Properties

Label 195.2.ba.a.94.5
Level $195$
Weight $2$
Character 195.94
Analytic conductor $1.557$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [195,2,Mod(94,195)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(195, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("195.94"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 195 = 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 195.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 94.5
Character \(\chi\) \(=\) 195.94
Dual form 195.2.ba.a.139.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.729738 + 0.421315i) q^{2} +(0.866025 - 0.500000i) q^{3} +(-0.644988 + 1.11715i) q^{4} +(2.23540 - 0.0545741i) q^{5} +(-0.421315 + 0.729738i) q^{6} +(0.347589 + 0.200681i) q^{7} -2.77223i q^{8} +(0.500000 - 0.866025i) q^{9} +(-1.60827 + 0.981632i) q^{10} +(2.45354 + 4.24965i) q^{11} +1.28998i q^{12} +(-3.55974 - 0.572960i) q^{13} -0.338199 q^{14} +(1.90863 - 1.16496i) q^{15} +(-0.121995 - 0.211302i) q^{16} +(6.13203 + 3.54033i) q^{17} +0.842629i q^{18} +(1.12724 - 1.95244i) q^{19} +(-1.38084 + 2.53248i) q^{20} +0.401361 q^{21} +(-3.58088 - 2.06742i) q^{22} +(-0.861695 + 0.497500i) q^{23} +(-1.38611 - 2.40082i) q^{24} +(4.99404 - 0.243990i) q^{25} +(2.83907 - 1.08166i) q^{26} -1.00000i q^{27} +(-0.448381 + 0.258873i) q^{28} +(-3.94133 - 6.82658i) q^{29} +(-0.901983 + 1.65425i) q^{30} -6.30120 q^{31} +(4.97969 + 2.87503i) q^{32} +(4.24965 + 2.45354i) q^{33} -5.96637 q^{34} +(0.787953 + 0.429632i) q^{35} +(0.644988 + 1.11715i) q^{36} +(-7.62688 + 4.40338i) q^{37} +1.89969i q^{38} +(-3.36930 + 1.28367i) q^{39} +(-0.151292 - 6.19705i) q^{40} +(-2.65994 - 4.60715i) q^{41} +(-0.292889 + 0.169099i) q^{42} +(-1.74416 - 1.00699i) q^{43} -6.33001 q^{44} +(1.07044 - 1.96320i) q^{45} +(0.419208 - 0.726090i) q^{46} -4.62317i q^{47} +(-0.211302 - 0.121995i) q^{48} +(-3.41945 - 5.92267i) q^{49} +(-3.54155 + 2.28211i) q^{50} +7.08066 q^{51} +(2.93607 - 3.60721i) q^{52} -10.8496i q^{53} +(0.421315 + 0.729738i) q^{54} +(5.71656 + 9.36577i) q^{55} +(0.556333 - 0.963596i) q^{56} -2.25448i q^{57} +(5.75228 + 3.32108i) q^{58} +(-1.52224 + 2.63659i) q^{59} +(0.0703993 + 2.88361i) q^{60} +(3.55088 - 6.15031i) q^{61} +(4.59822 - 2.65479i) q^{62} +(0.347589 - 0.200681i) q^{63} -4.35718 q^{64} +(-7.98871 - 1.08653i) q^{65} -4.13484 q^{66} +(-5.32891 + 3.07665i) q^{67} +(-7.91018 + 4.56694i) q^{68} +(-0.497500 + 0.861695i) q^{69} +(-0.756010 + 0.0184569i) q^{70} +(-3.16446 + 5.48101i) q^{71} +(-2.40082 - 1.38611i) q^{72} +1.01273i q^{73} +(3.71042 - 6.42663i) q^{74} +(4.20297 - 2.70832i) q^{75} +(1.45411 + 2.51860i) q^{76} +1.96951i q^{77} +(1.91788 - 2.35628i) q^{78} +10.2755 q^{79} +(-0.284240 - 0.465687i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(3.88212 + 2.24134i) q^{82} +10.5337i q^{83} +(-0.258873 + 0.448381i) q^{84} +(13.9008 + 7.57941i) q^{85} +1.69704 q^{86} +(-6.82658 - 3.94133i) q^{87} +(11.7810 - 6.80177i) q^{88} +(0.262260 + 0.454247i) q^{89} +(0.0459858 + 1.88361i) q^{90} +(-1.12234 - 0.913524i) q^{91} -1.28353i q^{92} +(-5.45700 + 3.15060i) q^{93} +(1.94781 + 3.37371i) q^{94} +(2.41329 - 4.42601i) q^{95} +5.75005 q^{96} +(-8.15979 - 4.71106i) q^{97} +(4.99061 + 2.88133i) q^{98} +4.90707 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} + 4 q^{5} + 12 q^{9} - 4 q^{10} + 4 q^{11} + 24 q^{14} - 2 q^{15} + 16 q^{16} - 16 q^{19} - 16 q^{20} - 8 q^{21} - 16 q^{25} - 48 q^{26} - 12 q^{29} - 4 q^{30} + 8 q^{31} - 32 q^{34} + 10 q^{35}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/195\mathbb{Z}\right)^\times\).

\(n\) \(106\) \(131\) \(157\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.729738 + 0.421315i −0.516003 + 0.297914i −0.735298 0.677744i \(-0.762958\pi\)
0.219295 + 0.975659i \(0.429624\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) −0.644988 + 1.11715i −0.322494 + 0.558576i
\(5\) 2.23540 0.0545741i 0.999702 0.0244063i
\(6\) −0.421315 + 0.729738i −0.172001 + 0.297914i
\(7\) 0.347589 + 0.200681i 0.131376 + 0.0758501i 0.564248 0.825606i \(-0.309166\pi\)
−0.432871 + 0.901456i \(0.642500\pi\)
\(8\) 2.77223i 0.980131i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −1.60827 + 0.981632i −0.508578 + 0.310419i
\(11\) 2.45354 + 4.24965i 0.739769 + 1.28132i 0.952599 + 0.304228i \(0.0983985\pi\)
−0.212830 + 0.977089i \(0.568268\pi\)
\(12\) 1.28998i 0.372384i
\(13\) −3.55974 0.572960i −0.987293 0.158911i
\(14\) −0.338199 −0.0903874
\(15\) 1.90863 1.16496i 0.492806 0.300792i
\(16\) −0.121995 0.211302i −0.0304988 0.0528254i
\(17\) 6.13203 + 3.54033i 1.48724 + 0.858656i 0.999894 0.0145544i \(-0.00463296\pi\)
0.487343 + 0.873211i \(0.337966\pi\)
\(18\) 0.842629i 0.198610i
\(19\) 1.12724 1.95244i 0.258607 0.447920i −0.707262 0.706952i \(-0.750070\pi\)
0.965869 + 0.259031i \(0.0834032\pi\)
\(20\) −1.38084 + 2.53248i −0.308765 + 0.566281i
\(21\) 0.401361 0.0875842
\(22\) −3.58088 2.06742i −0.763446 0.440776i
\(23\) −0.861695 + 0.497500i −0.179676 + 0.103736i −0.587140 0.809485i \(-0.699746\pi\)
0.407465 + 0.913221i \(0.366413\pi\)
\(24\) −1.38611 2.40082i −0.282940 0.490066i
\(25\) 4.99404 0.243990i 0.998809 0.0487981i
\(26\) 2.83907 1.08166i 0.556788 0.212130i
\(27\) 1.00000i 0.192450i
\(28\) −0.448381 + 0.258873i −0.0847361 + 0.0489224i
\(29\) −3.94133 6.82658i −0.731886 1.26766i −0.956076 0.293119i \(-0.905307\pi\)
0.224190 0.974546i \(-0.428027\pi\)
\(30\) −0.901983 + 1.65425i −0.164679 + 0.302024i
\(31\) −6.30120 −1.13173 −0.565864 0.824499i \(-0.691457\pi\)
−0.565864 + 0.824499i \(0.691457\pi\)
\(32\) 4.97969 + 2.87503i 0.880293 + 0.508238i
\(33\) 4.24965 + 2.45354i 0.739769 + 0.427106i
\(34\) −5.96637 −1.02322
\(35\) 0.787953 + 0.429632i 0.133188 + 0.0726211i
\(36\) 0.644988 + 1.11715i 0.107498 + 0.186192i
\(37\) −7.62688 + 4.40338i −1.25385 + 0.723912i −0.971872 0.235509i \(-0.924324\pi\)
−0.281980 + 0.959420i \(0.590991\pi\)
\(38\) 1.89969i 0.308171i
\(39\) −3.36930 + 1.28367i −0.539520 + 0.205552i
\(40\) −0.151292 6.19705i −0.0239214 0.979839i
\(41\) −2.65994 4.60715i −0.415413 0.719517i 0.580059 0.814575i \(-0.303030\pi\)
−0.995472 + 0.0950582i \(0.969696\pi\)
\(42\) −0.292889 + 0.169099i −0.0451937 + 0.0260926i
\(43\) −1.74416 1.00699i −0.265982 0.153565i 0.361078 0.932536i \(-0.382409\pi\)
−0.627060 + 0.778971i \(0.715742\pi\)
\(44\) −6.33001 −0.954284
\(45\) 1.07044 1.96320i 0.159572 0.292657i
\(46\) 0.419208 0.726090i 0.0618088 0.107056i
\(47\) 4.62317i 0.674359i −0.941440 0.337180i \(-0.890527\pi\)
0.941440 0.337180i \(-0.109473\pi\)
\(48\) −0.211302 0.121995i −0.0304988 0.0176085i
\(49\) −3.41945 5.92267i −0.488494 0.846096i
\(50\) −3.54155 + 2.28211i −0.500851 + 0.322739i
\(51\) 7.08066 0.991491
\(52\) 2.93607 3.60721i 0.407160 0.500230i
\(53\) 10.8496i 1.49031i −0.666890 0.745156i \(-0.732375\pi\)
0.666890 0.745156i \(-0.267625\pi\)
\(54\) 0.421315 + 0.729738i 0.0573337 + 0.0993048i
\(55\) 5.71656 + 9.36577i 0.770821 + 1.26288i
\(56\) 0.556333 0.963596i 0.0743431 0.128766i
\(57\) 2.25448i 0.298614i
\(58\) 5.75228 + 3.32108i 0.755311 + 0.436079i
\(59\) −1.52224 + 2.63659i −0.198178 + 0.343255i −0.947938 0.318455i \(-0.896836\pi\)
0.749759 + 0.661711i \(0.230169\pi\)
\(60\) 0.0703993 + 2.88361i 0.00908852 + 0.372273i
\(61\) 3.55088 6.15031i 0.454644 0.787466i −0.544024 0.839070i \(-0.683100\pi\)
0.998668 + 0.0516038i \(0.0164333\pi\)
\(62\) 4.59822 2.65479i 0.583975 0.337158i
\(63\) 0.347589 0.200681i 0.0437921 0.0252834i
\(64\) −4.35718 −0.544648
\(65\) −7.98871 1.08653i −0.990877 0.134767i
