Properties

Label 2912.2.a.t.1.5
Level $2912$
Weight $2$
Character 2912.1
Self dual yes
Analytic conductor $23.252$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(1,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,5,0,-3,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1025428.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 8x^{3} + 13x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.44016\) of defining polynomial
Character \(\chi\) \(=\) 2912.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.44016 q^{3} +1.05143 q^{5} -1.00000 q^{7} +8.83471 q^{9} +5.76901 q^{11} -1.00000 q^{13} +3.61708 q^{15} +2.81463 q^{17} -1.60628 q^{19} -3.44016 q^{21} -3.19118 q^{23} -3.89450 q^{25} +20.0723 q^{27} -0.0108018 q^{29} -1.42936 q^{31} +19.8463 q^{33} -1.05143 q^{35} -6.32386 q^{37} -3.44016 q^{39} -5.75683 q^{41} -7.02589 q^{43} +9.28905 q^{45} +7.30622 q^{47} +1.00000 q^{49} +9.68277 q^{51} +13.8034 q^{53} +6.06569 q^{55} -5.52585 q^{57} -8.08949 q^{59} -5.75683 q^{61} -8.83471 q^{63} -1.05143 q^{65} -9.71156 q^{67} -10.9782 q^{69} +3.61708 q^{71} -2.95576 q^{73} -13.3977 q^{75} -5.76901 q^{77} -11.7543 q^{79} +42.5479 q^{81} -3.88241 q^{83} +2.95937 q^{85} -0.0371598 q^{87} +12.0096 q^{89} +1.00000 q^{91} -4.91722 q^{93} -1.68888 q^{95} -10.7833 q^{97} +50.9675 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{3} - 3 q^{5} - 5 q^{7} + 6 q^{9} + 5 q^{11} - 5 q^{13} + 4 q^{17} + 7 q^{19} - 5 q^{21} - 4 q^{23} + 2 q^{25} + 23 q^{27} + 3 q^{29} + 2 q^{31} + 17 q^{33} + 3 q^{35} - q^{37} - 5 q^{39} - 7 q^{41}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.44016 1.98618 0.993089 0.117365i \(-0.0374447\pi\)
0.993089 + 0.117365i \(0.0374447\pi\)
\(4\) 0 0
\(5\) 1.05143 0.470212 0.235106 0.971970i \(-0.424456\pi\)
0.235106 + 0.971970i \(0.424456\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 8.83471 2.94490
\(10\) 0 0
\(11\) 5.76901 1.73942 0.869711 0.493561i \(-0.164305\pi\)
0.869711 + 0.493561i \(0.164305\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 3.61708 0.933925
\(16\) 0 0
\(17\) 2.81463 0.682647 0.341324 0.939946i \(-0.389125\pi\)
0.341324 + 0.939946i \(0.389125\pi\)
\(18\) 0 0
\(19\) −1.60628 −0.368505 −0.184252 0.982879i \(-0.558986\pi\)
−0.184252 + 0.982879i \(0.558986\pi\)
\(20\) 0 0
\(21\) −3.44016 −0.750705
\(22\) 0 0
\(23\) −3.19118 −0.665408 −0.332704 0.943031i \(-0.607961\pi\)
−0.332704 + 0.943031i \(0.607961\pi\)
\(24\) 0 0
\(25\) −3.89450 −0.778900
\(26\) 0 0
\(27\) 20.0723 3.86292
\(28\) 0 0
\(29\) −0.0108018 −0.00200584 −0.00100292 0.999999i \(-0.500319\pi\)
−0.00100292 + 0.999999i \(0.500319\pi\)
\(30\) 0 0
