Properties

Label 5824.2.a.cl.1.5
Level $5824$
Weight $2$
Character 5824.1
Self dual yes
Analytic conductor $46.505$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5824,2,Mod(1,5824)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5824, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5824.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5824 = 2^{6} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5824.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,5,0,3,0,5,0,6,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.5048741372\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1025428.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 8x^{3} + 13x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2912)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.44016\) of defining polynomial
Character \(\chi\) \(=\) 5824.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.44016 q^{3} -1.05143 q^{5} +1.00000 q^{7} +8.83471 q^{9} +5.76901 q^{11} +1.00000 q^{13} -3.61708 q^{15} +2.81463 q^{17} -1.60628 q^{19} +3.44016 q^{21} +3.19118 q^{23} -3.89450 q^{25} +20.0723 q^{27} +0.0108018 q^{29} +1.42936 q^{31} +19.8463 q^{33} -1.05143 q^{35} +6.32386 q^{37} +3.44016 q^{39} -5.75683 q^{41} -7.02589 q^{43} -9.28905 q^{45} -7.30622 q^{47} +1.00000 q^{49} +9.68277 q^{51} -13.8034 q^{53} -6.06569 q^{55} -5.52585 q^{57} -8.08949 q^{59} +5.75683 q^{61} +8.83471 q^{63} -1.05143 q^{65} -9.71156 q^{67} +10.9782 q^{69} -3.61708 q^{71} -2.95576 q^{73} -13.3977 q^{75} +5.76901 q^{77} +11.7543 q^{79} +42.5479 q^{81} -3.88241 q^{83} -2.95937 q^{85} +0.0371598 q^{87} +12.0096 q^{89} +1.00000 q^{91} +4.91722 q^{93} +1.68888 q^{95} -10.7833 q^{97} +50.9675 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{3} + 3 q^{5} + 5 q^{7} + 6 q^{9} + 5 q^{11} + 5 q^{13} + 4 q^{17} + 7 q^{19} + 5 q^{21} + 4 q^{23} + 2 q^{25} + 23 q^{27} - 3 q^{29} - 2 q^{31} + 17 q^{33} + 3 q^{35} + q^{37} + 5 q^{39} - 7 q^{41}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.44016 1.98618 0.993089 0.117365i \(-0.0374447\pi\)
0.993089 + 0.117365i \(0.0374447\pi\)
\(4\) 0 0
\(5\) −1.05143 −0.470212 −0.235106 0.971970i \(-0.575544\pi\)
−0.235106 + 0.971970i \(0.575544\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 8.83471 2.94490
\(10\) 0 0
\(11\) 5.76901 1.73942 0.869711 0.493561i \(-0.164305\pi\)
0.869711 + 0.493561i \(0.164305\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) −3.61708 −0.933925
\(16\) 0 0
\(17\) 2.81463 0.682647 0.341324 0.939946i \(-0.389125\pi\)
0.341324 + 0.939946i \(0.389125\pi\)
\(18\) 0 0
\(19\) −1.60628 −0.368505 −0.184252 0.982879i \(-0.558986\pi\)
−0.184252 + 0.982879i \(0.558986\pi\)
\(20\) 0 0
\(21\) 3.44016 0.750705
\(22\) 0 0
\(23\) 3.19118 0.665408 0.332704 0.943031i \(-0.392039\pi\)
0.332704 + 0.943031i \(0.392039\pi\)
\(24\) 0 0
\(25\) −3.89450 −0.778900
\(26\) 0 0
\(27\) 20.0723 3.86292
\(28\) 0 0
\(29\) 0.0108018 0.00200584 0.00100292 0.999999i \(-0.499681\pi\)
0.00100292 + 0.999999i \(0.499681\pi\)
\(30\) 0 0
\(31\) 1.42936 0.256720 0.128360 0.991728i \(-0.459029\pi\)
0.128360 + 0.991728i \(0.459029\pi\)
\(32\) 0 0
\(33\) 19.8463 3.45480
\(34\) 0 0
\(35\) −1.05143 −0.177724
\(36\) 0 0
\(37\) 6.32386 1.03964 0.519818 0.854277i \(-0.326000\pi\)
0.519818 + 0.854277i \(0.326000\pi\)
\(38\) 0 0
\(39\) 3.44016 0.550867
\(40\) 0 0
\(41\) −5.75683 −0.899066 −0.449533 0.893264i \(-0.648410\pi\)
−0.449533 + 0.893264i \(0.648410\pi\)
\(42\) 0 0
\(43\) −7.02589 −1.07144 −0.535719 0.844396i \(-0.679959\pi\)
−0.535719 + 0.844396i \(0.679959\pi\)
\(44\) 0 0
\(45\) −9.28905 −1.38473
\(46\) 0 0
\(47\) −7.30622 −1.06572 −0.532861 0.846203i \(-0.678883\pi\)
−0.532861 + 0.846203i \(0.678883\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 9.68277 1.35586
\(52\) 0 0
\(53\) −13.8034 −1.89604 −0.948018 0.318215i \(-0.896917\pi\)
−0.948018 + 0.318215i \(0.896917\pi\)
\(54\) 0 0
\(55\) −6.06569 −0.817898
\(56\) 0 0
\(57\) −5.52585 −0.731916
\(58\) 0 0
\(59\) −8.08949 −1.05316 −0.526581 0.850125i \(-0.676526\pi\)
−0.526581 + 0.850125i \(0.676526\pi\)
\(60\) 0 0
\(61\) 5.75683 0.737087 0.368544 0.929610i \(-0.379857\pi\)
0.368544 + 0.929610i \(0.379857\pi\)
\(62\) 0 0