\(66\) −4.13484 −0.508964
\(67\) −5.32891 + 3.07665i −0.651030 + 0.375873i −0.788851 0.614585i \(-0.789324\pi\)
0.137821 + 0.990457i \(0.455990\pi\)
\(68\) −7.91018 + 4.56694i −0.959250 + 0.553823i
\(69\) −0.497500 + 0.861695i −0.0598920 + 0.103736i
\(70\) −0.756010 + 0.0184569i −0.0903604 + 0.00220602i
\(71\) −3.16446 + 5.48101i −0.375553 + 0.650476i −0.990410 0.138162i \(-0.955880\pi\)
0.614857 + 0.788639i \(0.289214\pi\)
\(72\) −2.40082 1.38611i −0.282940 0.163355i
\(73\) 1.01273i 0.118531i 0.998242 + 0.0592655i \(0.0188759\pi\)
−0.998242 + 0.0592655i \(0.981124\pi\)
\(74\) 3.71042 6.42663i 0.431327 0.747081i
\(75\) 4.20297 2.70832i 0.485318 0.312730i
\(76\) 1.45411 + 2.51860i 0.166798 + 0.288903i
\(77\) 1.96951i 0.224446i
\(78\) 1.91788 2.35628i 0.217157 0.266796i
\(79\) 10.2755 1.15608 0.578042 0.816007i \(-0.303817\pi\)
0.578042 + 0.816007i \(0.303817\pi\)
\(80\) −0.284240 0.465687i −0.0317790 0.0520653i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 3.88212 + 2.24134i 0.428709 + 0.247515i
\(83\) 10.5337i 1.15623i 0.815956 + 0.578114i \(0.196211\pi\)
−0.815956 + 0.578114i \(0.803789\pi\)
\(84\) −0.258873 + 0.448381i −0.0282454 + 0.0489224i
\(85\) 13.9008 + 7.57941i 1.50775 + 0.822103i
\(86\) 1.69704 0.182997
\(87\) −6.82658 3.94133i −0.731886 0.422555i
\(88\) 11.7810 6.80177i 1.25586 0.725071i
\(89\) 0.262260 + 0.454247i 0.0277995 + 0.0481501i 0.879590 0.475732i \(-0.157817\pi\)
−0.851791 + 0.523882i \(0.824483\pi\)
\(90\) 0.0459858 + 1.88361i 0.00484733 + 0.198550i
\(91\) −1.12234 0.913524i −0.117653 0.0957634i
\(92\) 1.28353i 0.133817i
\(93\) −5.45700 + 3.15060i −0.565864 + 0.326702i
\(94\) 1.94781 + 3.37371i 0.200901 + 0.347971i
\(95\) 2.41329 4.42601i 0.247598 0.454099i
\(96\) 5.75005 0.586862
\(97\) −8.15979 4.71106i −0.828502 0.478336i 0.0248378 0.999691i \(-0.492093\pi\)
−0.853339 + 0.521356i \(0.825426\pi\)
\(98\) 4.99061 + 2.88133i 0.504128 + 0.291059i
\(99\) 4.90707 0.493179
\(100\) −2.94852 + 5.73648i −0.294852 + 0.573648i
\(101\) 2.87707 + 4.98324i 0.286280 + 0.495851i 0.972919 0.231148i \(-0.0742481\pi\)
−0.686639 + 0.726998i \(0.740915\pi\)
\(102\) −5.16703 + 2.98319i −0.511612 + 0.295379i
\(103\) 15.3992i 1.51733i 0.651481 + 0.758665i \(0.274148\pi\)
−0.651481 + 0.758665i \(0.725852\pi\)
\(104\) −1.58838 + 9.86840i −0.155753 + 0.967677i
\(105\) 0.897203 0.0219039i 0.0875581 0.00213761i
\(106\) 4.57111 + 7.91739i 0.443985 + 0.769005i
\(107\) 12.9024 7.44919i 1.24732 0.720141i 0.276746 0.960943i \(-0.410744\pi\)
0.970574 + 0.240802i \(0.0774106\pi\)
\(108\) 1.11715 + 0.644988i 0.107498 + 0.0620640i
\(109\) 1.69762 0.162602 0.0813011 0.996690i \(-0.474092\pi\)
0.0813011 + 0.996690i \(0.474092\pi\)
\(110\) −8.11753 4.42609i −0.773976 0.422011i
\(111\) −4.40338 + 7.62688i −0.417951 + 0.723912i
\(112\) 0.0979282i 0.00925335i
\(113\) −1.94685 1.12402i −0.183145 0.105739i 0.405625 0.914040i \(-0.367054\pi\)
−0.588769 + 0.808301i \(0.700387\pi\)
\(114\) 0.949847 + 1.64518i 0.0889613 + 0.154086i
\(115\) −1.89908 + 1.15914i −0.177091 + 0.108090i
\(116\) 10.1684 0.944116
\(117\) −2.27607 + 2.79634i −0.210422 + 0.258522i
\(118\) 2.56536i 0.236161i
\(119\) 1.42095 + 2.46116i 0.130258 + 0.225614i
\(120\) −3.22955 5.29115i −0.294816 0.483014i
\(121\) −6.53968 + 11.3271i −0.594516 + 1.02973i
\(122\) 5.98415i 0.541780i
\(123\) −4.60715 2.65994i −0.415413 0.239839i
\(124\) 4.06420 7.03939i 0.364976 0.632156i
\(125\) 11.1504 0.817962i 0.997320 0.0731607i
\(126\) −0.169099 + 0.292889i −0.0150646 + 0.0260926i
\(127\) 14.9506 8.63173i 1.32665 0.765942i 0.341871 0.939747i \(-0.388939\pi\)
0.984780 + 0.173804i \(0.0556060\pi\)
\(128\) −6.77978 + 3.91431i −0.599254 + 0.345979i
\(129\) −2.01398 −0.177321
\(130\) 6.28744 2.57288i 0.551445 0.225656i
\(131\) −4.59071 −0.401092 −0.200546 0.979684i \(-0.564272\pi\)
−0.200546 + 0.979684i \(0.564272\pi\)
\(132\) −5.48195 + 3.16500i −0.477142 + 0.275478i
\(133\) 0.783633 0.452431i 0.0679496 0.0392307i
\(134\) 2.59247 4.49030i 0.223956 0.387903i
\(135\) −0.0545741 2.23540i −0.00469699 0.192393i
\(136\) 9.81461 16.9994i 0.841596 1.45769i
\(137\) 4.28724 + 2.47524i 0.366284 + 0.211474i 0.671834 0.740702i \(-0.265507\pi\)
−0.305550 + 0.952176i \(0.598840\pi\)
\(138\) 0.838416i 0.0713707i
\(139\) −6.63214 + 11.4872i −0.562530 + 0.974331i 0.434744 + 0.900554i \(0.356839\pi\)
−0.997275 + 0.0737774i \(0.976495\pi\)
\(140\) −0.988185 + 0.603155i −0.0835169 + 0.0509759i
\(141\) −2.31159 4.00379i −0.194671 0.337180i
\(142\) 5.33294i 0.447530i
\(143\) −6.29906 16.5334i −0.526754 1.38259i
\(144\) −0.243990 −0.0203325
\(145\) −9.18301 15.0451i −0.762607 1.24942i
\(146\) −0.426678 0.739028i −0.0353121 0.0611624i
\(147\) −5.92267 3.41945i −0.488494 0.282032i
\(148\) 11.3605i 0.933829i
\(149\) −1.57886 + 2.73467i −0.129345 + 0.224033i −0.923423 0.383783i \(-0.874621\pi\)
0.794078 + 0.607816i \(0.207954\pi\)
\(150\) −1.92601 + 3.74714i −0.157258 + 0.305953i
\(151\) −18.5878 −1.51266 −0.756328 0.654193i \(-0.773009\pi\)
−0.756328 + 0.654193i \(0.773009\pi\)
\(152\) −5.41261 3.12497i −0.439021 0.253469i
\(153\) 6.13203 3.54033i 0.495746 0.286219i
\(154\) −0.829782 1.43723i −0.0668658 0.115815i
\(155\) −14.0857 + 0.343882i −1.13139 + 0.0276213i
\(156\) 0.739105 4.59197i 0.0591758 0.367652i
\(157\) 10.7802i 0.860351i −0.902745 0.430175i \(-0.858452\pi\)
0.902745 0.430175i \(-0.141548\pi\)
\(158\) −7.49843 + 4.32922i −0.596543 + 0.344414i
\(159\) −5.42482 9.39606i −0.430216 0.745156i
\(160\) 11.2885 + 6.15508i 0.892435 + 0.486602i
\(161\) −0.399354 −0.0314735
\(162\) 0.729738 + 0.421315i 0.0573337 + 0.0331016i
\(163\) 1.36302 + 0.786941i 0.106760 + 0.0616380i 0.552429 0.833560i \(-0.313701\pi\)
−0.445669 + 0.895198i \(0.647034\pi\)
\(164\) 6.86252 0.535873
\(165\) 9.63357 + 5.25272i 0.749973 + 0.408924i
\(166\) −4.43802 7.68687i −0.344457 0.596617i
\(167\) −13.0492 + 7.53397i −1.00978 + 0.582996i −0.911127 0.412126i \(-0.864786\pi\)
−0.0986516 + 0.995122i \(0.531453\pi\)
\(168\) 1.11267i 0.0858440i
\(169\) 12.3434 + 4.07917i 0.949495 + 0.313783i
\(170\) −13.3372 + 0.325610i −1.02292 + 0.0249731i
\(171\) −1.12724 1.95244i −0.0862023 0.149307i
\(172\) 2.24993 1.29900i 0.171555 0.0990475i
\(173\) 2.94981 + 1.70307i 0.224270 + 0.129482i 0.607926 0.793994i \(-0.292002\pi\)
−0.383656 + 0.923476i \(0.625335\pi\)
\(174\) 6.64216 0.503541
\(175\) 1.78484 + 0.917399i 0.134921 + 0.0693488i
\(176\) 0.598639 1.03687i 0.0451241 0.0781572i
\(177\) 3.04448i 0.228837i
\(178\) −0.382762 0.220988i −0.0286892 0.0165637i
\(179\) −0.300516 0.520508i −0.0224616 0.0389046i 0.854576 0.519326i \(-0.173817\pi\)
−0.877038 + 0.480422i \(0.840484\pi\)
\(180\) 1.50278 + 2.46208i 0.112010 + 0.183513i
\(181\) −17.0607 −1.26811 −0.634056 0.773287i \(-0.718611\pi\)
−0.634056 + 0.773287i \(0.718611\pi\)
\(182\) 1.20390 + 0.193774i 0.0892388 + 0.0143635i
\(183\) 7.10176i 0.524977i
\(184\) 1.37918 + 2.38882i 0.101675 + 0.176106i
\(185\) −16.8088 + 10.2596i −1.23581 + 0.754298i
\(186\) 2.65479 4.59822i 0.194658 0.337158i
\(187\) 34.7453i 2.54083i
\(188\) 5.16479 + 2.98189i 0.376681 + 0.217477i
\(189\) 0.200681 0.347589i 0.0145974 0.0252834i
\(190\) 0.103674 + 4.24658i 0.00752131 + 0.308079i
\(191\) −3.10083 + 5.37079i −0.224368 + 0.388617i −0.956130 0.292944i \(-0.905365\pi\)
0.731762 + 0.681561i \(0.238698\pi\)
\(192\) −3.77343 + 2.17859i −0.272324 + 0.157226i
\(193\) 7.91367 4.56896i 0.569639 0.328881i −0.187366 0.982290i \(-0.559995\pi\)
0.757005 + 0.653409i \(0.226662\pi\)
\(194\) 7.93935 0.570012