\(31\) −1.42936 −0.256720 −0.128360 0.991728i \(-0.540971\pi\)
−0.128360 + 0.991728i \(0.540971\pi\)
\(32\) 0 0
\(33\) 19.8463 3.45480
\(34\) 0 0
\(35\) −1.05143 −0.177724
\(36\) 0 0
\(37\) −6.32386 −1.03964 −0.519818 0.854277i \(-0.674000\pi\)
−0.519818 + 0.854277i \(0.674000\pi\)
\(38\) 0 0
\(39\) −3.44016 −0.550867
\(40\) 0 0
\(41\) −5.75683 −0.899066 −0.449533 0.893264i \(-0.648410\pi\)
−0.449533 + 0.893264i \(0.648410\pi\)
\(42\) 0 0
\(43\) −7.02589 −1.07144 −0.535719 0.844396i \(-0.679959\pi\)
−0.535719 + 0.844396i \(0.679959\pi\)
\(44\) 0 0
\(45\) 9.28905 1.38473
\(46\) 0 0
\(47\) 7.30622 1.06572 0.532861 0.846203i \(-0.321117\pi\)
0.532861 + 0.846203i \(0.321117\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 9.68277 1.35586
\(52\) 0 0
\(53\) 13.8034 1.89604 0.948018 0.318215i \(-0.103083\pi\)
0.948018 + 0.318215i \(0.103083\pi\)
\(54\) 0 0
\(55\) 6.06569 0.817898
\(56\) 0 0
\(57\) −5.52585 −0.731916
\(58\) 0 0
\(59\) −8.08949 −1.05316 −0.526581 0.850125i \(-0.676526\pi\)
−0.526581 + 0.850125i \(0.676526\pi\)
\(60\) 0 0
\(61\) −5.75683 −0.737087 −0.368544 0.929610i \(-0.620143\pi\)
−0.368544 + 0.929610i \(0.620143\pi\)
\(62\) 0 0
\(63\) −8.83471 −1.11307
\(64\) 0 0
\(65\) −1.05143 −0.130413
\(66\) 0 0
\(67\) −9.71156 −1.18646 −0.593228 0.805034i \(-0.702147\pi\)
−0.593228 + 0.805034i \(0.702147\pi\)
\(68\) 0 0
\(69\) −10.9782 −1.32162
\(70\) 0 0
\(71\) 3.61708 0.429268 0.214634 0.976695i \(-0.431144\pi\)
0.214634 + 0.976695i \(0.431144\pi\)
\(72\) 0 0
\(73\) −2.95576 −0.345946 −0.172973 0.984927i \(-0.555337\pi\)
−0.172973 + 0.984927i \(0.555337\pi\)
\(74\) 0 0
\(75\) −13.3977 −1.54703
\(76\) 0 0
\(77\) −5.76901 −0.657440
\(78\) 0 0
\(79\) −11.7543 −1.32246 −0.661230 0.750184i \(-0.729965\pi\)
−0.661230 + 0.750184i \(0.729965\pi\)
\(80\) 0 0
\(81\) 42.5479 4.72755
\(82\) 0 0
\(83\) −3.88241 −0.426150 −0.213075 0.977036i \(-0.568348\pi\)
−0.213075 + 0.977036i \(0.568348\pi\)
\(84\) 0 0
\(85\) 2.95937 0.320989
\(86\) 0 0
\(87\) −0.0371598 −0.00398395
\(88\) 0 0
\(89\) 12.0096 1.27302 0.636509 0.771270i \(-0.280378\pi\)
0.636509 + 0.771270i \(0.280378\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) −4.91722 −0.509892
\(94\) 0 0
\(95\) −1.68888 −0.173276
\(96\) 0 0
\(97\) −10.7833 −1.09488 −0.547438 0.836846i \(-0.684397\pi\)
−0.547438 + 0.836846i \(0.684397\pi\)
\(98\) 0 0
\(99\) 50.9675 5.12243
\(100\) 0 0
\(101\) −6.49714 −0.646490 −0.323245 0.946315i \(-0.604774\pi\)
−0.323245 + 0.946315i \(0.604774\pi\)
\(102\) 0 0
\(103\) 17.5666 1.73088 0.865442 0.501009i \(-0.167038\pi\)
0.865442 + 0.501009i \(0.167038\pi\)
\(104\) 0 0
\(105\) −3.61708 −0.352991
\(106\) 0 0
\(107\) 3.92213 0.379166 0.189583 0.981865i \(-0.439286\pi\)