\(63\) 8.83471 1.11307
\(64\) 0 0
\(65\) −1.05143 −0.130413
\(66\) 0 0
\(67\) −9.71156 −1.18646 −0.593228 0.805034i \(-0.702147\pi\)
−0.593228 + 0.805034i \(0.702147\pi\)
\(68\) 0 0
\(69\) 10.9782 1.32162
\(70\) 0 0
\(71\) −3.61708 −0.429268 −0.214634 0.976695i \(-0.568856\pi\)
−0.214634 + 0.976695i \(0.568856\pi\)
\(72\) 0 0
\(73\) −2.95576 −0.345946 −0.172973 0.984927i \(-0.555337\pi\)
−0.172973 + 0.984927i \(0.555337\pi\)
\(74\) 0 0
\(75\) −13.3977 −1.54703
\(76\) 0 0
\(77\) 5.76901 0.657440
\(78\) 0 0
\(79\) 11.7543 1.32246 0.661230 0.750184i \(-0.270035\pi\)
0.661230 + 0.750184i \(0.270035\pi\)
\(80\) 0 0
\(81\) 42.5479 4.72755
\(82\) 0 0
\(83\) −3.88241 −0.426150 −0.213075 0.977036i \(-0.568348\pi\)
−0.213075 + 0.977036i \(0.568348\pi\)
\(84\) 0 0
\(85\) −2.95937 −0.320989
\(86\) 0 0
\(87\) 0.0371598 0.00398395
\(88\) 0 0
\(89\) 12.0096 1.27302 0.636509 0.771270i \(-0.280378\pi\)
0.636509 + 0.771270i \(0.280378\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 4.91722 0.509892
\(94\) 0 0
\(95\) 1.68888 0.173276
\(96\) 0 0
\(97\) −10.7833 −1.09488 −0.547438 0.836846i \(-0.684397\pi\)
−0.547438 + 0.836846i \(0.684397\pi\)
\(98\) 0 0
\(99\) 50.9675 5.12243
\(100\) 0 0
\(101\) 6.49714 0.646490 0.323245 0.946315i \(-0.395226\pi\)
0.323245 + 0.946315i \(0.395226\pi\)
\(102\) 0 0
\(103\) −17.5666 −1.73088 −0.865442 0.501009i \(-0.832962\pi\)
−0.865442 + 0.501009i \(0.832962\pi\)
\(104\) 0 0
\(105\) −3.61708 −0.352991
\(106\) 0 0
\(107\) 3.92213 0.379166 0.189583 0.981865i \(-0.439286\pi\)
0.189583 + 0.981865i \(0.439286\pi\)
\(108\) 0 0
\(109\) 8.69148 0.832493 0.416247 0.909252i \(-0.363345\pi\)
0.416247 + 0.909252i \(0.363345\pi\)
\(110\) 0 0
\(111\) 21.7551 2.06490
\(112\) 0 0
\(113\) −10.2522 −0.964449 −0.482224 0.876048i \(-0.660171\pi\)
−0.482224 + 0.876048i \(0.660171\pi\)
\(114\) 0 0
\(115\) −3.35530 −0.312883
\(116\) 0 0
\(117\) 8.83471 0.816769
\(118\) 0 0
\(119\) 2.81463 0.258016
\(120\) 0 0
\(121\) 22.2815 2.02559
\(122\) 0 0
\(123\) −19.8044 −1.78571
\(124\) 0 0
\(125\) 9.35192 0.836461
\(126\) 0 0
\(127\) −21.0758 −1.87017 −0.935087 0.354418i \(-0.884679\pi\)
−0.935087 + 0.354418i \(0.884679\pi\)
\(128\) 0 0
\(129\) −24.1702 −2.12807
\(130\) 0 0
\(131\) 2.86870 0.250639 0.125320 0.992116i \(-0.460004\pi\)
0.125320 + 0.992116i \(0.460004\pi\)
\(132\) 0 0
\(133\) −1.60628 −0.139282
\(134\) 0 0
\(135\) −21.1046 −1.81639
\(136\) 0 0
\(137\) 3.98782 0.340703 0.170351 0.985383i \(-0.445510\pi\)
0.170351 + 0.985383i \(0.445510\pi\)
\(138\) 0 0
\(139\) 13.5921 1.15287 0.576433 0.817144i \(-0.304444\pi\)
0.576433 + 0.817144i \(0.304444\pi\)
\(140\) 0 0
\(141\) −25.1346 −2.11671
\(142\) 0 0
\(143\) 5.76901 0.482429
\(144\) 0 0
\(145\) −0.0113573 −0.000943169 0
\(146\) 0 0
\(147\) 3.44016 0.283740
\(148\) 0 0
\(149\) −18.5196 −1.51718 −0.758592 0.651566i \(-0.774112\pi\)
−0.758592 + 0.651566i \(0.774112\pi\)
\(150\) 0 0
\(151\) 4.11503 0.334877 0.167438 0.985883i \(-0.446451\pi\)
0.167438 + 0.985883i \(0.446451\pi\)
\(152\) 0 0
\(153\) 24.8664 2.01033
\(154\) 0 0
\(155\) −1.50287 −0.120713
\(156\) 0 0
\(157\) 16.4802 1.31527 0.657633 0.753339i \(-0.271558\pi\)
0.657633 + 0.753339i \(0.271558\pi\)
\(158\) 0 0
\(159\) −47.4858 −3.76587
\(160\) 0 0
\(161\) 3.19118 0.251501
\(162\) 0 0
\(163\) 0.794206 0.0622070 0.0311035 0.999516i \(-0.490098\pi\)
0.0311035 + 0.999516i \(0.490098\pi\)
\(164\) 0 0
\(165\) −20.8670 −1.62449
\(166\) 0 0
\(167\) −18.8522 −1.45883 −0.729415 0.684072i \(-0.760207\pi\)
−0.729415 + 0.684072i \(0.760207\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −14.1910 −1.08521
\(172\) 0 0
\(173\) 9.03725 0.687089 0.343545 0.939136i \(-0.388372\pi\)
0.343545 + 0.939136i \(0.388372\pi\)
\(174\) 0 0
\(175\) −3.89450 −0.294397
\(176\) 0 0
\(177\) −27.8292 −2.09177
\(178\) 0 0
\(179\) 22.5855 1.68812 0.844060 0.536248i \(-0.180159\pi\)
0.844060 + 0.536248i \(0.180159\pi\)
\(180\) 0 0
\(181\) 22.4566 1.66918 0.834592 0.550869i \(-0.185704\pi\)
0.834592 + 0.550869i \(0.185704\pi\)
\(182\) 0 0
\(183\) 19.8044 1.46399
\(184\) 0 0
\(185\) −6.64908 −0.488850
\(186\) 0 0
\(187\) 16.2376 1.18741
\(188\) 0 0
\(189\) 20.0723 1.46005
\(190\) 0 0
\(191\) −11.8711 −0.858959 −0.429480 0.903077i \(-0.641303\pi\)