\(195\) −7.46169 + 3.05339i −0.534343 + 0.218658i
\(196\) 8.82203 0.630145
\(197\) 18.7148 10.8050i 1.33337 0.769823i 0.347557 0.937659i \(-0.387011\pi\)
0.985815 + 0.167836i \(0.0536780\pi\)
\(198\) −3.58088 + 2.06742i −0.254482 + 0.146925i
\(199\) 1.27223 2.20357i 0.0901860 0.156207i −0.817403 0.576066i \(-0.804587\pi\)
0.907589 + 0.419859i \(0.137921\pi\)
\(200\) −0.676397 13.8446i −0.0478285 0.978964i
\(201\) −3.07665 + 5.32891i −0.217010 + 0.375873i
\(202\) −4.19902 2.42431i −0.295442 0.170574i
\(203\) 3.16379i 0.222055i
\(204\) −4.56694 + 7.91018i −0.319750 + 0.553823i
\(205\) −6.19747 10.1537i −0.432850 0.709164i
\(206\) −6.48792 11.2374i −0.452034 0.782947i
\(207\) 0.995000i 0.0691573i
\(208\) 0.313203 + 0.822077i 0.0217167 + 0.0570008i
\(209\) 11.0629 0.765238
\(210\) −0.645495 + 0.393989i −0.0445434 + 0.0271878i
\(211\) 5.54061 + 9.59663i 0.381432 + 0.660659i 0.991267 0.131869i \(-0.0420978\pi\)
−0.609836 + 0.792528i \(0.708765\pi\)
\(212\) 12.1207 + 6.99789i 0.832453 + 0.480617i
\(213\) 6.32893i 0.433651i
\(214\) −6.27691 + 10.8719i −0.429081 + 0.743189i
\(215\) −3.95386 2.15585i −0.269651 0.147027i
\(216\) −2.77223 −0.188626
\(217\) −2.19023 1.26453i −0.148682 0.0858417i
\(218\) −1.23882 + 0.715231i −0.0839032 + 0.0484416i
\(219\) 0.506365 + 0.877050i 0.0342170 + 0.0592655i
\(220\) −14.1501 + 0.345455i −0.954000 + 0.0232905i
\(221\) −19.7999 16.1161i −1.33189 1.08408i
\(222\) 7.42084i 0.498054i
\(223\) −0.460340 + 0.265778i −0.0308267 + 0.0177978i −0.515334 0.856989i \(-0.672332\pi\)
0.484507 + 0.874787i \(0.338999\pi\)
\(224\) 1.15392 + 1.99865i 0.0770998 + 0.133541i
\(225\) 2.28572 4.44696i 0.152381 0.296464i
\(226\) 1.89426 0.126004
\(227\) 18.5220 + 10.6937i 1.22935 + 0.709764i 0.966894 0.255180i \(-0.0821348\pi\)
0.262454 + 0.964944i \(0.415468\pi\)
\(228\) 2.51860 + 1.45411i 0.166798 + 0.0963011i
\(229\) 0.406502 0.0268624 0.0134312 0.999910i \(-0.495725\pi\)
0.0134312 + 0.999910i \(0.495725\pi\)
\(230\) 0.897473 1.64598i 0.0591776 0.108533i
\(231\) 0.984754 + 1.70564i 0.0647920 + 0.112223i
\(232\) −18.9249 + 10.9263i −1.24248 + 0.717345i
\(233\) 2.66379i 0.174510i −0.996186 0.0872552i \(-0.972190\pi\)
0.996186 0.0872552i \(-0.0278096\pi\)
\(234\) 0.482793 2.99954i 0.0315612 0.196086i
\(235\) −0.252306 10.3347i −0.0164586 0.674158i
\(236\) −1.96365 3.40114i −0.127823 0.221395i
\(237\) 8.89885 5.13775i 0.578042 0.333733i
\(238\) −2.07385 1.19734i −0.134427 0.0776117i
\(239\) 15.8317 1.02407 0.512034 0.858965i \(-0.328892\pi\)
0.512034 + 0.858965i \(0.328892\pi\)
\(240\) −0.479002 0.261177i −0.0309195 0.0168589i
\(241\) 11.6570 20.1906i 0.750895 1.30059i −0.196495 0.980505i \(-0.562956\pi\)
0.947390 0.320083i \(-0.103711\pi\)
\(242\) 11.0210i 0.708460i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 4.58055 + 7.93375i 0.293240 + 0.507906i
\(245\) −7.96708 13.0529i −0.508998 0.833921i
\(246\) 4.48269 0.285806
\(247\) −5.13135 + 6.30431i −0.326500 + 0.401133i
\(248\) 17.4684i 1.10924i
\(249\) 5.26687 + 9.12248i 0.333774 + 0.578114i
\(250\) −7.79224 + 5.29472i −0.492824 + 0.334867i
\(251\) −0.650814 + 1.12724i −0.0410790 + 0.0711509i −0.885834 0.464002i \(-0.846413\pi\)
0.844755 + 0.535153i \(0.179746\pi\)
\(252\) 0.517746i 0.0326149i
\(253\) −4.22840 2.44127i −0.265837 0.153481i
\(254\) −7.27335 + 12.5978i −0.456371 + 0.790457i
\(255\) 15.8281 0.386421i 0.991196 0.0241986i
\(256\) 7.65549 13.2597i 0.478468 0.828731i
\(257\) −8.55103 + 4.93694i −0.533399 + 0.307958i −0.742399 0.669958i \(-0.766312\pi\)
0.209001 + 0.977915i \(0.432979\pi\)
\(258\) 1.46968 0.848521i 0.0914983 0.0528266i
\(259\) −3.53469 −0.219635
\(260\) 6.36644 8.22380i 0.394830 0.510019i
\(261\) −7.88266 −0.487924
\(262\) 3.35001 1.93413i 0.206965 0.119491i
\(263\) −0.462121 + 0.266805i −0.0284956 + 0.0164519i −0.514180 0.857682i \(-0.671904\pi\)
0.485685 + 0.874134i \(0.338570\pi\)
\(264\) 6.80177 11.7810i 0.418620 0.725071i
\(265\) −0.592110 24.2533i −0.0363730 1.48987i
\(266\) −0.381232 + 0.660312i −0.0233748 + 0.0404864i
\(267\) 0.454247 + 0.262260i 0.0277995 + 0.0160500i
\(268\) 7.93761i 0.484867i
\(269\) −6.80199 + 11.7814i −0.414725 + 0.718324i −0.995400 0.0958112i \(-0.969455\pi\)
0.580675 + 0.814136i \(0.302789\pi\)
\(270\) 0.981632 + 1.60827i 0.0597402 + 0.0978759i
\(271\) 11.9163 + 20.6396i 0.723862 + 1.25377i 0.959441 + 0.281911i \(0.0909681\pi\)
−0.235579 + 0.971855i \(0.575699\pi\)
\(272\) 1.72761i 0.104752i
\(273\) −1.42874 0.229964i −0.0864712 0.0139181i
\(274\) −4.17142 −0.252004
\(275\) 13.2899 + 20.6243i 0.801413 + 1.24369i
\(276\) −0.641763 1.11157i −0.0386296 0.0669084i
\(277\) −16.6388 9.60639i −0.999726 0.577192i −0.0915586 0.995800i \(-0.529185\pi\)
−0.908167 + 0.418608i \(0.862518\pi\)
\(278\) 11.1769i 0.670344i
\(279\) −3.15060 + 5.45700i −0.188621 + 0.326702i
\(280\) 1.19104 2.18439i 0.0711782 0.130542i
\(281\) 6.31792 0.376895 0.188448 0.982083i \(-0.439654\pi\)
0.188448 + 0.982083i \(0.439654\pi\)
\(282\) 3.37371 + 1.94781i 0.200901 + 0.115990i
\(283\) −26.1587 + 15.1027i −1.55497 + 0.897765i −0.557249 + 0.830345i \(0.688143\pi\)
−0.997725 + 0.0674193i \(0.978523\pi\)
\(284\) −4.08208 7.07037i −0.242227 0.419549i
\(285\) −0.123037 5.03968i −0.00728805 0.298525i
\(286\) 11.5624 + 9.41117i 0.683701 + 0.556494i
\(287\) 2.13519i 0.126037i
\(288\) 4.97969 2.87503i 0.293431 0.169413i
\(289\) 16.5679 + 28.6964i 0.974582 + 1.68803i
\(290\) 13.0399 + 7.11002i 0.765729 + 0.417515i
\(291\) −9.42212 −0.552334
\(292\) −1.13137 0.653199i −0.0662086 0.0382256i
\(293\) 6.18072 + 3.56844i 0.361081 + 0.208470i 0.669555 0.742762i \(-0.266485\pi\)
−0.308474 + 0.951233i \(0.599818\pi\)
\(294\) 5.76266 0.336085
\(295\) −3.25892 + 5.97692i −0.189742 + 0.347990i
\(296\) 12.2072 + 21.1435i 0.709528 + 1.22894i
\(297\) 4.24965 2.45354i 0.246590 0.142369i
\(298\) 2.66079i 0.154135i
\(299\) 3.35245 1.27725i 0.193877 0.0738653i
\(300\) 0.314742 + 6.44220i 0.0181716 + 0.371940i
\(301\) −0.404167 0.700038i −0.0232958 0.0403495i
\(302\) 13.5642 7.83132i 0.780535 0.450642i
\(303\) 4.98324 + 2.87707i 0.286280 + 0.165284i
\(304\) −0.550072 −0.0315488
\(305\) 7.60200 13.9422i 0.435289 0.798328i
\(306\) −2.98319 + 5.16703i −0.170537 + 0.295379i
\(307\) 9.91349i 0.565793i −0.959150 0.282897i \(-0.908705\pi\)
0.959150 0.282897i \(-0.0912953\pi\)
\(308\) −2.20024 1.27031i −0.125370 0.0723826i
\(309\) 7.69961 + 13.3361i 0.438015 + 0.758665i
\(310\) 10.1340 6.18546i 0.575572 0.351310i
\(311\) 6.04584 0.342828 0.171414 0.985199i \(-0.445166\pi\)
0.171414 + 0.985199i \(0.445166\pi\)
\(312\) 3.55863 + 9.34048i 0.201468 + 0.528800i
\(313\) 4.62017i 0.261148i 0.991439 + 0.130574i \(0.0416820\pi\)
−0.991439 + 0.130574i \(0.958318\pi\)
\(314\) 4.54184 + 7.86670i 0.256311 + 0.443944i
\(315\) 0.766049 0.467571i 0.0431620 0.0263446i
\(316\) −6.62758 + 11.4793i −0.372830 + 0.645761i
\(317\) 25.0793i 1.40860i 0.709905 + 0.704298i \(0.248738\pi\)
−0.709905 + 0.704298i \(0.751262\pi\)
\(318\) 7.91739 + 4.57111i 0.443985 + 0.256335i
\(319\) 19.3404 33.4985i 1.08285 1.87556i
\(320\) −9.74005 + 0.237789i −0.544486 + 0.0132928i
\(321\) 7.44919 12.9024i 0.415773 0.720141i
\(322\) 0.291424 0.168254i 0.0162404 0.00937642i
\(323\) 13.8246 7.98162i 0.769220 0.444109i
\(324\) 1.28998 0.0716653
\(325\) −17.9173 1.99285i −0.993871 0.110543i
\(326\) −1.32620 −0.0734514
\(327\) 1.47018 0.848809i 0.0813011 0.0469392i
\(328\) −12.7721 + 7.37397i −0.705221 + 0.407159i
\(329\) 0.927781 1.60696i 0.0511502 0.0885948i
\(330\) −9.24303 + 0.225655i −0.508812 + 0.0124219i