0.189583 + 0.981865i \(0.439286\pi\)
\(108\) 0 0
\(109\) −8.69148 −0.832493 −0.416247 0.909252i \(-0.636655\pi\)
−0.416247 + 0.909252i \(0.636655\pi\)
\(110\) 0 0
\(111\) −21.7551 −2.06490
\(112\) 0 0
\(113\) −10.2522 −0.964449 −0.482224 0.876048i \(-0.660171\pi\)
−0.482224 + 0.876048i \(0.660171\pi\)
\(114\) 0 0
\(115\) −3.35530 −0.312883
\(116\) 0 0
\(117\) −8.83471 −0.816769
\(118\) 0 0
\(119\) −2.81463 −0.258016
\(120\) 0 0
\(121\) 22.2815 2.02559
\(122\) 0 0
\(123\) −19.8044 −1.78571
\(124\) 0 0
\(125\) −9.35192 −0.836461
\(126\) 0 0
\(127\) 21.0758 1.87017 0.935087 0.354418i \(-0.115321\pi\)
0.935087 + 0.354418i \(0.115321\pi\)
\(128\) 0 0
\(129\) −24.1702 −2.12807
\(130\) 0 0
\(131\) 2.86870 0.250639 0.125320 0.992116i \(-0.460004\pi\)
0.125320 + 0.992116i \(0.460004\pi\)
\(132\) 0 0
\(133\) 1.60628 0.139282
\(134\) 0 0
\(135\) 21.1046 1.81639
\(136\) 0 0
\(137\) 3.98782 0.340703 0.170351 0.985383i \(-0.445510\pi\)
0.170351 + 0.985383i \(0.445510\pi\)
\(138\) 0 0
\(139\) 13.5921 1.15287 0.576433 0.817144i \(-0.304444\pi\)
0.576433 + 0.817144i \(0.304444\pi\)
\(140\) 0 0
\(141\) 25.1346 2.11671
\(142\) 0 0
\(143\) −5.76901 −0.482429
\(144\) 0 0
\(145\) −0.0113573 −0.000943169 0
\(146\) 0 0
\(147\) 3.44016 0.283740
\(148\) 0 0
\(149\) 18.5196 1.51718 0.758592 0.651566i \(-0.225888\pi\)
0.758592 + 0.651566i \(0.225888\pi\)
\(150\) 0 0
\(151\) −4.11503 −0.334877 −0.167438 0.985883i \(-0.553549\pi\)
−0.167438 + 0.985883i \(0.553549\pi\)
\(152\) 0 0
\(153\) 24.8664 2.01033
\(154\) 0 0
\(155\) −1.50287 −0.120713
\(156\) 0 0
\(157\) −16.4802 −1.31527 −0.657633 0.753339i \(-0.728442\pi\)
−0.657633 + 0.753339i \(0.728442\pi\)
\(158\) 0 0
\(159\) 47.4858 3.76587
\(160\) 0 0
\(161\) 3.19118 0.251501
\(162\) 0 0
\(163\) 0.794206 0.0622070 0.0311035 0.999516i \(-0.490098\pi\)
0.0311035 + 0.999516i \(0.490098\pi\)
\(164\) 0 0
\(165\) 20.8670 1.62449
\(166\) 0 0
\(167\) 18.8522 1.45883 0.729415 0.684072i \(-0.239793\pi\)
0.729415 + 0.684072i \(0.239793\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −14.1910 −1.08521
\(172\) 0 0
\(173\) −9.03725 −0.687089 −0.343545 0.939136i \(-0.611628\pi\)
−0.343545 + 0.939136i \(0.611628\pi\)
\(174\) 0 0
\(175\) 3.89450 0.294397
\(176\) 0 0
\(177\) −27.8292 −2.09177
\(178\) 0 0
\(179\) 22.5855 1.68812 0.844060 0.536248i \(-0.180159\pi\)
0.844060 + 0.536248i \(0.180159\pi\)
\(180\) 0 0
\(181\) −22.4566 −1.66918 −0.834592 0.550869i \(-0.814296\pi\)
−0.834592 + 0.550869i \(0.814296\pi\)
\(182\) 0 0
\(183\) −19.8044 −1.46399
\(184\) 0 0
\(185\) −6.64908 −0.488850
\(186\) 0 0
\(187\) 16.2376 1.18741
\(188\) 0 0
\(189\) −20.0723 −1.46005
