 + 1.63696i 0.0319684 + 0.0553709i
\(875\) 0 0
\(876\) −1.30640 −0.0441391
\(877\) 10.1974 17.6624i 0.344342 0.596417i −0.640892 0.767631i \(-0.721435\pi\)
0.985234 + 0.171214i \(0.0547688\pi\)
\(878\) −3.29633 + 5.70941i −0.111246 + 0.192683i
\(879\) −7.13688 −0.240721
\(880\) 0 0
\(881\) 12.6173 + 21.8538i 0.425087 + 0.736272i 0.996429 0.0844405i \(-0.0269103\pi\)
−0.571342 + 0.820712i \(0.693577\pi\)
\(882\) −2.88133 4.99061i −0.0970195 0.168043i
\(883\) −8.44125 −0.284071 −0.142035 0.989862i \(-0.545365\pi\)
−0.142035 + 0.989862i \(0.545365\pi\)
\(884\) −30.7748 + 11.7249i −1.03507 + 0.394351i
\(885\) 0 0
\(886\) 10.4543 + 18.1075i 0.351221 + 0.608332i
\(887\) −18.6894 32.3709i −0.627527 1.08691i −0.988046 0.154157i \(-0.950734\pi\)
0.360519 0.932752i \(-0.382600\pi\)
\(888\) −12.2072 + 21.1435i −0.409646 + 0.709528i
\(889\) −6.92888 −0.232387
\(890\) 0 0
\(891\) 2.45354 4.24965i 0.0821965 0.142369i
\(892\) −0.685693 −0.0229587
\(893\) 5.21144 9.02647i 0.174394 0.302059i
\(894\) 1.33039 + 2.30431i 0.0444951 + 0.0770677i
\(895\) 0 0
\(896\) −3.14210 −0.104970
\(897\) −2.78236 2.26469i −0.0929003 0.0756156i
\(898\) 28.2690 0.943348
\(899\) −24.8351 43.0156i −0.828297 1.43465i
\(900\) 0 0
\(901\) 38.4113 66.5303i 1.27967 2.21645i
\(902\) 21.9969 0.732416
\(903\) 0.404167 0.700038i 0.0134498 0.0232958i
\(904\) 3.11603 5.39713i 0.103638 0.179506i
\(905\) 0 0
\(906\) 7.83132 13.5642i 0.260178 0.450642i
\(907\) 24.5616 + 42.5419i 0.815553 + 1.41258i 0.908930 + 0.416948i \(0.136900\pi\)
−0.0933771 + 0.995631i \(0.529766\pi\)
\(908\) −13.7946 23.8929i −0.457789 0.792915i
\(909\) −5.75415 −0.190853
\(910\) 0 0
\(911\) 46.1927 1.53043 0.765217 0.643773i \(-0.222632\pi\)
0.765217 + 0.643773i \(0.222632\pi\)
\(912\) 0.275036 + 0.476376i 0.00910735 + 0.0157744i
\(913\) −25.8449 44.7647i −0.855341 1.48149i
\(914\) 7.77604 13.4685i 0.257209 0.445499i
\(915\) 0 0
\(916\) −0.262189 + 0.454125i −0.00866297 + 0.0150047i
\(917\) −0.921265 + 1.59568i −0.0304229 + 0.0526939i
\(918\) −5.96637 −0.196920
\(919\) 14.7292 25.5118i 0.485872 0.841556i −0.513996 0.857793i \(-0.671835\pi\)
0.999868 + 0.0162371i \(0.00516867\pi\)
\(920\) 0 0
\(921\) −4.95675 8.58534i −0.163330 0.282897i
\(922\) −5.85057 −0.192678
\(923\) 17.6978 + 14.4051i 0.582531 + 0.474148i
\(924\) 2.54062 0.0835802
\(925\) 0 0
\(926\) −17.3775 30.0987i −0.571060 0.989105i
\(927\) 7.69961 13.3361i 0.252888 0.438015i
\(928\) 45.3257 1.48789
\(929\) −11.3931 + 19.7334i −0.373795 + 0.647432i −0.990146 0.140040i \(-0.955277\pi\)
0.616351 + 0.787472i \(0.288610\pi\)
\(930\) 0 0
\(931\) −15.4182 −0.505311
\(932\) 1.71811 2.97585i 0.0562786 0.0974773i
\(933\) 3.02292 + 5.23585i 0.0989659 + 0.171414i
\(934\) −12.5149 21.6765i −0.409501 0.709277i
\(935\) 0 0
\(936\) 7.75210 + 6.30978i 0.253385 + 0.206242i
\(937\) −33.3968 −1.09103 −0.545513 0.838102i \(-0.683665\pi\)
−0.545513 + 0.838102i \(0.683665\pi\)
\(938\) 1.04052 + 1.80223i 0.0339741 + 0.0588449i
\(939\) −2.31009 4.00119i −0.0753869 0.130574i
\(940\) 0 0
\(941\) −4.59203 −0.149696 −0.0748480 0.997195i \(-0.523847\pi\)
−0.0748480 + 0.997195i \(0.523847\pi\)
\(942\) 4.54184 7.86670i 0.147981 0.256311i
\(943\) −2.64664 + 4.58412i −0.0861865 + 0.149279i
\(944\) −0.742822 −0.0241768
\(945\) 0 0
\(946\) 4.16375 + 7.21183i 0.135375 + 0.234477i
\(947\) −4.82558 8.35815i −0.156810 0.271603i 0.776906 0.629616i \(-0.216788\pi\)