\(331\) −6.84346 + 11.8532i −0.376150 + 0.651512i −0.990499 0.137524i \(-0.956086\pi\)
0.614348 + 0.789035i \(0.289419\pi\)
\(332\) −11.7678 6.79413i −0.645841 0.372877i
\(333\) 8.80677i 0.482608i
\(334\) 6.34834 10.9956i 0.347366 0.601655i
\(335\) −11.7444 + 7.16837i −0.641663 + 0.391650i
\(336\) −0.0489641 0.0848083i −0.00267121 0.00462667i
\(337\) 9.01512i 0.491085i −0.969386 0.245543i \(-0.921034\pi\)
0.969386 0.245543i \(-0.0789661\pi\)
\(338\) −10.7261 + 2.22374i −0.583422 + 0.120955i
\(339\) −2.24803 −0.122096
\(340\) −17.4332 + 10.6406i −0.945447 + 0.577070i
\(341\) −15.4602 26.7779i −0.837217 1.45010i
\(342\) 1.64518 + 0.949847i 0.0889613 + 0.0513618i
\(343\) 5.55440i 0.299909i
\(344\) −2.79161 + 4.83521i −0.150514 + 0.260697i
\(345\) −1.06509 + 1.95339i −0.0573423 + 0.105167i
\(346\) −2.87012 −0.154299
\(347\) −9.40767 5.43152i −0.505030 0.291579i 0.225758 0.974183i \(-0.427514\pi\)
−0.730788 + 0.682604i \(0.760847\pi\)
\(348\) 8.80613 5.08422i 0.472058 0.272543i
\(349\) −9.86492 17.0865i −0.528057 0.914622i −0.999465 0.0327066i \(-0.989587\pi\)
0.471408 0.881915i \(-0.343746\pi\)
\(350\) −1.68898 + 0.0825172i −0.0902797 + 0.00441073i
\(351\) −0.572960 + 3.55974i −0.0305824 + 0.190005i
\(352\) 28.2159i 1.50391i
\(353\) 16.1051 9.29831i 0.857190 0.494899i −0.00588009 0.999983i \(-0.501872\pi\)
0.863070 + 0.505084i \(0.168538\pi\)
\(354\) −1.28268 2.22167i −0.0681738 0.118080i
\(355\) −6.77473 + 12.4250i −0.359565 + 0.659448i
\(356\) −0.676618 −0.0358607
\(357\) 2.46116 + 1.42095i 0.130258 + 0.0752047i
\(358\) 0.438595 + 0.253223i 0.0231805 + 0.0133833i
\(359\) −12.1448 −0.640976 −0.320488 0.947253i \(-0.603847\pi\)
−0.320488 + 0.947253i \(0.603847\pi\)
\(360\) −5.44245 2.96750i −0.286842 0.156401i
\(361\) 6.95865 + 12.0527i 0.366245 + 0.634355i
\(362\) 12.4498 7.18792i 0.654350 0.377789i
\(363\) 13.0794i 0.686488i
\(364\) 1.74444 0.664615i 0.0914337 0.0348353i
\(365\) 0.0552689 + 2.26386i 0.00289291 + 0.118496i
\(366\) 2.99208 + 5.18243i 0.156398 + 0.270890i
\(367\) 26.8759 15.5168i 1.40291 0.809971i 0.408220 0.912884i \(-0.366150\pi\)
0.994690 + 0.102913i \(0.0328163\pi\)
\(368\) 0.210245 + 0.121385i 0.0109598 + 0.00632764i
\(369\) −5.31988 −0.276942
\(370\) 7.94355 14.5686i 0.412965 0.757386i
\(371\) 2.17731 3.77121i 0.113040 0.195792i
\(372\) 8.12839i 0.421437i
\(373\) 9.03380 + 5.21567i 0.467752 + 0.270057i 0.715298 0.698819i \(-0.246291\pi\)
−0.247546 + 0.968876i \(0.579624\pi\)
\(374\) −14.6387 25.3550i −0.756950 1.31108i
\(375\) 9.24753 6.28357i 0.477540 0.324482i
\(376\) −12.8165 −0.660961
\(377\) 10.1187 + 26.5591i 0.521141 + 1.36786i
\(378\) 0.338199i 0.0173951i
\(379\) −15.3621 26.6080i −0.789099 1.36676i −0.926519 0.376247i \(-0.877214\pi\)
0.137420 0.990513i \(-0.456119\pi\)
\(380\) 3.38798 + 5.55073i 0.173800 + 0.284746i
\(381\) 8.63173 14.9506i 0.442217 0.765942i
\(382\) 5.22569i 0.267370i
\(383\) −7.37251 4.25652i −0.376718 0.217498i 0.299672 0.954042i \(-0.403123\pi\)
−0.676389 + 0.736544i \(0.736456\pi\)
\(384\) −3.91431 + 6.77978i −0.199751 + 0.345979i
\(385\) 0.107484 + 4.40264i 0.00547790 + 0.224379i
\(386\) −3.84994 + 6.66829i −0.195957 + 0.339407i
\(387\) −1.74416 + 1.00699i −0.0886607 + 0.0511883i
\(388\) 10.5259 6.07715i 0.534374 0.308521i
\(389\) 21.6832 1.09938 0.549691 0.835368i \(-0.314745\pi\)
0.549691 + 0.835368i \(0.314745\pi\)
\(390\) 4.15864 5.37190i 0.210581 0.272017i
\(391\) −7.04526 −0.356294
\(392\) −16.4190 + 9.47951i −0.829285 + 0.478788i
\(393\) −3.97567 + 2.29535i −0.200546 + 0.115785i
\(394\) −9.10459 + 15.7696i −0.458683 + 0.794461i
\(395\) 22.9699 0.560777i 1.15574 0.0282157i
\(396\) −3.16500 + 5.48195i −0.159047 + 0.275478i
\(397\) −17.9986 10.3915i −0.903325 0.521535i −0.0250477 0.999686i \(-0.507974\pi\)
−0.878278 + 0.478151i \(0.841307\pi\)
\(398\) 2.14404i 0.107471i
\(399\) 0.452431 0.783633i 0.0226499 0.0392307i
\(400\) −0.660805 1.02548i −0.0330402 0.0512742i
\(401\) 18.3709 + 31.8194i 0.917400 + 1.58898i 0.803350 + 0.595508i \(0.203049\pi\)
0.114050 + 0.993475i \(0.463618\pi\)
\(402\) 5.18495i 0.258602i
\(403\) 22.4306 + 3.61034i 1.11735 + 0.179844i
\(404\) −7.42271 −0.369294
\(405\) −1.16496 1.90863i −0.0578875 0.0948405i
\(406\) 1.33295 + 2.30874i 0.0661533 + 0.114581i
\(407\) −37.4257 21.6077i −1.85512 1.07105i
\(408\) 19.6292i 0.971791i
\(409\) −1.60553 + 2.78087i −0.0793885 + 0.137505i −0.902986 0.429669i \(-0.858630\pi\)
0.823598 + 0.567174i \(0.191963\pi\)
\(410\) 8.80042 + 4.79844i 0.434622 + 0.236978i
\(411\) 4.95048 0.244189
\(412\) −17.2033 9.93231i −0.847544 0.489330i
\(413\) −1.05823 + 0.610967i −0.0520719 + 0.0300637i
\(414\) −0.419208 0.726090i −0.0206029 0.0356854i
\(415\) 0.574870 + 23.5471i 0.0282192 + 1.15588i
\(416\) −16.0791 13.0875i −0.788343 0.641667i
\(417\) 13.2643i 0.649554i
\(418\) −8.07303 + 4.66097i −0.394865 + 0.227975i
\(419\) −7.62605 13.2087i −0.372557 0.645288i 0.617401 0.786649i \(-0.288186\pi\)
−0.989958 + 0.141361i \(0.954852\pi\)
\(420\) −0.554215 + 1.01644i −0.0270429 + 0.0495972i
\(421\) 0.122664 0.00597828 0.00298914 0.999996i \(-0.499049\pi\)
0.00298914 + 0.999996i \(0.499049\pi\)
\(422\) −8.08640 4.66868i −0.393640 0.227268i
\(423\) −4.00379 2.31159i −0.194671 0.112393i
\(424\) −30.0777 −1.46070
\(425\) 31.4874 + 16.1844i 1.52737 + 0.785059i
\(426\) −2.66647 4.61846i −0.129191 0.223765i
\(427\) 2.46849 1.42519i 0.119459 0.0689695i
\(428\) 19.2186i 0.928964i
\(429\) −13.7218 11.1688i −0.662497 0.539236i
\(430\) 3.79357 0.0926146i 0.182942 0.00446627i
\(431\) −0.809141 1.40147i −0.0389750 0.0675066i 0.845880 0.533373i \(-0.179076\pi\)
−0.884855 + 0.465867i \(0.845743\pi\)
\(432\) −0.211302 + 0.121995i −0.0101663 + 0.00586949i
\(433\) −13.4785 7.78179i −0.647733 0.373969i 0.139854 0.990172i \(-0.455337\pi\)
−0.787587 + 0.616203i \(0.788670\pi\)
\(434\) 2.13106 0.102294
\(435\) −15.4752 8.43790i −0.741981 0.404566i
\(436\) −1.09494 + 1.89650i −0.0524383 + 0.0908257i
\(437\) 2.24321i 0.107307i
\(438\) −0.739028 0.426678i −0.0353121 0.0203875i
\(439\) −3.91196 6.77571i −0.186708 0.323387i 0.757443 0.652901i \(-0.226448\pi\)
−0.944151 + 0.329514i \(0.893115\pi\)
\(440\) 25.9641 15.8476i 1.23779 0.755506i
\(441\) −6.83891 −0.325662
\(442\) 21.2387 + 3.41850i 1.01022 + 0.162601i
\(443\) 24.8136i 1.17893i −0.807794 0.589465i \(-0.799338\pi\)
0.807794 0.589465i \(-0.200662\pi\)
\(444\) −5.68026 9.83850i −0.269573 0.466914i
\(445\) 0.611046 + 1.00111i 0.0289664 + 0.0474573i
\(446\) 0.223952 0.387896i 0.0106044 0.0183674i
\(447\) 3.15772i 0.149355i
\(448\) −1.51451 0.874402i −0.0715538 0.0413116i
\(449\) −16.7743 + 29.0539i −0.791626 + 1.37114i 0.133333 + 0.991071i \(0.457432\pi\)
−0.924959 + 0.380066i \(0.875901\pi\)
\(450\) 0.205593 + 4.20813i 0.00969176 + 0.198373i
\(451\) 13.0525 22.6076i 0.614619 1.06455i
\(452\) 2.51140 1.44995i 0.118126 0.0682001i
\(453\) −16.0975 + 9.29391i −0.756328 + 0.436666i
\(454\) −18.0216 −0.845796
\(455\) −2.55874 1.98084i −0.119956 0.0928634i
\(456\) −6.24995 −0.292681
\(457\) 15.9839 9.22831i 0.747696 0.431682i −0.0771651 0.997018i \(-0.524587\pi\)
0.824861 + 0.565336i \(0.191254\pi\)
\(458\) −0.296640 + 0.171265i −0.0138611 + 0.00800271i
\(459\) 3.54033 6.13203i 0.165249 0.286219i
\(460\) −0.0700473 2.86920i −0.00326597 0.133777i
\(461\) −3.47162 + 6.01302i −0.161689 + 0.280054i −0.935475 0.353394i \(-0.885028\pi\)
0.773785 + 0.633448i \(0.218361\pi\)
\(462\) −1.43723 0.829782i −0.0668658 0.0386050i
\(463\) 41.2459i 1.91686i 0.285329 + 0.958430i \(0.407897\pi\)