\(190\) 0 0
\(191\) 11.8711 0.858959 0.429480 0.903077i \(-0.358697\pi\)
0.429480 + 0.903077i \(0.358697\pi\)
\(192\) 0 0
\(193\) −21.8508 −1.57285 −0.786426 0.617684i \(-0.788071\pi\)
−0.786426 + 0.617684i \(0.788071\pi\)
\(194\) 0 0
\(195\) −3.61708 −0.259024
\(196\) 0 0
\(197\) 9.87660 0.703679 0.351839 0.936060i \(-0.385556\pi\)
0.351839 + 0.936060i \(0.385556\pi\)
\(198\) 0 0
\(199\) 1.66641 0.118129 0.0590645 0.998254i \(-0.481188\pi\)
0.0590645 + 0.998254i \(0.481188\pi\)
\(200\) 0 0
\(201\) −33.4093 −2.35651
\(202\) 0 0
\(203\) 0.0108018 0.000758135 0
\(204\) 0 0
\(205\) −6.05289 −0.422752
\(206\) 0 0
\(207\) −28.1932 −1.95956
\(208\) 0 0
\(209\) −9.26662 −0.640986
\(210\) 0 0
\(211\) −1.82834 −0.125868 −0.0629340 0.998018i \(-0.520046\pi\)
−0.0629340 + 0.998018i \(0.520046\pi\)
\(212\) 0 0
\(213\) 12.4433 0.852603
\(214\) 0 0
\(215\) −7.38721 −0.503803
\(216\) 0 0
\(217\) 1.42936 0.0970312
\(218\) 0 0
\(219\) −10.1683 −0.687109
\(220\) 0 0
\(221\) −2.81463 −0.189332
\(222\) 0 0
\(223\) −22.8878 −1.53268 −0.766339 0.642436i \(-0.777924\pi\)
−0.766339 + 0.642436i \(0.777924\pi\)
\(224\) 0 0
\(225\) −34.4068 −2.29379
\(226\) 0 0
\(227\) −1.84443 −0.122419 −0.0612096 0.998125i \(-0.519496\pi\)
−0.0612096 + 0.998125i \(0.519496\pi\)
\(228\) 0 0
\(229\) 2.06514 0.136468 0.0682341 0.997669i \(-0.478264\pi\)
0.0682341 + 0.997669i \(0.478264\pi\)
\(230\) 0 0
\(231\) −19.8463 −1.30579
\(232\) 0 0
\(233\) −17.8732 −1.17091 −0.585457 0.810703i \(-0.699085\pi\)
−0.585457 + 0.810703i \(0.699085\pi\)
\(234\) 0 0
\(235\) 7.68195 0.501115
\(236\) 0 0
\(237\) −40.4366 −2.62664
\(238\) 0 0
\(239\) −26.2742 −1.69954 −0.849769 0.527155i \(-0.823259\pi\)
−0.849769 + 0.527155i \(0.823259\pi\)
\(240\) 0 0
\(241\) −20.1945 −1.30084 −0.650422 0.759573i \(-0.725408\pi\)
−0.650422 + 0.759573i \(0.725408\pi\)
\(242\) 0 0
\(243\) 86.1547 5.52682
\(244\) 0 0
\(245\) 1.05143 0.0671732
\(246\) 0 0
\(247\) 1.60628 0.102205
\(248\) 0 0
\(249\) −13.3561 −0.846410
\(250\) 0 0
\(251\) 8.93528 0.563990 0.281995 0.959416i \(-0.409004\pi\)
0.281995 + 0.959416i \(0.409004\pi\)
\(252\) 0 0
\(253\) −18.4100 −1.15743
\(254\) 0 0
\(255\) 10.1807 0.637542
\(256\) 0 0
\(257\) 5.31676 0.331650 0.165825 0.986155i \(-0.446971\pi\)
0.165825 + 0.986155i \(0.446971\pi\)
\(258\) 0 0
\(259\) 6.32386 0.392946
\(260\) 0 0
\(261\) −0.0954303 −0.00590699
\(262\) 0 0
\(263\) 9.55913 0.589441 0.294721 0.955583i \(-0.404773\pi\)
0.294721 + 0.955583i \(0.404773\pi\)
\(264\) 0 0
\(265\) 14.5132 0.891540
\(266\) 0 0
\(267\) 41.3150 2.52844
\(268\) 0 0
\(269\) 5.24050 0.319519 0.159759 0.987156i \(-0.448928\pi\)
0.159759 + 0.987156i \(0.448928\pi\)