−0.429480 + 0.903077i \(0.641303\pi\)
\(192\) 0 0
\(193\) −21.8508 −1.57285 −0.786426 0.617684i \(-0.788071\pi\)
−0.786426 + 0.617684i \(0.788071\pi\)
\(194\) 0 0
\(195\) −3.61708 −0.259024
\(196\) 0 0
\(197\) −9.87660 −0.703679 −0.351839 0.936060i \(-0.614444\pi\)
−0.351839 + 0.936060i \(0.614444\pi\)
\(198\) 0 0
\(199\) −1.66641 −0.118129 −0.0590645 0.998254i \(-0.518812\pi\)
−0.0590645 + 0.998254i \(0.518812\pi\)
\(200\) 0 0
\(201\) −33.4093 −2.35651
\(202\) 0 0
\(203\) 0.0108018 0.000758135 0
\(204\) 0 0
\(205\) 6.05289 0.422752
\(206\) 0 0
\(207\) 28.1932 1.95956
\(208\) 0 0
\(209\) −9.26662 −0.640986
\(210\) 0 0
\(211\) −1.82834 −0.125868 −0.0629340 0.998018i \(-0.520046\pi\)
−0.0629340 + 0.998018i \(0.520046\pi\)
\(212\) 0 0
\(213\) −12.4433 −0.852603
\(214\) 0 0
\(215\) 7.38721 0.503803
\(216\) 0 0
\(217\) 1.42936 0.0970312
\(218\) 0 0
\(219\) −10.1683 −0.687109
\(220\) 0 0
\(221\) 2.81463 0.189332
\(222\) 0 0
\(223\) 22.8878 1.53268 0.766339 0.642436i \(-0.222076\pi\)
0.766339 + 0.642436i \(0.222076\pi\)
\(224\) 0 0
\(225\) −34.4068 −2.29379
\(226\) 0 0
\(227\) −1.84443 −0.122419 −0.0612096 0.998125i \(-0.519496\pi\)
−0.0612096 + 0.998125i \(0.519496\pi\)
\(228\) 0 0
\(229\) −2.06514 −0.136468 −0.0682341 0.997669i \(-0.521736\pi\)
−0.0682341 + 0.997669i \(0.521736\pi\)
\(230\) 0 0
\(231\) 19.8463 1.30579
\(232\) 0 0
\(233\) −17.8732 −1.17091 −0.585457 0.810703i \(-0.699085\pi\)
−0.585457 + 0.810703i \(0.699085\pi\)
\(234\) 0 0
\(235\) 7.68195 0.501115
\(236\) 0 0
\(237\) 40.4366 2.62664
\(238\) 0 0
\(239\) 26.2742 1.69954 0.849769 0.527155i \(-0.176741\pi\)
0.849769 + 0.527155i \(0.176741\pi\)
\(240\) 0 0
\(241\) −20.1945 −1.30084 −0.650422 0.759573i \(-0.725408\pi\)
−0.650422 + 0.759573i \(0.725408\pi\)
\(242\) 0 0
\(243\) 86.1547 5.52682
\(244\) 0 0
\(245\) −1.05143 −0.0671732
\(246\) 0 0
\(247\) −1.60628 −0.102205
\(248\) 0 0
\(249\) −13.3561 −0.846410
\(250\) 0 0
\(251\) 8.93528 0.563990 0.281995 0.959416i \(-0.409004\pi\)
0.281995 + 0.959416i \(0.409004\pi\)
\(252\) 0 0
\(253\) 18.4100 1.15743
\(254\) 0 0
\(255\) −10.1807 −0.637542
\(256\) 0 0
\(257\) 5.31676 0.331650 0.165825 0.986155i \(-0.446971\pi\)
0.165825 + 0.986155i \(0.446971\pi\)
\(258\) 0 0
\(259\) 6.32386 0.392946
\(260\) 0 0
\(261\) 0.0954303 0.00590699
\(262\) 0 0
\(263\) −9.55913 −0.589441 −0.294721 0.955583i \(-0.595227\pi\)
−0.294721 + 0.955583i \(0.595227\pi\)
\(264\) 0 0
\(265\) 14.5132 0.891540
\(266\) 0 0
\(267\) 41.3150 2.52844
\(268\) 0 0
\(269\) −5.24050 −0.319519 −0.159759 0.987156i \(-0.551072\pi\)
−0.159759 + 0.987156i \(0.551072\pi\)
\(270\) 0 0
\(271\) −1.77426 −0.107779 −0.0538893 0.998547i \(-0.517162\pi\)
−0.0538893 + 0.998547i \(0.517162\pi\)
\(272\) 0 0
\(273\) 3.44016 0.208208
\(274\) 0 0
\(275\) −22.4674 −1.35484
\(276\) 0 0
\(277\) 5.58412 0.335517 0.167759 0.985828i \(-0.446347\pi\)
0.167759 + 0.985828i \(0.446347\pi\)
\(278\) 0 0
\(279\) 12.6280 0.756017
\(280\) 0 0
\(281\) −8.01704 −0.478257 −0.239128 0.970988i \(-0.576862\pi\)
−0.239128 + 0.970988i \(0.576862\pi\)
\(282\) 0 0
\(283\) 15.7009 0.933321 0.466661 0.884436i \(-0.345457\pi\)
0.466661 + 0.884436i \(0.345457\pi\)
\(284\) 0 0
\(285\) 5.81002 0.344156
\(286\) 0 0
\(287\) −5.75683 −0.339815
\(288\) 0 0
\(289\) −9.07787 −0.533992
\(290\) 0 0
\(291\) −37.0962 −2.17462
\(292\) 0 0
\(293\) 19.2194 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(294\) 0 0
\(295\) 8.50551 0.495210
\(296\) 0 0
\(297\) 115.797 6.71925
\(298\) 0 0
\(299\) 3.19118 0.184551
\(300\) 0 0
\(301\) −7.02589 −0.404966
\(302\) 0 0
\(303\) 22.3512 1.28404
\(304\) 0 0
\(305\) −6.05289 −0.346587
\(306\) 0 0
\(307\) 10.5292 0.600932 0.300466 0.953793i \(-0.402858\pi\)
0.300466 + 0.953793i \(0.402858\pi\)
\(308\) 0 0
\(309\) −60.4318 −3.43784
\(310\) 0 0
\(311\) 16.9676 0.962145 0.481073 0.876681i \(-0.340247\pi\)
0.481073 + 0.876681i \(0.340247\pi\)
\(312\) 0 0
\(313\) 15.4840 0.875205 0.437602 0.899169i \(-0.355828\pi\)
0.437602 + 0.899169i \(0.355828\pi\)
\(314\) 0 0
\(315\) −9.28905 −0.523378
\(316\) 0 0
\(317\) −7.55857 −0.424532 −0.212266 0.977212i \(-0.568084\pi\)
−0.212266 + 0.977212i \(0.568084\pi\)
\(318\) 0 0