−0.285329 + 0.958430i \(0.592103\pi\)
\(464\) −0.961646 + 1.66562i −0.0446433 + 0.0773245i
\(465\) −12.0266 + 7.34066i −0.557722 + 0.340415i
\(466\) 1.12229 + 1.94387i 0.0519892 + 0.0900479i
\(467\) 29.7045i 1.37456i −0.726393 0.687280i \(-0.758805\pi\)
0.726393 0.687280i \(-0.241195\pi\)
\(468\) −1.65590 4.34632i −0.0765441 0.200909i
\(469\) −2.46969 −0.114040
\(470\) 4.53826 + 7.43529i 0.209334 + 0.342964i
\(471\) −5.39008 9.33590i −0.248362 0.430175i
\(472\) 7.30924 + 4.21999i 0.336435 + 0.194241i
\(473\) 9.88276i 0.454410i
\(474\) −4.32922 + 7.49843i −0.198848 + 0.344414i
\(475\) 5.15312 10.0256i 0.236441 0.460006i
\(476\) −3.66599 −0.168030
\(477\) −9.39606 5.42482i −0.430216 0.248385i
\(478\) −11.5530 + 6.67013i −0.528422 + 0.305084i
\(479\) −9.86981 17.0950i −0.450963 0.781091i 0.547483 0.836817i \(-0.315586\pi\)
−0.998446 + 0.0557257i \(0.982253\pi\)
\(480\) 12.8537 0.313804i 0.586688 0.0143231i
\(481\) 29.6726 11.3050i 1.35296 0.515463i
\(482\) 19.6451i 0.894809i
\(483\) −0.345851 + 0.199677i −0.0157368 + 0.00908562i
\(484\) −8.43603 14.6116i −0.383456 0.664165i
\(485\) −18.4975 10.0858i −0.839929 0.457972i
\(486\) 0.842629 0.0382224
\(487\) 21.0473 + 12.1517i 0.953745 + 0.550645i 0.894242 0.447583i \(-0.147715\pi\)
0.0595026 + 0.998228i \(0.481049\pi\)
\(488\) −17.0501 9.84386i −0.771820 0.445610i
\(489\) 1.57388 0.0711734
\(490\) 11.3133 + 6.16858i 0.511082 + 0.278668i
\(491\) −3.45543 5.98497i −0.155941 0.270098i 0.777460 0.628932i \(-0.216508\pi\)
−0.933401 + 0.358834i \(0.883174\pi\)
\(492\) 5.94312 3.43126i 0.267936 0.154693i
\(493\) 55.8144i 2.51376i
\(494\) 1.08845 6.76241i 0.0489716 0.304255i
\(495\) 10.9693 0.267799i 0.493032 0.0120367i
\(496\) 0.768715 + 1.33145i 0.0345163 + 0.0597840i
\(497\) −2.19986 + 1.27009i −0.0986774 + 0.0569714i
\(498\) −7.68687 4.43802i −0.344457 0.198872i
\(499\) −2.21036 −0.0989495 −0.0494747 0.998775i \(-0.515755\pi\)
−0.0494747 + 0.998775i \(0.515755\pi\)
\(500\) −6.27807 + 12.9842i −0.280764 + 0.580673i
\(501\) −7.53397 + 13.0492i −0.336593 + 0.582996i
\(502\) 1.09679i 0.0489521i
\(503\) 25.3122 + 14.6140i 1.12862 + 0.651607i 0.943587 0.331126i \(-0.107428\pi\)
0.185030 + 0.982733i \(0.440762\pi\)
\(504\) −0.556333 0.963596i −0.0247810 0.0429220i
\(505\) 6.70337 + 10.9825i 0.298296 + 0.488716i
\(506\) 4.11417 0.182897
\(507\) 12.7293 2.63905i 0.565329 0.117204i
\(508\) 22.2695i 0.988047i
\(509\) −3.60746 6.24830i −0.159898 0.276951i 0.774934 0.632042i \(-0.217783\pi\)
−0.934832 + 0.355091i \(0.884450\pi\)
\(510\) −11.3876 + 6.95061i −0.504251 + 0.307778i
\(511\) −0.203235 + 0.352014i −0.00899060 + 0.0155722i
\(512\) 2.75575i 0.121788i
\(513\) −1.95244 1.12724i −0.0862023 0.0497689i
\(514\) 4.16001 7.20535i 0.183490 0.317814i
\(515\) 0.840399 + 34.4234i 0.0370324 + 1.51688i
\(516\) 1.29900 2.24993i 0.0571851 0.0990475i
\(517\) 19.6469 11.3431i 0.864068 0.498870i
\(518\) 2.57940 1.48922i 0.113332 0.0654325i
\(519\) 3.40615 0.149513
\(520\) −3.01210 + 22.1465i −0.132089 + 0.971190i
\(521\) 38.0923 1.66886 0.834428 0.551118i \(-0.185798\pi\)
0.834428 + 0.551118i \(0.185798\pi\)
\(522\) 5.75228 3.32108i 0.251770 0.145360i
\(523\) −0.0687721 + 0.0397056i −0.00300719 + 0.00173620i −0.501503 0.865156i \(-0.667219\pi\)
0.498496 + 0.866892i \(0.333886\pi\)
\(524\) 2.96095 5.12852i 0.129350 0.224040i
\(525\) 2.00441 0.0979282i 0.0874798 0.00427394i
\(526\) 0.224818 0.389396i 0.00980253 0.0169785i
\(527\) −38.6391 22.3083i −1.68315 0.971766i
\(528\) 1.19728i 0.0521048i
\(529\) −11.0050 + 19.0612i −0.478478 + 0.828748i
\(530\) 10.6504 + 17.4491i 0.462622 + 0.757940i
\(531\) 1.52224 + 2.63659i 0.0660595 + 0.114418i
\(532\) 1.16725i 0.0506067i
\(533\) 6.82897 + 17.9243i 0.295796 + 0.776387i
\(534\) −0.441976 −0.0191262
\(535\) 28.4355 17.3561i 1.22937 0.750369i
\(536\) 8.52918 + 14.7730i 0.368404 + 0.638095i
\(537\) −0.520508 0.300516i −0.0224616 0.0129682i
\(538\) 11.4631i 0.494210i
\(539\) 16.7795 29.0630i 0.722745 1.25183i
\(540\) 2.53248 + 1.38084i 0.108981 + 0.0594219i
\(541\) −29.1429 −1.25295 −0.626476 0.779441i \(-0.715503\pi\)
−0.626476 + 0.779441i \(0.715503\pi\)
\(542\) −17.3915 10.0410i −0.747030 0.431298i
\(543\) −14.7750 + 8.53035i −0.634056 + 0.366072i
\(544\) 20.3571 + 35.2595i 0.872803 + 1.51174i
\(545\) 3.79486 0.0926460i 0.162554 0.00396852i
\(546\) 1.13949 0.434135i 0.0487658 0.0185793i
\(547\) 12.9652i 0.554354i 0.960819 + 0.277177i \(0.0893988\pi\)
−0.960819 + 0.277177i \(0.910601\pi\)
\(548\) −5.53043 + 3.19300i −0.236248 + 0.136398i
\(549\) −3.55088 6.15031i −0.151548 0.262489i
\(550\) −18.3875 9.45109i −0.784045 0.402996i
\(551\) −17.7713 −0.757084
\(552\) 2.38882 + 1.37918i 0.101675 + 0.0587020i
\(553\) 3.57165 + 2.06209i 0.151882 + 0.0876891i
\(554\) 16.1892 0.687815
\(555\) −9.42710 + 17.2895i −0.400158 + 0.733897i
\(556\) −8.55530 14.8182i −0.362825 0.628432i
\(557\) −27.7896 + 16.0443i −1.17748 + 0.679820i −0.955431 0.295215i \(-0.904609\pi\)
−0.222051 + 0.975035i \(0.571275\pi\)
\(558\) 5.30957i 0.224772i
\(559\) 5.63178 + 4.58396i 0.238199 + 0.193881i
\(560\) −0.00534435 0.218909i −0.000225840 0.00925059i
\(561\) 17.3727 + 30.0903i 0.733474 + 1.27041i
\(562\) −4.61043 + 2.66183i −0.194479 + 0.112283i
\(563\) 1.31596 + 0.759773i 0.0554613 + 0.0320206i 0.527474 0.849571i \(-0.323139\pi\)
−0.472013 + 0.881592i \(0.656472\pi\)
\(564\) 5.96378 0.251121
\(565\) −4.41334 2.40638i −0.185671 0.101237i
\(566\) 12.7260 22.0421i 0.534914 0.926498i
\(567\) 0.401361i 0.0168556i
\(568\) 15.1946 + 8.77262i 0.637552 + 0.368091i
\(569\) 9.90956 + 17.1639i 0.415430 + 0.719546i 0.995474 0.0950394i \(-0.0302977\pi\)
−0.580043 + 0.814586i \(0.696964\pi\)
\(570\) 2.21307 + 3.62581i 0.0926955 + 0.151868i
\(571\) 43.8106 1.83342 0.916708 0.399558i \(-0.130836\pi\)
0.916708 + 0.399558i \(0.130836\pi\)
\(572\) 22.5331 + 3.62684i 0.942158 + 0.151646i
\(573\) 6.20165i 0.259078i
\(574\) 0.899588 + 1.55813i 0.0375481 + 0.0650352i
\(575\) −4.18196 + 2.69478i −0.174400 + 0.112380i
\(576\) −2.17859 + 3.77343i −0.0907746 + 0.157226i
\(577\) 11.7411i 0.488787i 0.969676 + 0.244393i \(0.0785888\pi\)
−0.969676 + 0.244393i \(0.921411\pi\)
\(578\) −24.1805 13.9606i −1.00577 0.580684i
\(579\) 4.56896 7.91367i 0.189880 0.328881i
\(580\) 22.7306 0.554934i 0.943835 0.0230424i
\(581\) −2.11392 + 3.66141i −0.0877000 + 0.151901i
\(582\) 6.87568 3.96968i 0.285006 0.164548i
\(583\) 46.1071 26.6200i 1.90956 1.10249i
\(584\) 2.80752 0.116176
\(585\) −4.93531 + 6.37516i −0.204050 + 0.263580i
\(586\) −6.01374 −0.248425
\(587\) −22.3360 + 12.8957i −0.921907 + 0.532263i −0.884243 0.467027i \(-0.845325\pi\)
−0.0376643 + 0.999290i \(0.511992\pi\)
\(588\) 7.64010 4.41101i 0.315072 0.181907i
\(589\) −7.10297 + 12.3027i −0.292673 + 0.506924i
\(590\) −0.140003 5.73462i −0.00576381 0.236091i
\(591\) 10.8050 18.7148i 0.444457 0.769823i
\(592\) 1.86089 + 1.07438i 0.0764819 + 0.0441569i
\(593\) 10.5017i 0.431252i 0.976476 + 0.215626i \(0.0691792\pi\)
−0.976476 + 0.215626i \(0.930821\pi\)
\(594\) −2.06742 + 3.58088i −0.0848273 + 0.146925i
\(595\) 3.31071 + 5.42413i 0.135726 + 0.222368i
\(596\) −2.03669 3.52766i −0.0834262 0.144498i
\(597\) 2.54446i 0.104138i
\(598\) −1.90829 + 2.34450i −0.0780358 + 0.0958736i
\(599\) −37.8214 −1.54534 −0.772669 0.634809i \(-0.781079\pi\)
−0.772669 + 0.634809i \(0.781079\pi\)
\(600\) −7.50810 11.6516i −0.306517 0.475675i
\(601\) 14.8477 + 25.7170i 0.605652 + 1.04902i 0.991948 + 0.126645i \(0.0404208\pi\)
−0.386297 + 0.922375i \(0.626246\pi\)
