Properties

Label 585.2.bs
Level $585$
Weight $2$
Character orbit 585.bs
Rep. character $\chi_{585}(289,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $68$
Newform subspaces $3$
Sturm bound $168$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.bs (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 65 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(168\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(585, [\chi])\).

Total New Old
Modular forms 184 76 108
Cusp forms 152 68 84
Eisenstein series 32 8 24

Trace form

\( 68 q + 32 q^{4} + 2 q^{5} - 3 q^{10} - 4 q^{11} + 20 q^{14} - 28 q^{16} - 12 q^{19} + 17 q^{20} + 10 q^{25} + 24 q^{26} - 6 q^{29} - 24 q^{34} - 20 q^{35} + 2 q^{40} + 26 q^{41} - 36 q^{44} - 22 q^{46}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(585, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
585.2.bs.a 585.bs 65.n $12$ $4.671$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 65.2.n.a \(0\) \(0\) \(6\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{4}q^{2}+(-\beta _{2}-\beta _{6}-\beta _{10})q^{4}+(1+\cdots)q^{5}+\cdots\)
585.2.bs.b 585.bs 65.n $24$ $4.671$ None 195.2.ba.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{6}]$
585.2.bs.c 585.bs 65.n $32$ $4.671$ None 585.2.bs.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(585, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(585, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 2}\)