\(319\) 0.0623155 0.00348900
\(320\) 0 0
\(321\) 13.4928 0.753092
\(322\) 0 0
\(323\) −4.52107 −0.251559
\(324\) 0 0
\(325\) −3.89450 −0.216028
\(326\) 0 0
\(327\) 29.9001 1.65348
\(328\) 0 0
\(329\) −7.30622 −0.402805
\(330\) 0 0
\(331\) −28.0556 −1.54207 −0.771037 0.636790i \(-0.780262\pi\)
−0.771037 + 0.636790i \(0.780262\pi\)
\(332\) 0 0
\(333\) 55.8694 3.06163
\(334\) 0 0
\(335\) 10.2110 0.557886
\(336\) 0 0
\(337\) 13.4572 0.733058 0.366529 0.930407i \(-0.380546\pi\)
0.366529 + 0.930407i \(0.380546\pi\)
\(338\) 0 0
\(339\) −35.2693 −1.91557
\(340\) 0 0
\(341\) 8.24599 0.446545
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) −11.5428 −0.621441
\(346\) 0 0
\(347\) −14.0801 −0.755861 −0.377931 0.925834i \(-0.623364\pi\)
−0.377931 + 0.925834i \(0.623364\pi\)
\(348\) 0 0
\(349\) −19.6215 −1.05031 −0.525156 0.851006i \(-0.675993\pi\)
−0.525156 + 0.851006i \(0.675993\pi\)
\(350\) 0 0
\(351\) 20.0723 1.07138
\(352\) 0 0
\(353\) −9.35435 −0.497882 −0.248941 0.968519i \(-0.580082\pi\)
−0.248941 + 0.968519i \(0.580082\pi\)
\(354\) 0 0
\(355\) 3.80309 0.201847
\(356\) 0 0
\(357\) 9.68277 0.512467
\(358\) 0 0
\(359\) 30.9826 1.63520 0.817600 0.575787i \(-0.195304\pi\)
0.817600 + 0.575787i \(0.195304\pi\)
\(360\) 0 0
\(361\) −16.4199 −0.864204
\(362\) 0 0
\(363\) 76.6519 4.02318
\(364\) 0 0
\(365\) 3.10777 0.162668
\(366\) 0 0
\(367\) −26.8021 −1.39906 −0.699528 0.714605i \(-0.746607\pi\)
−0.699528 + 0.714605i \(0.746607\pi\)
\(368\) 0 0
\(369\) −50.8599 −2.64766
\(370\) 0 0
\(371\) −13.8034 −0.716635
\(372\) 0 0
\(373\) −27.7647 −1.43760 −0.718801 0.695216i \(-0.755309\pi\)
−0.718801 + 0.695216i \(0.755309\pi\)
\(374\) 0 0
\(375\) 32.1721 1.66136
\(376\) 0 0
\(377\) 0.0108018 0.000556319 0
\(378\) 0 0
\(379\) 19.8055 1.01734 0.508671 0.860961i \(-0.330137\pi\)
0.508671 + 0.860961i \(0.330137\pi\)
\(380\) 0 0
\(381\) −72.5041 −3.71450
\(382\) 0 0
\(383\) −23.0086 −1.17568 −0.587842 0.808976i \(-0.700022\pi\)
−0.587842 + 0.808976i \(0.700022\pi\)
\(384\) 0 0
\(385\) −6.06569 −0.309136
\(386\) 0 0
\(387\) −62.0717 −3.15528
\(388\) 0 0
\(389\) 6.21924 0.315328 0.157664 0.987493i \(-0.449604\pi\)
0.157664 + 0.987493i \(0.449604\pi\)
\(390\) 0 0
\(391\) 8.98199 0.454239
\(392\) 0 0
\(393\) 9.86879 0.497814
\(394\) 0 0
\(395\) −12.3588 −0.621837
\(396\) 0 0
\(397\) 15.0764 0.756663 0.378332 0.925670i \(-0.376498\pi\)
0.378332 + 0.925670i \(0.376498\pi\)
\(398\) 0 0
\(399\) −5.52585 −0.276638
\(400\) 0 0
\(401\) 30.5899 1.52759 0.763793 0.645461i \(-0.223335\pi\)
0.763793 + 0.645461i \(0.223335\pi\)
\(402\) 0 0
\(403\) 1.42936 0.0712014
\(404\) 0 0
\(405\) −44.7360 −2.22295
\(406\) 0 0
\(407\) 36.4824 1.80837
\(408\) 0 0
\(409\) 4.16773 0.206081 0.103040 0.994677i \(-0.467143\pi\)
0.103040 + 0.994677i \(0.467143\pi\)
\(410\) 0 0
\(411\) 13.7187 0.676696
\(412\) 0 0
\(413\) −8.08949 −0.398058
\(414\) 0 0
\(415\) 4.08207 0.200381
\(416\) 0 0
\(417\) 46.7590 2.28980
\(418\) 0 0
\(419\) 10.4159 0.508850 0.254425 0.967093i \(-0.418114\pi\)
0.254425 + 0.967093i \(0.418114\pi\)
\(420\) 0 0
\(421\) −6.05433 −0.295070 −0.147535 0.989057i \(-0.547134\pi\)
−0.147535 + 0.989057i \(0.547134\pi\)
\(422\) 0 0
\(423\) −64.5483 −3.13844
\(424\) 0 0
\(425\) −10.9616 −0.531714
\(426\) 0 0
\(427\) 5.75683 0.278593
\(428\) 0 0
\(429\) 19.8463 0.958190
\(430\) 0 0
\(431\) −7.38667 −0.355804 −0.177902 0.984048i \(-0.556931\pi\)
−0.177902 + 0.984048i \(0.556931\pi\)
\(432\) 0 0
\(433\) −33.1642 −1.59377 −0.796886 0.604130i \(-0.793521\pi\)
−0.796886 + 0.604130i \(0.793521\pi\)
\(434\) 0 0
\(435\) −0.0390708 −0.00187330
\(436\) 0 0
\(437\) −5.12592 −0.245206
\(438\) 0 0
\(439\) 23.0185 1.09861 0.549306 0.835621i \(-0.314892\pi\)
0.549306 + 0.835621i \(0.314892\pi\)
\(440\) 0 0
\(441\) 8.83471 0.420700
\(442\) 0 0
\(443\) 22.6940 1.07822 0.539112 0.842234i \(-0.318760\pi\)
0.539112 + 0.842234i \(0.318760\pi\)
\(444\) 0 0
\(445\) −12.6272 −0.598588
\(446\) 0 0
\(447\) −63.7104 −3.01340
\(448\) 0 0
\(449\) −16.1045 −0.760018 −0.380009 0.924983i \(-0.624079\pi\)
−0.380009 + 0.924983i \(0.624079\pi\)
\(450\) 0 0
\(451\) −33.2112 −1.56386
\(452\) 0 0
\(453\) 14.1564 0.665124
\(454\) 0 0
\(455\) −1.05143 −0.0492917
\(456\) 0 0
