Properties

Label 2-5824-1.1-c1-0-101
Degree $2$
Conductor $5824$
Sign $1$
Analytic cond. $46.5048$
Root an. cond. $6.81944$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.44·3-s − 1.05·5-s + 7-s + 8.83·9-s + 5.76·11-s + 13-s − 3.61·15-s + 2.81·17-s − 1.60·19-s + 3.44·21-s + 3.19·23-s − 3.89·25-s + 20.0·27-s + 0.0108·29-s + 1.42·31-s + 19.8·33-s − 1.05·35-s + 6.32·37-s + 3.44·39-s − 5.75·41-s − 7.02·43-s − 9.28·45-s − 7.30·47-s + 49-s + 9.68·51-s − 13.8·53-s − 6.06·55-s + ⋯
L(s)  = 1  + 1.98·3-s − 0.470·5-s + 0.377·7-s + 2.94·9-s + 1.73·11-s + 0.277·13-s − 0.933·15-s + 0.682·17-s − 0.368·19-s + 0.750·21-s + 0.665·23-s − 0.778·25-s + 3.86·27-s + 0.00200·29-s + 0.256·31-s + 3.45·33-s − 0.177·35-s + 1.03·37-s + 0.550·39-s − 0.899·41-s − 1.07·43-s − 1.38·45-s − 1.06·47-s + 0.142·49-s + 1.35·51-s − 1.89·53-s − 0.817·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5824 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5824 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5824\)    =    \(2^{6} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(46.5048\)
Root analytic conductor: \(6.81944\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5824,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.123310785\)
\(L(\frac12)\) \(\approx\) \(5.123310785\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good3 \( 1 - 3.44T + 3T^{2} \)
5 \( 1 + 1.05T + 5T^{2} \)
11 \( 1 - 5.76T + 11T^{2} \)
17 \( 1 - 2.81T + 17T^{2} \)
19 \( 1 + 1.60T + 19T^{2} \)
23 \( 1 - 3.19T + 23T^{2} \)
29 \( 1 - 0.0108T + 29T^{2} \)
31 \( 1 - 1.42T + 31T^{2} \)
37 \( 1 - 6.32T + 37T^{2} \)
41 \( 1 + 5.75T + 41T^{2} \)
43 \( 1 + 7.02T + 43T^{2} \)
47 \( 1 + 7.30T + 47T^{2} \)
53 \( 1 + 13.8T + 53T^{2} \)
59 \( 1 + 8.08T + 59T^{2} \)
61 \( 1 - 5.75T + 61T^{2} \)
67 \( 1 + 9.71T + 67T^{2} \)
71 \( 1 + 3.61T + 71T^{2} \)
73 \( 1 + 2.95T + 73T^{2} \)
79 \( 1 - 11.7T + 79T^{2} \)
83 \( 1 + 3.88T + 83T^{2} \)
89 \( 1 - 12.0T + 89T^{2} \)
97 \( 1 + 10.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.119755871876924337268250604675, −7.69884491700693629676825765764, −6.85725816102435399903944768742, −6.30039902817910374706060918264, −4.82306117258470983983769396397, −4.19280974010238579783681123168, −3.54146664457019283155142467354, −3.01670043200214155895134870513, −1.81271526754453131509414928210, −1.28012134695305910475548471707, 1.28012134695305910475548471707, 1.81271526754453131509414928210, 3.01670043200214155895134870513, 3.54146664457019283155142467354, 4.19280974010238579783681123168, 4.82306117258470983983769396397, 6.30039902817910374706060918264, 6.85725816102435399903944768742, 7.69884491700693629676825765764, 8.119755871876924337268250604675

Graph of the $Z$-function along the critical line