\(602\) 0.589873 + 0.340563i 0.0240414 + 0.0138803i
\(603\) 6.15330i 0.250582i
\(604\) 11.9889 20.7654i 0.487823 0.844933i
\(605\) −14.0006 + 25.6774i −0.569207 + 1.04394i
\(606\) −4.84861 −0.196961
\(607\) 14.0175 + 8.09298i 0.568951 + 0.328484i 0.756730 0.653727i \(-0.226796\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(608\) 11.2266 6.48170i 0.455300 0.262868i
\(609\) −1.58190 2.73992i −0.0641017 0.111027i
\(610\) 0.326580 + 13.3770i 0.0132228 + 0.541618i
\(611\) −2.64890 + 16.4573i −0.107163 + 0.665790i
\(612\) 9.13389i 0.369215i
\(613\) 22.0871 12.7520i 0.892089 0.515048i 0.0174640 0.999847i \(-0.494441\pi\)
0.874625 + 0.484799i \(0.161107\pi\)
\(614\) 4.17670 + 7.23426i 0.168558 + 0.291951i
\(615\) −10.4440 5.69461i −0.421143 0.229629i
\(616\) 5.45993 0.219987
\(617\) −10.1748 5.87440i −0.409620 0.236494i 0.281006 0.959706i \(-0.409332\pi\)
−0.690626 + 0.723212i \(0.742665\pi\)
\(618\) −11.2374 6.48792i −0.452034 0.260982i
\(619\) 9.49031 0.381448 0.190724 0.981644i \(-0.438917\pi\)
0.190724 + 0.981644i \(0.438917\pi\)
\(620\) 8.70094 15.9577i 0.349438 0.640876i
\(621\) 0.497500 + 0.861695i 0.0199640 + 0.0345786i
\(622\) −4.41188 + 2.54720i −0.176900 + 0.102133i
\(623\) 0.210522i 0.00843438i
\(624\) 0.682280 + 0.555338i 0.0273131 + 0.0222313i
\(625\) 24.8809 2.43700i 0.995237 0.0974798i
\(626\) −1.94655 3.37152i −0.0777997 0.134753i
\(627\) 9.58076 5.53146i 0.382619 0.220905i
\(628\) 12.0431 + 6.95308i 0.480571 + 0.277458i
\(629\) −62.3577 −2.48637
\(630\) −0.362021 + 0.663952i −0.0144233 + 0.0264525i
\(631\) −11.7563 + 20.3625i −0.468010 + 0.810617i −0.999332 0.0365534i \(-0.988362\pi\)
0.531322 + 0.847170i \(0.321695\pi\)
\(632\) 28.4861i 1.13311i
\(633\) 9.59663 + 5.54061i 0.381432 + 0.220220i
\(634\) −10.5663 18.3014i −0.419641 0.726839i
\(635\) 32.9495 20.1113i 1.30756 0.798093i
\(636\) 13.9958 0.554968
\(637\) 8.77890 + 23.0423i 0.347833 + 0.912971i
\(638\) 32.5935i 1.29039i
\(639\) 3.16446 + 5.48101i 0.125184 + 0.216825i
\(640\) −14.9419 + 9.12005i −0.590631 + 0.360502i
\(641\) −9.54940 + 16.5400i −0.377179 + 0.653292i −0.990651 0.136424i \(-0.956439\pi\)
0.613472 + 0.789717i \(0.289772\pi\)
\(642\) 12.5538i 0.495460i
\(643\) −37.7938 21.8202i −1.49044 0.860506i −0.490500 0.871441i \(-0.663186\pi\)
−0.999940 + 0.0109350i \(0.996519\pi\)
\(644\) 0.257579 0.446139i 0.0101500 0.0175804i
\(645\) −4.50206 + 0.109911i −0.177269 + 0.00432776i
\(646\) −6.72555 + 11.6490i −0.264613 + 0.458323i
\(647\) −2.86660 + 1.65503i −0.112698 + 0.0650661i −0.555289 0.831657i \(-0.687392\pi\)
0.442592 + 0.896723i \(0.354059\pi\)
\(648\) −2.40082 + 1.38611i −0.0943132 + 0.0544517i
\(649\) −14.9395 −0.586425
\(650\) 13.9145 6.09455i 0.545773 0.239048i
\(651\) −2.52905 −0.0991215
\(652\) −1.75827 + 1.01514i −0.0688590 + 0.0397558i
\(653\) 3.12790 1.80589i 0.122404 0.0706701i −0.437548 0.899195i \(-0.644153\pi\)
0.559952 + 0.828525i \(0.310820\pi\)
\(654\) −0.715231 + 1.23882i −0.0279677 + 0.0484416i
\(655\) −10.2621 + 0.250534i −0.400972 + 0.00978917i
\(656\) −0.649000 + 1.12410i −0.0253392 + 0.0438888i
\(657\) 0.877050 + 0.506365i 0.0342170 + 0.0197552i
\(658\) 1.56355i 0.0609536i
\(659\) 21.5161 37.2670i 0.838148 1.45172i −0.0532932 0.998579i \(-0.516972\pi\)
0.891441 0.453136i \(-0.149695\pi\)
\(660\) −12.0816 + 7.37423i −0.470277 + 0.287041i
\(661\) −18.8524 32.6533i −0.733273 1.27007i −0.955477 0.295066i \(-0.904658\pi\)
0.222204 0.975000i \(-0.428675\pi\)
\(662\) 11.5330i 0.448242i
\(663\) −25.2053 4.05694i −0.978892 0.157558i
\(664\) 29.2019 1.13325
\(665\) 1.72704 1.05413i 0.0669719 0.0408775i
\(666\) −3.71042 6.42663i −0.143776 0.249027i
\(667\) 6.79245 + 3.92162i 0.263005 + 0.151846i
\(668\) 19.4373i 0.752051i
\(669\) −0.265778 + 0.460340i −0.0102756 + 0.0177978i
\(670\) 5.55017 10.1791i 0.214422 0.393253i
\(671\) 34.8489 1.34532
\(672\) 1.99865 + 1.15392i 0.0770998 + 0.0445136i
\(673\) −38.7794 + 22.3893i −1.49484 + 0.863045i −0.999982 0.00593030i \(-0.998112\pi\)
−0.494855 + 0.868975i \(0.664779\pi\)
\(674\) 3.79820 + 6.57868i 0.146301 + 0.253401i
\(675\) −0.243990 4.99404i −0.00939119 0.192221i
\(676\) −12.5184 + 11.1585i −0.481478 + 0.429172i
\(677\) 41.0024i 1.57585i 0.615770 + 0.787926i \(0.288845\pi\)
−0.615770 + 0.787926i \(0.711155\pi\)
\(678\) 1.64048 0.947129i 0.0630021 0.0363743i
\(679\) −1.89084 3.27502i −0.0725636 0.125684i
\(680\) 21.0119 38.5361i 0.805769 1.47779i
\(681\) 21.3874 0.819565
\(682\) 22.5638 + 13.0272i 0.864013 + 0.498838i
\(683\) 17.7354 + 10.2395i 0.678627 + 0.391805i 0.799338 0.600882i \(-0.205184\pi\)
−0.120711 + 0.992688i \(0.538517\pi\)
\(684\) 2.90823 0.111199
\(685\) 9.71879 + 5.29918i 0.371336 + 0.202471i
\(686\) 2.34015 + 4.05326i 0.0893473 + 0.154754i
\(687\) 0.352041 0.203251i 0.0134312 0.00775452i
\(688\) 0.491392i 0.0187342i
\(689\) −6.21641 + 38.6218i −0.236826 + 1.47137i
\(690\) −0.0457558 1.87420i −0.00174189 0.0713494i
\(691\) −13.8702 24.0240i −0.527649 0.913915i −0.999481 0.0322263i \(-0.989740\pi\)
0.471832 0.881689i \(-0.343593\pi\)
\(692\) −3.80518 + 2.19692i −0.144651 + 0.0835145i
\(693\) 1.70564 + 0.984754i 0.0647920 + 0.0374077i
\(694\) 9.15352 0.347463
\(695\) −14.1986 + 26.0404i −0.538583 + 0.987770i
\(696\) −10.9263 + 18.9249i −0.414159 + 0.717345i
\(697\) 37.6683i 1.42679i
\(698\) 14.3976 + 8.31247i 0.544958 + 0.314632i
\(699\) −1.33189 2.30691i −0.0503768 0.0872552i
\(700\) −2.17607 + 1.40222i −0.0822478 + 0.0529991i
\(701\) −6.02633 −0.227611 −0.113806 0.993503i \(-0.536304\pi\)
−0.113806 + 0.993503i \(0.536304\pi\)
\(702\) −1.08166 2.83907i −0.0408245 0.107154i
\(703\) 19.8547i 0.748835i
\(704\) −10.6905 18.5165i −0.402913 0.697867i
\(705\) −5.38583 8.82392i −0.202842 0.332328i
\(706\) −7.83503 + 13.5707i −0.294875 + 0.510739i
\(707\) 2.30949i 0.0868573i
\(708\) −3.40114 1.96365i −0.127823 0.0737985i
\(709\) −11.3864 + 19.7218i −0.427625 + 0.740668i −0.996662 0.0816444i \(-0.973983\pi\)
0.569037 + 0.822312i \(0.307316\pi\)
\(710\) −0.291041 11.9213i −0.0109226 0.447397i
\(711\) 5.13775 8.89885i 0.192681 0.333733i
\(712\) 1.25928 0.727045i 0.0471934 0.0272471i
\(713\) 5.42971 3.13484i 0.203344 0.117401i
\(714\) −2.39467 −0.0896183
\(715\) −14.9832 36.6150i −0.560341 1.36932i
\(716\) 0.775316 0.0289749
\(717\) 13.7107 7.91585i 0.512034 0.295623i
\(718\) 8.86250 5.11677i 0.330746 0.190956i
\(719\) 13.1830 22.8336i 0.491643 0.851551i −0.508310 0.861174i \(-0.669730\pi\)
0.999954 + 0.00962269i \(0.00306304\pi\)
\(720\) −0.545416 + 0.0133156i −0.0203265 + 0.000496242i
\(721\) −3.09032 + 5.35260i −0.115090 + 0.199341i
\(722\) −10.1560 5.86356i −0.377967 0.218219i
\(723\) 23.3140i 0.867058i
\(724\) 11.0039 19.0594i 0.408959 0.708337i
\(725\) −21.3488 33.1306i −0.792874 1.23044i
\(726\) −5.51052 9.54451i −0.204515 0.354230i
\(727\) 1.91130i 0.0708862i 0.999372 + 0.0354431i \(0.0112842\pi\)
−0.999372 + 0.0354431i \(0.988716\pi\)
\(728\) −2.53250 + 3.11139i −0.0938607 + 0.115316i
\(729\) −1.00000 −0.0370370
\(730\) −0.994129 1.62874i −0.0367944 0.0602823i
\(731\) −7.13017 12.3498i −0.263719 0.456774i
\(732\) 7.93375 + 4.58055i 0.293240 + 0.169302i
\(733\) 18.4077i 0.679904i 0.940443 + 0.339952i \(0.110411\pi\)
−0.940443 + 0.339952i \(0.889589\pi\)
\(734\) −13.0749 + 22.6464i −0.482604 + 0.835894i
\(735\) −13.4262 7.32063i −0.495231 0.270026i
\(736\) −5.72130 −0.210890
\(737\) −26.1494 15.0973i −0.963224 0.556118i
\(738\) 3.88212 2.24134i 0.142903 0.0825050i
\(739\) −0.909425 1.57517i −0.0334538 0.0579436i 0.848814 0.528692i \(-0.177317\pi\)