\(457\) −35.0112 −1.63775 −0.818876 0.573970i \(-0.805403\pi\)
−0.818876 + 0.573970i \(0.805403\pi\)
\(458\) 0 0
\(459\) 56.4961 2.63701
\(460\) 0 0
\(461\) −5.50691 −0.256482 −0.128241 0.991743i \(-0.540933\pi\)
−0.128241 + 0.991743i \(0.540933\pi\)
\(462\) 0 0
\(463\) −25.5159 −1.18582 −0.592911 0.805268i \(-0.702022\pi\)
−0.592911 + 0.805268i \(0.702022\pi\)
\(464\) 0 0
\(465\) −5.17010 −0.239758
\(466\) 0 0
\(467\) 20.6965 0.957720 0.478860 0.877891i \(-0.341050\pi\)
0.478860 + 0.877891i \(0.341050\pi\)
\(468\) 0 0
\(469\) −9.71156 −0.448438
\(470\) 0 0
\(471\) 56.6946 2.61235
\(472\) 0 0
\(473\) −40.5324 −1.86368
\(474\) 0 0
\(475\) 6.25564 0.287029
\(476\) 0 0
\(477\) −121.949 −5.58364
\(478\) 0 0
\(479\) 39.3007 1.79569 0.897847 0.440308i \(-0.145131\pi\)
0.897847 + 0.440308i \(0.145131\pi\)
\(480\) 0 0
\(481\) 6.32386 0.288343
\(482\) 0 0
\(483\) 10.9782 0.499525
\(484\) 0 0
\(485\) 11.3378 0.514824
\(486\) 0 0
\(487\) −22.2391 −1.00775 −0.503875 0.863777i \(-0.668093\pi\)
−0.503875 + 0.863777i \(0.668093\pi\)
\(488\) 0 0
\(489\) 2.73220 0.123554
\(490\) 0 0
\(491\) 33.8186 1.52621 0.763105 0.646275i \(-0.223674\pi\)
0.763105 + 0.646275i \(0.223674\pi\)
\(492\) 0 0
\(493\) 0.0304029 0.00136928
\(494\) 0 0
\(495\) −53.5886 −2.40863
\(496\) 0 0
\(497\) −3.61708 −0.162248
\(498\) 0 0
\(499\) −20.8934 −0.935316 −0.467658 0.883909i \(-0.654902\pi\)
−0.467658 + 0.883909i \(0.654902\pi\)
\(500\) 0 0
\(501\) −64.8547 −2.89749
\(502\) 0 0
\(503\) 33.1978 1.48021 0.740107 0.672489i \(-0.234775\pi\)
0.740107 + 0.672489i \(0.234775\pi\)
\(504\) 0 0
\(505\) −6.83127 −0.303988
\(506\) 0 0
\(507\) 3.44016 0.152783
\(508\) 0 0
\(509\) 12.8893 0.571306 0.285653 0.958333i \(-0.407789\pi\)
0.285653 + 0.958333i \(0.407789\pi\)
\(510\) 0 0
\(511\) −2.95576 −0.130755
\(512\) 0 0
\(513\) −32.2417 −1.42351
\(514\) 0 0
\(515\) 18.4700 0.813883
\(516\) 0 0
\(517\) −42.1496 −1.85374
\(518\) 0 0
\(519\) 31.0896 1.36468
\(520\) 0 0
\(521\) 12.0174 0.526493 0.263246 0.964729i \(-0.415207\pi\)
0.263246 + 0.964729i \(0.415207\pi\)
\(522\) 0 0
\(523\) −8.60299 −0.376183 −0.188091 0.982152i \(-0.560230\pi\)
−0.188091 + 0.982152i \(0.560230\pi\)
\(524\) 0 0
\(525\) −13.3977 −0.584724
\(526\) 0 0
\(527\) 4.02311 0.175250
\(528\) 0 0
\(529\) −12.8163 −0.557232
\(530\) 0 0
\(531\) −71.4683 −3.10146
\(532\) 0 0
\(533\) −5.75683 −0.249356
\(534\) 0 0
\(535\) −4.12383 −0.178289
\(536\) 0 0
\(537\) 77.6978 3.35291
\(538\) 0 0
\(539\) 5.76901 0.248489
\(540\) 0 0
\(541\) 3.29905 0.141837 0.0709186 0.997482i \(-0.477407\pi\)
0.0709186 + 0.997482i \(0.477407\pi\)
\(542\) 0 0
\(543\) 77.2542 3.31529
\(544\) 0 0
\(545\) −9.13846 −0.391449
\(546\) 0 0
\(547\) 35.5790 1.52125 0.760624 0.649193i \(-0.224893\pi\)
0.760624 + 0.649193i \(0.224893\pi\)
\(548\) 0 0
\(549\) 50.8599 2.17065
\(550\) 0 0
\(551\) −0.0173506 −0.000739160 0
\(552\) 0 0
\(553\) 11.7543 0.499843
\(554\) 0 0
\(555\) −22.8739 −0.970943
\(556\) 0 0
\(557\) 17.5244 0.742533 0.371266 0.928526i \(-0.378924\pi\)
0.371266 + 0.928526i \(0.378924\pi\)
\(558\) 0 0
\(559\) −7.02589 −0.297163
\(560\) 0 0
\(561\) 55.8600 2.35841
\(562\) 0 0
\(563\) 8.50995 0.358651 0.179326 0.983790i \(-0.442608\pi\)
0.179326 + 0.983790i \(0.442608\pi\)
\(564\) 0 0
\(565\) 10.7795 0.453496
\(566\) 0 0
\(567\) 42.5479 1.78684
\(568\) 0 0
\(569\) −44.1447 −1.85064 −0.925321 0.379184i \(-0.876205\pi\)
−0.925321 + 0.379184i \(0.876205\pi\)
\(570\) 0 0
\(571\) −15.6944 −0.656791 −0.328395 0.944540i \(-0.606508\pi\)
−0.328395 + 0.944540i \(0.606508\pi\)
\(572\) 0 0
\(573\) −40.8383 −1.70605
\(574\) 0 0
\(575\) −12.4281 −0.518286
\(576\) 0 0
\(577\) −1.57236 −0.0654582 −0.0327291 0.999464i \(-0.510420\pi\)
−0.0327291 + 0.999464i \(0.510420\pi\)
\(578\) 0 0
\(579\) −75.1701 −3.12396
\(580\) 0 0
\(581\) −3.88241 −0.161070
\(582\) 0 0
\(583\) −79.6317 −3.29801
\(584\) 0 0
\(585\) −9.28905 −0.384055
\(586\) 0 0
\(587\) −33.2622 −1.37288 −0.686438 0.727188i \(-0.740827\pi\)
−0.686438 + 0.727188i \(0.740827\pi\)
\(588\) 0 0
\(589\) −2.29594 −0.0946027
\(590\) 0 0
\(591\) −33.9771 −1.39763
\(592\) 0 0
\(593\) −28.7357 −1.18003 −0.590017 0.807391i \(-0.700879\pi\)
−0.590017 + 0.807391i \(0.700879\pi\)
