Defining parameters
| Level: | \( N \) | \(=\) | \( 5824 = 2^{6} \cdot 7 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5824.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 66 \) | ||
| Sturm bound: | \(1792\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(11\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5824))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 920 | 144 | 776 |
| Cusp forms | 873 | 144 | 729 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(110\) | \(17\) | \(93\) | \(105\) | \(17\) | \(88\) | \(5\) | \(0\) | \(5\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(120\) | \(20\) | \(100\) | \(114\) | \(20\) | \(94\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(116\) | \(19\) | \(97\) | \(110\) | \(19\) | \(91\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(114\) | \(16\) | \(98\) | \(108\) | \(16\) | \(92\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(120\) | \(19\) | \(101\) | \(114\) | \(19\) | \(95\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(110\) | \(16\) | \(94\) | \(104\) | \(16\) | \(88\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(114\) | \(17\) | \(97\) | \(108\) | \(17\) | \(91\) | \(6\) | \(0\) | \(6\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(116\) | \(20\) | \(96\) | \(110\) | \(20\) | \(90\) | \(6\) | \(0\) | \(6\) | |||
| Plus space | \(+\) | \(448\) | \(66\) | \(382\) | \(425\) | \(66\) | \(359\) | \(23\) | \(0\) | \(23\) | |||||
| Minus space | \(-\) | \(472\) | \(78\) | \(394\) | \(448\) | \(78\) | \(370\) | \(24\) | \(0\) | \(24\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5824))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5824))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5824)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(182))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(224))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(364))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(448))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(728))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(832))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1456))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2912))\)\(^{\oplus 2}\)