−0.882268 + 0.470748i \(0.843984\pi\)
\(740\) −0.619990 25.3953i −0.0227913 0.933551i
\(741\) −1.29173 + 8.02537i −0.0474529 + 0.294819i
\(742\) 3.66933i 0.134705i
\(743\) 7.61880 4.39871i 0.279507 0.161373i −0.353693 0.935361i \(-0.615074\pi\)
0.633200 + 0.773988i \(0.281741\pi\)
\(744\) 8.73418 + 15.1280i 0.320211 + 0.554621i
\(745\) −3.38015 + 6.19925i −0.123839 + 0.227123i
\(746\) −8.78974 −0.321815
\(747\) 9.12248 + 5.26687i 0.333774 + 0.192705i
\(748\) −38.8158 22.4103i −1.41925 0.819402i
\(749\) 5.97963 0.218491
\(750\) −4.10092 + 8.48148i −0.149744 + 0.309700i
\(751\) −18.0751 31.3070i −0.659571 1.14241i −0.980727 0.195384i \(-0.937405\pi\)
0.321156 0.947026i \(-0.395929\pi\)
\(752\) −0.976885 + 0.564005i −0.0356233 + 0.0205671i
\(753\) 1.30163i 0.0474339i
\(754\) −18.5737 15.1180i −0.676416 0.550565i
\(755\) −41.5513 + 1.01441i −1.51221 + 0.0369183i
\(756\) 0.258873 + 0.448381i 0.00941512 + 0.0163075i
\(757\) 25.1967 14.5473i 0.915789 0.528731i 0.0334996 0.999439i \(-0.489335\pi\)
0.882289 + 0.470708i \(0.156001\pi\)
\(758\) 22.4207 + 12.9446i 0.814355 + 0.470168i
\(759\) −4.88254 −0.177225
\(760\) −12.2699 6.69018i −0.445076 0.242678i
\(761\) 13.2927 23.0236i 0.481859 0.834603i −0.517925 0.855426i \(-0.673295\pi\)
0.999783 + 0.0208228i \(0.00662858\pi\)
\(762\) 14.5467i 0.526971i
\(763\) 0.590073 + 0.340679i 0.0213621 + 0.0123334i
\(764\) −3.99999 6.92819i −0.144715 0.250653i
\(765\) 13.5143 8.24871i 0.488612 0.298233i
\(766\) 7.17334 0.259183
\(767\) 6.92943 8.51339i 0.250207 0.307401i
\(768\) 15.3110i 0.552488i
\(769\) 12.4145 + 21.5026i 0.447679 + 0.775403i 0.998235 0.0593958i \(-0.0189174\pi\)
−0.550556 + 0.834799i \(0.685584\pi\)
\(770\) −1.93333 3.16749i −0.0696725 0.114148i
\(771\) −4.93694 + 8.55103i −0.177800 + 0.307958i
\(772\) 11.7877i 0.424249i
\(773\) 15.4061 + 8.89469i 0.554117 + 0.319920i 0.750781 0.660551i \(-0.229677\pi\)
−0.196664 + 0.980471i \(0.563011\pi\)
\(774\) 0.848521 1.46968i 0.0304994 0.0528266i
\(775\) −31.4684 + 1.53743i −1.13038 + 0.0552261i
\(776\) −13.0601 + 22.6208i −0.468832 + 0.812040i
\(777\) −3.06113 + 1.76735i −0.109818 + 0.0634032i
\(778\) −15.8231 + 9.13545i −0.567285 + 0.327522i
\(779\) −11.9936 −0.429715
\(780\) 1.40159 10.3052i 0.0501851 0.368987i
\(781\) −31.0565 −1.11129
\(782\) 5.14120 2.96827i 0.183849 0.106145i
\(783\) −6.82658 + 3.94133i −0.243962 + 0.140852i
\(784\) −0.834314 + 1.44507i −0.0297969 + 0.0516098i
\(785\) −0.588318 24.0980i −0.0209980 0.860095i
\(786\) 1.93413 3.35001i 0.0689882 0.119491i
\(787\) −19.7092 11.3791i −0.702557 0.405622i 0.105742 0.994394i \(-0.466278\pi\)
−0.808299 + 0.588772i \(0.799612\pi\)
\(788\) 27.8763i 0.993053i
\(789\) −0.266805 + 0.462121i −0.00949852 + 0.0164519i
\(790\) −16.5257 + 10.0868i −0.587959 + 0.358871i
\(791\) −0.451137 0.781392i −0.0160406 0.0277831i
\(792\) 13.6035i 0.483380i
\(793\) −16.1641 + 19.8589i −0.574003 + 0.705212i
\(794\) 17.5124 0.621491
\(795\) −12.6394 20.7079i −0.448274 0.734434i
\(796\) 1.64115 + 2.84255i 0.0581689 + 0.100751i
\(797\) −20.7232 11.9646i −0.734055 0.423807i 0.0858488 0.996308i \(-0.472640\pi\)
−0.819904 + 0.572501i \(0.805973\pi\)
\(798\) 0.762463i 0.0269909i
\(799\) 16.3676 28.3495i 0.579043 1.00293i
\(800\) 25.5703 + 13.1430i 0.904046 + 0.464676i
\(801\) 0.524520 0.0185330
\(802\) −26.8119 15.4799i −0.946762 0.546613i
\(803\) −4.30375 + 2.48477i −0.151876 + 0.0876856i
\(804\) −3.96880 6.87417i −0.139969 0.242433i
\(805\) −0.892717 + 0.0217944i −0.0314641 + 0.000768152i
\(806\) −17.8895 + 6.81574i −0.630132 + 0.240074i
\(807\) 13.6040i 0.478883i
\(808\) 13.8147 7.97591i 0.485999 0.280592i
\(809\) 8.39474 + 14.5401i 0.295143 + 0.511203i 0.975018 0.222125i \(-0.0712993\pi\)
−0.679875 + 0.733328i \(0.737966\pi\)
\(810\) 1.65425 + 0.901983i 0.0581245 + 0.0316924i
\(811\) 14.0218 0.492373 0.246186 0.969222i \(-0.420822\pi\)
0.246186 + 0.969222i \(0.420822\pi\)
\(812\) 3.53444 + 2.04061i 0.124034 + 0.0716113i
\(813\) 20.6396 + 11.9163i 0.723862 + 0.417922i
\(814\) 36.4146 1.27633
\(815\) 3.08985 + 1.68474i 0.108233 + 0.0590140i
\(816\) −0.863806 1.49616i −0.0302393 0.0523760i
\(817\) −3.93218 + 2.27025i −0.137570 + 0.0794259i
\(818\) 2.70574i 0.0946040i
\(819\) −1.35231 + 0.515215i −0.0472534 + 0.0180031i
\(820\) 15.3405 0.374516i 0.535713 0.0130787i
\(821\) −19.4895 33.7568i −0.680189 1.17812i −0.974923 0.222542i \(-0.928564\pi\)
0.294734 0.955579i \(-0.404769\pi\)
\(822\) −3.61255 + 2.08571i −0.126002 + 0.0727474i
\(823\) −9.60038 5.54278i −0.334648 0.193209i 0.323255 0.946312i \(-0.395223\pi\)
−0.657903 + 0.753103i \(0.728556\pi\)
\(824\) 42.6902 1.48718
\(825\) 21.8216 + 11.2162i 0.759730 + 0.390498i
\(826\) 0.514819 0.891692i 0.0179128 0.0310259i
\(827\) 41.0529i 1.42755i 0.700375 + 0.713775i \(0.253016\pi\)
−0.700375 + 0.713775i \(0.746984\pi\)
\(828\) −1.11157 0.641763i −0.0386296 0.0223028i
\(829\) 10.4901 + 18.1694i 0.364337 + 0.631051i 0.988670 0.150108i \(-0.0479622\pi\)
−0.624332 + 0.781159i \(0.714629\pi\)
\(830\) −10.3403 16.9410i −0.358916 0.588032i
\(831\) −19.2128 −0.666484
\(832\) 15.5104 + 2.49649i 0.537727 + 0.0865503i
\(833\) 48.4240i 1.67779i
\(834\) −5.58843 9.67945i −0.193512 0.335172i
\(835\) −28.7591 + 17.5536i −0.995249 + 0.607467i
\(836\) −7.13545 + 12.3590i −0.246785 + 0.427443i
\(837\) 6.30120i 0.217801i
\(838\) 11.1300 + 6.42594i 0.384481 + 0.221980i
\(839\) −5.27731 + 9.14057i −0.182193 + 0.315568i −0.942627 0.333848i \(-0.891653\pi\)
0.760434 + 0.649415i \(0.224986\pi\)
\(840\) −0.0607227 2.48725i −0.00209513 0.0858184i
\(841\) −16.5682 + 28.6969i −0.571316 + 0.989548i
\(842\) −0.0895126 + 0.0516801i −0.00308481 + 0.00178101i
\(843\) 5.47148 3.15896i 0.188448 0.108800i
\(844\) −14.2945 −0.492038
\(845\) 27.8152 + 8.44496i 0.956870 + 0.290516i
\(846\) 3.89562 0.133934
\(847\) −4.54624 + 2.62477i −0.156211 + 0.0901882i
\(848\) −2.29255 + 1.32360i −0.0787264 + 0.0454527i
\(849\) −15.1027 + 26.1587i −0.518325 + 0.897765i
\(850\) −29.7963 + 1.45574i −1.02201 + 0.0499314i
\(851\) 4.38137 7.58875i 0.150191 0.260139i
\(852\) −7.07037 4.08208i −0.242227 0.139850i
\(853\) 32.3455i 1.10749i −0.832687 0.553744i \(-0.813199\pi\)
0.832687 0.553744i \(-0.186801\pi\)
\(854\) −1.20090 + 2.08002i −0.0410940 + 0.0711770i
\(855\) −2.62639 4.30297i −0.0898207 0.147158i
\(856\) −20.6509 35.7684i −0.705832 1.22254i
\(857\) 23.8618i 0.815103i 0.913182 + 0.407551i \(0.133617\pi\)
−0.913182 + 0.407551i \(0.866383\pi\)
\(858\) 14.7189 + 2.36910i 0.502496 + 0.0808798i
\(859\) −20.6605 −0.704926 −0.352463 0.935826i \(-0.614656\pi\)
−0.352463 + 0.935826i \(0.614656\pi\)
\(860\) 4.95860 3.02656i 0.169087 0.103205i
\(861\) −1.06760 1.84913i −0.0363836 0.0630183i
\(862\) 1.18092 + 0.681806i 0.0402224 + 0.0232224i
\(863\) 0.461666i 0.0157153i 0.999969 + 0.00785765i \(0.00250119\pi\)
−0.999969 + 0.00785765i \(0.997499\pi\)
\(864\) 2.87503 4.97969i 0.0978104 0.169413i
\(865\) 6.68695 + 3.64607i 0.227363 + 0.123970i
\(866\) 13.1143 0.445643
\(867\) 28.6964 + 16.5679i 0.974582 + 0.562675i
\(868\) 2.82534 1.63121i 0.0958982 0.0553669i
\(869\) 25.2113 + 43.6673i 0.855235 + 1.48131i
\(870\) 14.8479 0.362490i 0.503391 0.0122896i
\(871\) 20.7323 7.89880i 0.702488 0.267641i
\(872\) 4.70619i 0.159372i
\(873\) −8.15979 + 4.71106i −0.276167 + 0.159445i
\(874\) −0.945098 1.63696i −0.0319684 0.0553709i
\(875\) 4.03990 + 1.95335i 0.136573 + 0.0660353i
\(876\) −1.30640 −0.0441391
\(877\) 17.6624 + 10.1974i 0.596417 + 0.344342i 0.767631 0.640892i \(-0.221435\pi\)