\(594\) 0 0
\(595\) −2.95937 −0.121323
\(596\) 0 0
\(597\) −5.73274 −0.234625
\(598\) 0 0
\(599\) 5.51603 0.225379 0.112689 0.993630i \(-0.464053\pi\)
0.112689 + 0.993630i \(0.464053\pi\)
\(600\) 0 0
\(601\) 26.8938 1.09702 0.548510 0.836144i \(-0.315195\pi\)
0.548510 + 0.836144i \(0.315195\pi\)
\(602\) 0 0
\(603\) −85.7988 −3.49400
\(604\) 0 0
\(605\) −23.4274 −0.952458
\(606\) 0 0
\(607\) −14.8000 −0.600712 −0.300356 0.953827i \(-0.597105\pi\)
−0.300356 + 0.953827i \(0.597105\pi\)
\(608\) 0 0
\(609\) 0.0371598 0.00150579
\(610\) 0 0
\(611\) −7.30622 −0.295578
\(612\) 0 0
\(613\) −28.5366 −1.15258 −0.576292 0.817244i \(-0.695501\pi\)
−0.576292 + 0.817244i \(0.695501\pi\)
\(614\) 0 0
\(615\) 20.8229 0.839661
\(616\) 0 0
\(617\) 40.5038 1.63062 0.815310 0.579024i \(-0.196566\pi\)
0.815310 + 0.579024i \(0.196566\pi\)
\(618\) 0 0
\(619\) −15.8087 −0.635404 −0.317702 0.948191i \(-0.602911\pi\)
−0.317702 + 0.948191i \(0.602911\pi\)
\(620\) 0 0
\(621\) 64.0545 2.57042
\(622\) 0 0
\(623\) 12.0096 0.481155
\(624\) 0 0
\(625\) 9.63965 0.385586
\(626\) 0 0
\(627\) −31.8787 −1.27311
\(628\) 0 0
\(629\) 17.7993 0.709705
\(630\) 0 0
\(631\) −36.2717 −1.44395 −0.721977 0.691918i \(-0.756766\pi\)
−0.721977 + 0.691918i \(0.756766\pi\)
\(632\) 0 0
\(633\) −6.28978 −0.249996
\(634\) 0 0
\(635\) 22.1597 0.879379
\(636\) 0 0
\(637\) 1.00000 0.0396214
\(638\) 0 0
\(639\) −31.9558 −1.26415
\(640\) 0 0
\(641\) −28.0970 −1.10976 −0.554882 0.831929i \(-0.687237\pi\)
−0.554882 + 0.831929i \(0.687237\pi\)
\(642\) 0 0
\(643\) −5.54783 −0.218785 −0.109393 0.993999i \(-0.534891\pi\)
−0.109393 + 0.993999i \(0.534891\pi\)
\(644\) 0 0
\(645\) 25.4132 1.00064
\(646\) 0 0
\(647\) −8.32318 −0.327218 −0.163609 0.986525i \(-0.552314\pi\)
−0.163609 + 0.986525i \(0.552314\pi\)
\(648\) 0 0
\(649\) −46.6684 −1.83189
\(650\) 0 0
\(651\) 4.91722 0.192721
\(652\) 0 0
\(653\) 14.0819 0.551069 0.275534 0.961291i \(-0.411145\pi\)
0.275534 + 0.961291i \(0.411145\pi\)
\(654\) 0 0
\(655\) −3.01623 −0.117854
\(656\) 0 0
\(657\) −26.1133 −1.01878
\(658\) 0 0
\(659\) 8.64161 0.336629 0.168315 0.985733i \(-0.446168\pi\)
0.168315 + 0.985733i \(0.446168\pi\)
\(660\) 0 0
\(661\) −31.1208 −1.21046 −0.605230 0.796051i \(-0.706919\pi\)
−0.605230 + 0.796051i \(0.706919\pi\)
\(662\) 0 0
\(663\) 9.68277 0.376048
\(664\) 0 0
\(665\) 1.68888 0.0654920
\(666\) 0 0
\(667\) 0.0344704 0.00133470
\(668\) 0 0
\(669\) 78.7376 3.04417
\(670\) 0 0
\(671\) 33.2112 1.28211
\(672\) 0 0
\(673\) 17.3266 0.667893 0.333946 0.942592i \(-0.391620\pi\)
0.333946 + 0.942592i \(0.391620\pi\)
\(674\) 0 0
\(675\) −78.1717 −3.00883
\(676\) 0 0
\(677\) −39.3738 −1.51326 −0.756629 0.653844i \(-0.773155\pi\)
−0.756629 + 0.653844i \(0.773155\pi\)
\(678\) 0 0
\(679\) −10.7833 −0.413824
\(680\) 0 0
\(681\) −6.34514 −0.243146
\(682\) 0 0
\(683\) 15.9637 0.610832 0.305416 0.952219i \(-0.401204\pi\)
0.305416 + 0.952219i \(0.401204\pi\)
\(684\) 0 0
\(685\) −4.19290 −0.160203
\(686\) 0 0
\(687\) −7.10441 −0.271050
\(688\) 0 0
\(689\) −13.8034 −0.525866
\(690\) 0 0
\(691\) −5.50647 −0.209476 −0.104738 0.994500i \(-0.533400\pi\)
−0.104738 + 0.994500i \(0.533400\pi\)
\(692\) 0 0
\(693\) 50.9675 1.93610
\(694\) 0 0
\(695\) −14.2911 −0.542092
\(696\) 0 0
\(697\) −16.2033 −0.613745
\(698\) 0 0
\(699\) −61.4868 −2.32565
\(700\) 0 0
\(701\) 25.3011 0.955610 0.477805 0.878466i \(-0.341432\pi\)
0.477805 + 0.878466i \(0.341432\pi\)
\(702\) 0 0
\(703\) −10.1579 −0.383111
\(704\) 0 0
\(705\) 26.4271 0.995304
\(706\) 0 0
\(707\) 6.49714 0.244350
\(708\) 0 0
\(709\) −37.4215 −1.40539 −0.702697 0.711489i \(-0.748021\pi\)
−0.702697 + 0.711489i \(0.748021\pi\)
\(710\) 0 0
\(711\) 103.846 3.89451
\(712\) 0 0
\(713\) 4.56135 0.170824
\(714\) 0 0
\(715\) −6.06569 −0.226844
\(716\) 0 0
\(717\) 90.3876 3.37559
\(718\) 0 0
\(719\) −19.3116 −0.720203 −0.360101 0.932913i \(-0.617258\pi\)
−0.360101 + 0.932913i \(0.617258\pi\)
\(720\) 0 0
\(721\) −17.5666 −0.654213
\(722\) 0 0
\(723\) −69.4724 −2.58371
\(724\) 0 0
\(725\) −0.0420675 −0.00156235
\(726\) 0 0
\(727\) 5.88441 0.218241 0.109120 0.994029i \(-0.465197\pi\)
0.109120 + 0.994029i \(0.465197\pi\)
\(728\) 0 0
\(729\) 168.742 6.24971
\(730\) 0 0