\(270\) 0 0
\(271\) 1.77426 0.107779 0.0538893 0.998547i \(-0.482838\pi\)
0.0538893 + 0.998547i \(0.482838\pi\)
\(272\) 0 0
\(273\) 3.44016 0.208208
\(274\) 0 0
\(275\) −22.4674 −1.35484
\(276\) 0 0
\(277\) −5.58412 −0.335517 −0.167759 0.985828i \(-0.553653\pi\)
−0.167759 + 0.985828i \(0.553653\pi\)
\(278\) 0 0
\(279\) −12.6280 −0.756017
\(280\) 0 0
\(281\) −8.01704 −0.478257 −0.239128 0.970988i \(-0.576862\pi\)
−0.239128 + 0.970988i \(0.576862\pi\)
\(282\) 0 0
\(283\) 15.7009 0.933321 0.466661 0.884436i \(-0.345457\pi\)
0.466661 + 0.884436i \(0.345457\pi\)
\(284\) 0 0
\(285\) −5.81002 −0.344156
\(286\) 0 0
\(287\) 5.75683 0.339815
\(288\) 0 0
\(289\) −9.07787 −0.533992
\(290\) 0 0
\(291\) −37.0962 −2.17462
\(292\) 0 0
\(293\) −19.2194 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(294\) 0 0
\(295\) −8.50551 −0.495210
\(296\) 0 0
\(297\) 115.797 6.71925
\(298\) 0 0
\(299\) 3.19118 0.184551
\(300\) 0 0
\(301\) 7.02589 0.404966
\(302\) 0 0
\(303\) −22.3512 −1.28404
\(304\) 0 0
\(305\) −6.05289 −0.346587
\(306\) 0 0
\(307\) 10.5292 0.600932 0.300466 0.953793i \(-0.402858\pi\)
0.300466 + 0.953793i \(0.402858\pi\)
\(308\) 0 0
\(309\) 60.4318 3.43784
\(310\) 0 0
\(311\) −16.9676 −0.962145 −0.481073 0.876681i \(-0.659753\pi\)
−0.481073 + 0.876681i \(0.659753\pi\)
\(312\) 0 0
\(313\) 15.4840 0.875205 0.437602 0.899169i \(-0.355828\pi\)
0.437602 + 0.899169i \(0.355828\pi\)
\(314\) 0 0
\(315\) −9.28905 −0.523378
\(316\) 0 0
\(317\) 7.55857 0.424532 0.212266 0.977212i \(-0.431916\pi\)
0.212266 + 0.977212i \(0.431916\pi\)
\(318\) 0 0
\(319\) −0.0623155 −0.00348900
\(320\) 0 0
\(321\) 13.4928 0.753092
\(322\) 0 0
\(323\) −4.52107 −0.251559
\(324\) 0 0
\(325\) 3.89450 0.216028
\(326\) 0 0
\(327\) −29.9001 −1.65348
\(328\) 0 0
\(329\) −7.30622 −0.402805
\(330\) 0 0
\(331\) −28.0556 −1.54207 −0.771037 0.636790i \(-0.780262\pi\)
−0.771037 + 0.636790i \(0.780262\pi\)
\(332\) 0 0
\(333\) −55.8694 −3.06163
\(334\) 0 0
\(335\) −10.2110 −0.557886
\(336\) 0 0
\(337\) 13.4572 0.733058 0.366529 0.930407i \(-0.380546\pi\)
0.366529 + 0.930407i \(0.380546\pi\)
\(338\) 0 0
\(339\) −35.2693 −1.91557
\(340\) 0 0
\(341\) −8.24599 −0.446545
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −11.5428 −0.621441
\(346\) 0 0
\(347\) −14.0801 −0.755861 −0.377931 0.925834i \(-0.623364\pi\)
−0.377931 + 0.925834i \(0.623364\pi\)
\(348\) 0 0
\(349\) 19.6215 1.05031 0.525156 0.851006i \(-0.324007\pi\)
0.525156 + 0.851006i \(0.324007\pi\)
\(350\) 0 0
\(351\) −20.0723 −1.07138
\(352\) 0 0
\(353\) −9.35435 −0.497882 −0.248941 0.968519i \(-0.580082\pi\)
−0.248941 + 0.968519i \(0.580082\pi\)
\(354\) 0 0
\(355\) 3.80309 0.201847