−0.171214 + 0.985234i \(0.554769\pi\)
\(878\) 5.70941 + 3.29633i 0.192683 + 0.111246i
\(879\) 7.13688 0.240721
\(880\) 1.28161 2.35050i 0.0432031 0.0792353i
\(881\) 12.6173 + 21.8538i 0.425087 + 0.736272i 0.996429 0.0844405i \(-0.0269103\pi\)
−0.571342 + 0.820712i \(0.693577\pi\)
\(882\) 4.99061 2.88133i 0.168043 0.0970195i
\(883\) 8.44125i 0.284071i 0.989862 + 0.142035i \(0.0453647\pi\)
−0.989862 + 0.142035i \(0.954635\pi\)
\(884\) 30.7748 11.7249i 1.03507 0.394351i
\(885\) 0.166150 + 6.80563i 0.00558506 + 0.228769i
\(886\) 10.4543 + 18.1075i 0.351221 + 0.608332i
\(887\) 32.3709 18.6894i 1.08691 0.627527i 0.154157 0.988046i \(-0.450734\pi\)
0.932752 + 0.360519i \(0.117400\pi\)
\(888\) 21.1435 + 12.2072i 0.709528 + 0.409646i
\(889\) 6.92888 0.232387
\(890\) −0.867687 0.473108i −0.0290849 0.0158586i
\(891\) 2.45354 4.24965i 0.0821965 0.142369i
\(892\) 0.685693i 0.0229587i
\(893\) −9.02647 5.21144i −0.302059 0.174394i
\(894\) −1.33039 2.30431i −0.0444951 0.0770677i
\(895\) −0.700179 1.14714i −0.0234044 0.0383448i
\(896\) −3.14210 −0.104970
\(897\) 2.26469 2.78236i 0.0756156 0.0929003i
\(898\) 28.2690i 0.943348i
\(899\) 24.8351 + 43.0156i 0.828297 + 1.43465i
\(900\) 3.49367 + 5.42173i 0.116456 + 0.180724i
\(901\) 38.4113 66.5303i 1.27967 2.21645i
\(902\) 21.9969i 0.732416i
\(903\) −0.700038 0.404167i −0.0232958 0.0134498i
\(904\) −3.11603 + 5.39713i −0.103638 + 0.179506i
\(905\) −38.1375 + 0.931073i −1.26773 + 0.0309499i
\(906\) 7.83132 13.5642i 0.260178 0.450642i
\(907\) −42.5419 + 24.5616i −1.41258 + 0.815553i −0.995631 0.0933771i \(-0.970234\pi\)
−0.416948 + 0.908930i \(0.636900\pi\)
\(908\) −23.8929 + 13.7946i −0.792915 + 0.457789i
\(909\) 5.75415 0.190853
\(910\) 2.70177 + 0.367462i 0.0895628 + 0.0121812i
\(911\) 46.1927 1.53043 0.765217 0.643773i \(-0.222632\pi\)
0.765217 + 0.643773i \(0.222632\pi\)
\(912\) −0.476376 + 0.275036i −0.0157744 + 0.00910735i
\(913\) −44.7647 + 25.8449i −1.48149 + 0.855341i
\(914\) −7.77604 + 13.4685i −0.257209 + 0.445499i
\(915\) −0.387573 15.8753i −0.0128128 0.524821i
\(916\) −0.262189 + 0.454125i −0.00866297 + 0.0150047i
\(917\) −1.59568 0.921265i −0.0526939 0.0304229i
\(918\) 5.96637i 0.196920i
\(919\) −14.7292 + 25.5118i −0.485872 + 0.841556i −0.999868 0.0162371i \(-0.994831\pi\)
0.513996 + 0.857793i \(0.328165\pi\)
\(920\) 3.21340 + 5.26470i 0.105943 + 0.173572i
\(921\) −4.95675 8.58534i −0.163330 0.282897i
\(922\) 5.85057i 0.192678i
\(923\) 14.4051 17.6978i 0.474148 0.582531i
\(924\) −2.54062 −0.0835802
\(925\) −37.0146 + 23.8516i −1.21703 + 0.784235i
\(926\) −17.3775 30.0987i −0.571060 0.989105i
\(927\) 13.3361 + 7.69961i 0.438015 + 0.252888i
\(928\) 45.3257i 1.48789i
\(929\) 11.3931 19.7334i 0.373795 0.647432i −0.616351 0.787472i \(-0.711390\pi\)
0.990146 + 0.140040i \(0.0447230\pi\)
\(930\) 5.68357 10.4238i 0.186372 0.341809i
\(931\) −15.4182 −0.505311
\(932\) 2.97585 + 1.71811i 0.0974773 + 0.0562786i
\(933\) 5.23585 3.02292i 0.171414 0.0989659i
\(934\) 12.5149 + 21.6765i 0.409501 + 0.709277i
\(935\) 1.89620 + 77.6698i 0.0620122 + 2.54007i
\(936\) 7.75210 + 6.30978i 0.253385 + 0.206242i
\(937\) 33.3968i 1.09103i −0.838102 0.545513i \(-0.816335\pi\)
0.838102 0.545513i \(-0.183665\pi\)
\(938\) 1.80223 1.04052i 0.0588449 0.0339741i
\(939\) 2.31009 + 4.00119i 0.0753869 + 0.130574i
\(940\) 11.7081 + 6.38386i 0.381877 + 0.208219i
\(941\) −4.59203 −0.149696 −0.0748480 0.997195i \(-0.523847\pi\)
−0.0748480 + 0.997195i \(0.523847\pi\)
\(942\) 7.86670 + 4.54184i 0.256311 + 0.147981i
\(943\) 4.58412 + 2.64664i 0.149279 + 0.0861865i
\(944\) 0.742822 0.0241768
\(945\) 0.429632 0.787953i 0.0139759 0.0256321i
\(946\) 4.16375 + 7.21183i 0.135375 + 0.234477i
\(947\) 8.35815 4.82558i 0.271603 0.156810i −0.358013 0.933717i \(-0.616546\pi\)
0.629616 + 0.776906i \(0.283212\pi\)
\(948\) 13.2552i 0.430507i
\(949\) 0.580254 3.60505i 0.0188359 0.117025i
\(950\) 0.463507 + 9.48715i 0.0150381 + 0.307804i
\(951\) 12.5397 + 21.7193i 0.406627 + 0.704298i
\(952\) 6.82290 3.93920i 0.221131 0.127670i
\(953\) −29.3593 16.9506i −0.951040 0.549083i −0.0576363 0.998338i \(-0.518356\pi\)
−0.893404 + 0.449254i \(0.851690\pi\)
\(954\) 9.14222 0.295990
\(955\) −6.63849 + 12.1751i −0.214816 + 0.393977i
\(956\) −10.2113 + 17.6864i −0.330256 + 0.572020i
\(957\) 38.6808i 1.25037i
\(958\) 14.4048 + 8.31659i 0.465397 + 0.268697i
\(959\) 0.993464 + 1.72073i 0.0320806 + 0.0555653i
\(960\) −8.31624 + 5.07596i −0.268405 + 0.163826i
\(961\) 8.70507 0.280809
\(962\) −16.8903 + 20.7512i −0.544566 + 0.669045i
\(963\) 14.8984i 0.480094i
\(964\) 15.0373 + 26.0453i 0.484318 + 0.838863i
\(965\) 17.4409 10.6453i 0.561442 0.342686i
\(966\) 0.168254 0.291424i 0.00541348 0.00937642i
\(967\) 20.9057i 0.672283i 0.941812 + 0.336141i \(0.109122\pi\)
−0.941812 + 0.336141i \(0.890878\pi\)
\(968\) 31.4012 + 18.1295i 1.00927 + 0.582704i
\(969\) 7.98162 13.8246i 0.256407 0.444109i
\(970\) 17.7476 0.433283i 0.569842 0.0139119i
\(971\) −24.1043 + 41.7499i −0.773545 + 1.33982i 0.162064 + 0.986780i \(0.448185\pi\)
−0.935609 + 0.353038i \(0.885149\pi\)
\(972\) 1.11715 0.644988i 0.0358327 0.0206880i
\(973\) −4.61051 + 2.66188i −0.147806 + 0.0853360i
\(974\) −20.4787 −0.656180
\(975\) −16.5132 + 7.23278i −0.528847 + 0.231634i
\(976\) −1.73276 −0.0554643
\(977\) 28.5119 16.4614i 0.912177 0.526646i 0.0310460 0.999518i \(-0.490116\pi\)
0.881131 + 0.472872i \(0.156783\pi\)
\(978\) −1.14852 + 0.663100i −0.0367257 + 0.0212036i
\(979\) −1.28693 + 2.22902i −0.0411304 + 0.0712399i
\(980\) 19.7208 0.481455i 0.629957 0.0153795i
\(981\) 0.848809 1.47018i 0.0271004 0.0469392i
\(982\) 5.04311 + 2.91164i 0.160932 + 0.0929143i
\(983\) 11.0460i 0.352312i 0.984362 + 0.176156i \(0.0563663\pi\)
−0.984362 + 0.176156i \(0.943634\pi\)
\(984\) −7.37397 + 12.7721i −0.235074 + 0.407159i
\(985\) 41.2454 25.1748i 1.31419 0.802136i
\(986\) 23.5154 + 40.7299i 0.748884 + 1.29711i
\(987\) 1.85556i 0.0590632i
\(988\) −3.73321 9.79870i −0.118769 0.311738i
\(989\) 2.00391 0.0637207
\(990\) −7.89187 + 4.81694i −0.250820 + 0.153092i
\(991\) 4.83587 + 8.37598i 0.153617 + 0.266072i 0.932554 0.361029i \(-0.117575\pi\)
−0.778938 + 0.627101i \(0.784241\pi\)
\(992\) −31.3780 18.1161i −0.996253 0.575187i
\(993\) 13.6869i 0.434341i
\(994\) 1.07022 1.85367i 0.0339452 0.0587948i
\(995\) 2.72369 4.99529i 0.0863467 0.158361i
\(996\) −13.5883 −0.430561
\(997\) −43.6735 25.2149i −1.38315 0.798565i −0.390623 0.920551i \(-0.627740\pi\)
−0.992532 + 0.121986i \(0.961074\pi\)
\(998\) 1.61299 0.931258i 0.0510582 0.0294785i
\(999\) 4.40338 + 7.62688i 0.139317 + 0.241304i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 195.2.ba.a.94.5 24
3.2 odd 2 585.2.bs.b.289.8 24
5.2 odd 4 975.2.i.o.601.3 12
5.3 odd 4 975.2.i.q.601.4 12
5.4 even 2 inner 195.2.ba.a.94.8 yes 24
13.9 even 3 inner 195.2.ba.a.139.8 yes 24
15.14 odd 2 585.2.bs.b.289.5 24
39.35 odd 6 585.2.bs.b.334.5 24
65.9 even 6 inner 195.2.ba.a.139.5 yes 24
65.22 odd 12 975.2.i.o.451.3 12
65.48 odd 12 975.2.i.q.451.4 12
195.74 odd 6 585.2.bs.b.334.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.ba.a.94.5 24 1.1 even 1 trivial
195.2.ba.a.94.8 yes 24 5.4 even 2 inner
195.2.ba.a.139.5 yes 24 65.9 even 6 inner
195.2.ba.a.139.8 yes 24 13.9 even 3 inner
585.2.bs.b.289.5 24 15.14 odd 2
585.2.bs.b.289.8 24 3.2 odd 2
585.2.bs.b.334.5 24 39.35 odd 6
585.2.bs.b.334.8 24 195.74 odd 6
975.2.i.o.451.3 12 65.22 odd 12
975.2.i.o.601.3 12 5.2 odd 4
975.2.i.q.451.4 12 65.48 odd 12
975.2.i.q.601.4 12 5.3 odd 4