\(731\) −19.7753 −0.731414
\(732\) 0 0
\(733\) 47.4603 1.75299 0.876493 0.481414i \(-0.159877\pi\)
0.876493 + 0.481414i \(0.159877\pi\)
\(734\) 0 0
\(735\) −3.61708 −0.133418
\(736\) 0 0
\(737\) −56.0261 −2.06375
\(738\) 0 0
\(739\) 6.41585 0.236011 0.118005 0.993013i \(-0.462350\pi\)
0.118005 + 0.993013i \(0.462350\pi\)
\(740\) 0 0
\(741\) −5.52585 −0.202997
\(742\) 0 0
\(743\) −5.71193 −0.209550 −0.104775 0.994496i \(-0.533412\pi\)
−0.104775 + 0.994496i \(0.533412\pi\)
\(744\) 0 0
\(745\) 19.4720 0.713399
\(746\) 0 0
\(747\) −34.3000 −1.25497
\(748\) 0 0
\(749\) 3.92213 0.143311
\(750\) 0 0
\(751\) 1.20506 0.0439731 0.0219866 0.999758i \(-0.493001\pi\)
0.0219866 + 0.999758i \(0.493001\pi\)
\(752\) 0 0
\(753\) 30.7388 1.12018
\(754\) 0 0
\(755\) −4.32665 −0.157463
\(756\) 0 0
\(757\) −6.03447 −0.219327 −0.109663 0.993969i \(-0.534977\pi\)
−0.109663 + 0.993969i \(0.534977\pi\)
\(758\) 0 0
\(759\) 63.3333 2.29885
\(760\) 0 0
\(761\) −38.5211 −1.39639 −0.698194 0.715908i \(-0.746013\pi\)
−0.698194 + 0.715908i \(0.746013\pi\)
\(762\) 0 0
\(763\) 8.69148 0.314653
\(764\) 0 0
\(765\) −26.1452 −0.945282
\(766\) 0 0
\(767\) −8.08949 −0.292095
\(768\) 0 0
\(769\) −47.2558 −1.70409 −0.852044 0.523470i \(-0.824637\pi\)
−0.852044 + 0.523470i \(0.824637\pi\)
\(770\) 0 0
\(771\) 18.2905 0.658717
\(772\) 0 0
\(773\) −0.269359 −0.00968816 −0.00484408 0.999988i \(-0.501542\pi\)
−0.00484408 + 0.999988i \(0.501542\pi\)
\(774\) 0 0
\(775\) −5.56664 −0.199960
\(776\) 0 0
\(777\) 21.7551 0.780460
\(778\) 0 0
\(779\) 9.24706 0.331310
\(780\) 0 0
\(781\) −20.8670 −0.746679
\(782\) 0 0
\(783\) 0.216816 0.00774838
\(784\) 0 0
\(785\) −17.3278 −0.618454
\(786\) 0 0
\(787\) −14.9545 −0.533069 −0.266534 0.963825i \(-0.585879\pi\)
−0.266534 + 0.963825i \(0.585879\pi\)
\(788\) 0 0
\(789\) −32.8850 −1.17074
\(790\) 0 0
\(791\) −10.2522 −0.364527
\(792\) 0 0
\(793\) 5.75683 0.204431
\(794\) 0 0
\(795\) 49.9278 1.77076
\(796\) 0 0
\(797\) −27.2080 −0.963758 −0.481879 0.876238i \(-0.660045\pi\)
−0.481879 + 0.876238i \(0.660045\pi\)
\(798\) 0 0
\(799\) −20.5643 −0.727512
\(800\) 0 0
\(801\) 106.101 3.74891
\(802\) 0 0
\(803\) −17.0518 −0.601746
\(804\) 0 0
\(805\) −3.35530 −0.118259
\(806\) 0 0
\(807\) −18.0282 −0.634621
\(808\) 0 0
\(809\) 33.1514 1.16554 0.582770 0.812637i \(-0.301969\pi\)
0.582770 + 0.812637i \(0.301969\pi\)
\(810\) 0 0
\(811\) 32.5660 1.14355 0.571774 0.820411i \(-0.306255\pi\)
0.571774 + 0.820411i \(0.306255\pi\)
\(812\) 0 0
\(813\) −6.10374 −0.214067
\(814\) 0 0
\(815\) −0.835049 −0.0292505
\(816\) 0 0
\(817\) 11.2855 0.394830
\(818\) 0 0
\(819\) 8.83471 0.308710
\(820\) 0 0
\(821\) −17.5724 −0.613280 −0.306640 0.951826i \(-0.599205\pi\)
−0.306640 + 0.951826i \(0.599205\pi\)
\(822\) 0 0
\(823\) 14.0374 0.489312 0.244656 0.969610i \(-0.421325\pi\)
0.244656 + 0.969610i \(0.421325\pi\)
\(824\) 0 0
\(825\) −77.2916 −2.69095
\(826\) 0 0
\(827\) 2.20153 0.0765547 0.0382773 0.999267i \(-0.487813\pi\)
0.0382773 + 0.999267i \(0.487813\pi\)
\(828\) 0 0
\(829\) 27.5802 0.957901 0.478950 0.877842i \(-0.341017\pi\)
0.478950 + 0.877842i \(0.341017\pi\)
\(830\) 0 0
\(831\) 19.2103 0.666396
\(832\) 0 0
\(833\) 2.81463 0.0975211
\(834\) 0 0
\(835\) 19.8217 0.685959
\(836\) 0 0
\(837\) 28.6906 0.991691
\(838\) 0 0
\(839\) −4.85302 −0.167545 −0.0837724 0.996485i \(-0.526697\pi\)
−0.0837724 + 0.996485i \(0.526697\pi\)
\(840\) 0 0
\(841\) −28.9999 −0.999996
\(842\) 0 0
\(843\) −27.5799 −0.949903
\(844\) 0 0
\(845\) −1.05143 −0.0361702
\(846\) 0 0
\(847\) 22.2815 0.765601
\(848\) 0 0
\(849\) 54.0136 1.85374
\(850\) 0 0
\(851\) 20.1806 0.691782
\(852\) 0 0
\(853\) 44.3108 1.51717 0.758587 0.651572i \(-0.225890\pi\)
0.758587 + 0.651572i \(0.225890\pi\)
\(854\) 0 0
\(855\) 14.9208 0.510280
\(856\) 0 0
\(857\) 33.9517 1.15977 0.579884 0.814699i \(-0.303098\pi\)
0.579884 + 0.814699i \(0.303098\pi\)
\(858\) 0 0
\(859\) −5.48700 −0.187214 −0.0936071 0.995609i \(-0.529840\pi\)
−0.0936071 + 0.995609i \(0.529840\pi\)
\(860\) 0 0
\(861\) −19.8044 −0.674933
\(862\) 0 0
\(863\) 23.4104 0.796899 0.398449 0.917190i \(-0.369548\pi\)
0.398449 + 0.917190i \(0.369548\pi\)
\(864\) 0 0
\(865\) −9.50200 −0.323078
\(866\) 0 0
\(867\) −31.2293 −1.06060