−0.933717 + 0.358013i \(0.883454\pi\)
\(948\) −13.2552 −0.430507
\(949\) −0.580254 + 3.60505i −0.0188359 + 0.117025i
\(950\) 0 0
\(951\) 12.5397 + 21.7193i 0.406627 + 0.704298i
\(952\) −3.93920 6.82290i −0.127670 0.221131i
\(953\) 16.9506 29.3593i 0.549083 0.951040i −0.449254 0.893404i \(-0.648310\pi\)
0.998338 0.0576363i \(-0.0183564\pi\)
\(954\) −9.14222 −0.295990
\(955\) 0 0
\(956\) −10.2113 + 17.6864i −0.330256 + 0.572020i
\(957\) −38.6808 −1.25037
\(958\) −8.31659 + 14.4048i −0.268697 + 0.465397i
\(959\) −0.993464 1.72073i −0.0320806 0.0555653i
\(960\) 0 0
\(961\) 8.70507 0.280809
\(962\) 20.7512 + 16.8903i 0.669045 + 0.544566i
\(963\) 14.8984 0.480094
\(964\) −15.0373 26.0453i −0.484318 0.838863i
\(965\) 0 0
\(966\) 0.168254 0.291424i 0.00541348 0.00937642i
\(967\) 20.9057 0.672283 0.336141 0.941812i \(-0.390878\pi\)
0.336141 + 0.941812i \(0.390878\pi\)
\(968\) −18.1295 + 31.4012i −0.582704 + 1.00927i
\(969\) −7.98162 + 13.8246i −0.256407 + 0.444109i
\(970\) 0 0
\(971\) −24.1043 + 41.7499i −0.773545 + 1.33982i 0.162064 + 0.986780i \(0.448185\pi\)
−0.935609 + 0.353038i \(0.885149\pi\)
\(972\) −0.644988 1.11715i −0.0206880 0.0358327i
\(973\) −2.66188 4.61051i −0.0853360 0.147806i
\(974\) 20.4787 0.656180
\(975\) 0 0
\(976\) −1.73276 −0.0554643
\(977\) −16.4614 28.5119i −0.526646 0.912177i −0.999518 0.0310460i \(-0.990116\pi\)
0.472872 0.881131i \(-0.343217\pi\)
\(978\) −0.663100 1.14852i −0.0212036 0.0367257i
\(979\) 1.28693 2.22902i 0.0411304 0.0712399i
\(980\) 0 0
\(981\) 0.848809 1.47018i 0.0271004 0.0469392i
\(982\) 2.91164 5.04311i 0.0929143 0.160932i
\(983\) −11.0460 −0.352312 −0.176156 0.984362i \(-0.556366\pi\)
−0.176156 + 0.984362i \(0.556366\pi\)
\(984\) 7.37397 12.7721i 0.235074 0.407159i
\(985\) 0 0
\(986\) 23.5154 + 40.7299i 0.748884 + 1.29711i
\(987\) −1.85556 −0.0590632
\(988\) 9.79870 3.73321i 0.311738 0.118769i
\(989\) −2.00391 −0.0637207
\(990\) 0 0
\(991\) 4.83587 + 8.37598i 0.153617 + 0.266072i 0.932554 0.361029i \(-0.117575\pi\)
−0.778938 + 0.627101i \(0.784241\pi\)
\(992\) −18.1161 + 31.3780i −0.575187 + 0.996253i
\(993\) −13.6869 −0.434341
\(994\) −1.07022 + 1.85367i −0.0339452 + 0.0587948i
\(995\) 0 0
\(996\) −13.5883 −0.430561
\(997\) −25.2149 + 43.6735i −0.798565 + 1.38315i 0.121986 + 0.992532i \(0.461074\pi\)
−0.920551 + 0.390623i \(0.872260\pi\)
\(998\) 0.931258 + 1.61299i 0.0294785 + 0.0510582i
\(999\) −4.40338 7.62688i −0.139317 0.241304i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.i.q.601.4 12
5.2 odd 4 195.2.ba.a.94.5 24
5.3 odd 4 195.2.ba.a.94.8 yes 24
5.4 even 2 975.2.i.o.601.3 12
13.9 even 3 inner 975.2.i.q.451.4 12
15.2 even 4 585.2.bs.b.289.8 24
15.8 even 4 585.2.bs.b.289.5 24
65.9 even 6 975.2.i.o.451.3 12
65.22 odd 12 195.2.ba.a.139.8 yes 24
65.48 odd 12 195.2.ba.a.139.5 yes 24
195.113 even 12 585.2.bs.b.334.8 24
195.152 even 12 585.2.bs.b.334.5 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.ba.a.94.5 24 5.2 odd 4
195.2.ba.a.94.8 yes 24 5.3 odd 4
195.2.ba.a.139.5 yes 24 65.48 odd 12
195.2.ba.a.139.8 yes 24 65.22 odd 12
585.2.bs.b.289.5 24 15.8 even 4
585.2.bs.b.289.8 24 15.2 even 4
585.2.bs.b.334.5 24 195.152 even 12
585.2.bs.b.334.8 24 195.113 even 12
975.2.i.o.451.3 12 65.9 even 6
975.2.i.o.601.3 12 5.4 even 2
975.2.i.q.451.4 12 13.9 even 3 inner
975.2.i.q.601.4 12 1.1 even 1 trivial