\(868\) 0 0
\(869\) 67.8106 2.30032
\(870\) 0 0
\(871\) −9.71156 −0.329064
\(872\) 0 0
\(873\) −95.2671 −3.22430
\(874\) 0 0
\(875\) 9.35192 0.316153
\(876\) 0 0
\(877\) 14.0392 0.474071 0.237036 0.971501i \(-0.423824\pi\)
0.237036 + 0.971501i \(0.423824\pi\)
\(878\) 0 0
\(879\) 66.1179 2.23010
\(880\) 0 0
\(881\) 7.62250 0.256808 0.128404 0.991722i \(-0.459015\pi\)
0.128404 + 0.991722i \(0.459015\pi\)
\(882\) 0 0
\(883\) −13.4738 −0.453431 −0.226715 0.973961i \(-0.572799\pi\)
−0.226715 + 0.973961i \(0.572799\pi\)
\(884\) 0 0
\(885\) 29.2603 0.983575
\(886\) 0 0
\(887\) −24.8602 −0.834723 −0.417362 0.908740i \(-0.637045\pi\)
−0.417362 + 0.908740i \(0.637045\pi\)
\(888\) 0 0
\(889\) −21.0758 −0.706859
\(890\) 0 0
\(891\) 245.459 8.22320
\(892\) 0 0
\(893\) 11.7358 0.392723
\(894\) 0 0
\(895\) −23.7470 −0.793775
\(896\) 0 0
\(897\) 10.9782 0.366551
\(898\) 0 0
\(899\) 0.0154396 0.000514939 0
\(900\) 0 0
\(901\) −38.8513 −1.29432
\(902\) 0 0
\(903\) −24.1702 −0.804334
\(904\) 0 0
\(905\) −23.6114 −0.784871
\(906\) 0 0
\(907\) 37.1017 1.23194 0.615971 0.787769i \(-0.288764\pi\)
0.615971 + 0.787769i \(0.288764\pi\)
\(908\) 0 0
\(909\) 57.4003 1.90385
\(910\) 0 0
\(911\) 35.5028 1.17626 0.588130 0.808767i \(-0.299864\pi\)
0.588130 + 0.808767i \(0.299864\pi\)
\(912\) 0 0
\(913\) −22.3977 −0.741255
\(914\) 0 0
\(915\) −20.8229 −0.688384
\(916\) 0 0
\(917\) 2.86870 0.0947328
\(918\) 0 0
\(919\) 44.9888 1.48404 0.742022 0.670376i \(-0.233867\pi\)
0.742022 + 0.670376i \(0.233867\pi\)
\(920\) 0 0
\(921\) 36.2221 1.19356
\(922\) 0 0
\(923\) −3.61708 −0.119058
\(924\) 0 0
\(925\) −24.6283 −0.809773
\(926\) 0 0
\(927\) −155.195 −5.09728
\(928\) 0 0
\(929\) 44.1538 1.44864 0.724320 0.689464i \(-0.242154\pi\)
0.724320 + 0.689464i \(0.242154\pi\)
\(930\) 0 0
\(931\) −1.60628 −0.0526436
\(932\) 0 0
\(933\) 58.3713 1.91099
\(934\) 0 0
\(935\) −17.0727 −0.558336
\(936\) 0 0
\(937\) −2.32343 −0.0759032 −0.0379516 0.999280i \(-0.512083\pi\)
−0.0379516 + 0.999280i \(0.512083\pi\)
\(938\) 0 0
\(939\) 53.2673 1.73831
\(940\) 0 0
\(941\) −2.14275 −0.0698515 −0.0349257 0.999390i \(-0.511119\pi\)
−0.0349257 + 0.999390i \(0.511119\pi\)
\(942\) 0 0
\(943\) −18.3711 −0.598246
\(944\) 0 0
\(945\) −21.1046 −0.686532
\(946\) 0 0
\(947\) −33.9204 −1.10226 −0.551132 0.834418i \(-0.685804\pi\)
−0.551132 + 0.834418i \(0.685804\pi\)
\(948\) 0 0
\(949\) −2.95576 −0.0959480
\(950\) 0 0
\(951\) −26.0027 −0.843195
\(952\) 0 0
\(953\) 4.88157 0.158129 0.0790647 0.996869i \(-0.474807\pi\)
0.0790647 + 0.996869i \(0.474807\pi\)
\(954\) 0 0
\(955\) 12.4815 0.403893
\(956\) 0 0
\(957\) 0.214375 0.00692977
\(958\) 0 0
\(959\) 3.98782 0.128773
\(960\) 0 0
\(961\) −28.9569 −0.934095
\(962\) 0 0
\(963\) 34.6508 1.11661
\(964\) 0 0
\(965\) 22.9745 0.739575
\(966\) 0 0
\(967\) −41.2856 −1.32766 −0.663828 0.747886i \(-0.731069\pi\)
−0.663828 + 0.747886i \(0.731069\pi\)
\(968\) 0 0
\(969\) −15.5532 −0.499641
\(970\) 0 0
\(971\) −52.3660 −1.68050 −0.840252 0.542196i \(-0.817593\pi\)
−0.840252 + 0.542196i \(0.817593\pi\)
\(972\) 0 0
\(973\) 13.5921 0.435743
\(974\) 0 0
\(975\) −13.3977 −0.429070
\(976\) 0 0
\(977\) 47.3847 1.51597 0.757986 0.652271i \(-0.226183\pi\)
0.757986 + 0.652271i \(0.226183\pi\)
\(978\) 0 0
\(979\) 69.2836 2.21431
\(980\) 0 0
\(981\) 76.7867 2.45161
\(982\) 0 0
\(983\) 10.3959 0.331577 0.165789 0.986161i \(-0.446983\pi\)
0.165789 + 0.986161i \(0.446983\pi\)
\(984\) 0 0
\(985\) 10.3845 0.330878
\(986\) 0 0
\(987\) −25.1346 −0.800042
\(988\) 0 0
\(989\) −22.4209 −0.712943
\(990\) 0 0
\(991\) −36.9544 −1.17389 −0.586947 0.809625i \(-0.699670\pi\)
−0.586947 + 0.809625i \(0.699670\pi\)
\(992\) 0 0
\(993\) −96.5157 −3.06283
\(994\) 0 0
\(995\) 1.75211 0.0555457
\(996\) 0 0
\(997\) −25.1668 −0.797039 −0.398520 0.917160i \(-0.630476\pi\)
−0.398520 + 0.917160i \(0.630476\pi\)
\(998\) 0 0
\(999\) 126.935 4.01603
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5824.2.a.cl.1.5 5
4.3 odd 2 5824.2.a.ci.1.1 5
8.3 odd 2 2912.2.a.t.1.5 yes 5
8.5 even 2 2912.2.a.q.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.a.q.1.1 5 8.5 even 2
2912.2.a.t.1.5 yes 5 8.3 odd 2
5824.2.a.ci.1.1 5 4.3 odd 2
5824.2.a.cl.1.5 5 1.1 even 1 trivial