\(356\) 0 0
\(357\) −9.68277 −0.512467
\(358\) 0 0
\(359\) −30.9826 −1.63520 −0.817600 0.575787i \(-0.804696\pi\)
−0.817600 + 0.575787i \(0.804696\pi\)
\(360\) 0 0
\(361\) −16.4199 −0.864204
\(362\) 0 0
\(363\) 76.6519 4.02318
\(364\) 0 0
\(365\) −3.10777 −0.162668
\(366\) 0 0
\(367\) 26.8021 1.39906 0.699528 0.714605i \(-0.253393\pi\)
0.699528 + 0.714605i \(0.253393\pi\)
\(368\) 0 0
\(369\) −50.8599 −2.64766
\(370\) 0 0
\(371\) −13.8034 −0.716635
\(372\) 0 0
\(373\) 27.7647 1.43760 0.718801 0.695216i \(-0.244691\pi\)
0.718801 + 0.695216i \(0.244691\pi\)
\(374\) 0 0
\(375\) −32.1721 −1.66136
\(376\) 0 0
\(377\) 0.0108018 0.000556319 0
\(378\) 0 0
\(379\) 19.8055 1.01734 0.508671 0.860961i \(-0.330137\pi\)
0.508671 + 0.860961i \(0.330137\pi\)
\(380\) 0 0
\(381\) 72.5041 3.71450
\(382\) 0 0
\(383\) 23.0086 1.17568 0.587842 0.808976i \(-0.299978\pi\)
0.587842 + 0.808976i \(0.299978\pi\)
\(384\) 0 0
\(385\) −6.06569 −0.309136
\(386\) 0 0
\(387\) −62.0717 −3.15528
\(388\) 0 0
\(389\) −6.21924 −0.315328 −0.157664 0.987493i \(-0.550396\pi\)
−0.157664 + 0.987493i \(0.550396\pi\)
\(390\) 0 0
\(391\) −8.98199 −0.454239
\(392\) 0 0
\(393\) 9.86879 0.497814
\(394\) 0 0
\(395\) −12.3588 −0.621837
\(396\) 0 0
\(397\) −15.0764 −0.756663 −0.378332 0.925670i \(-0.623502\pi\)
−0.378332 + 0.925670i \(0.623502\pi\)
\(398\) 0 0
\(399\) 5.52585 0.276638
\(400\) 0 0
\(401\) 30.5899 1.52759 0.763793 0.645461i \(-0.223335\pi\)
0.763793 + 0.645461i \(0.223335\pi\)
\(402\) 0 0
\(403\) 1.42936 0.0712014
\(404\) 0 0
\(405\) 44.7360 2.22295
\(406\) 0 0
\(407\) −36.4824 −1.80837
\(408\) 0 0
\(409\) 4.16773 0.206081 0.103040 0.994677i \(-0.467143\pi\)
0.103040 + 0.994677i \(0.467143\pi\)
\(410\) 0 0
\(411\) 13.7187 0.676696
\(412\) 0 0
\(413\) 8.08949 0.398058
\(414\) 0 0
\(415\) −4.08207 −0.200381
\(416\) 0 0
\(417\) 46.7590 2.28980
\(418\) 0 0
\(419\) 10.4159 0.508850 0.254425 0.967093i \(-0.418114\pi\)
0.254425 + 0.967093i \(0.418114\pi\)
\(420\) 0 0
\(421\) 6.05433 0.295070 0.147535 0.989057i \(-0.452866\pi\)
0.147535 + 0.989057i \(0.452866\pi\)
\(422\) 0 0
\(423\) 64.5483 3.13844
\(424\) 0 0
\(425\) −10.9616 −0.531714
\(426\) 0 0
\(427\) 5.75683 0.278593
\(428\) 0 0
\(429\) −19.8463 −0.958190
\(430\) 0 0
\(431\) 7.38667 0.355804 0.177902 0.984048i \(-0.443069\pi\)
0.177902 + 0.984048i \(0.443069\pi\)
\(432\) 0 0
\(433\) −33.1642 −1.59377 −0.796886 0.604130i \(-0.793521\pi\)
−0.796886 + 0.604130i \(0.793521\pi\)
\(434\) 0 0
\(435\) −0.0390708 −0.00187330
\(436\) 0 0
\(437\) 5.12592 0.245206
\(438\) 0 0
\(439\) −23.0185 −1.09861 −0.549306 0.835621i \(-0.685108\pi\)
−0.549306 + 0.835621i \(0.685108\pi\)
\(440\) 0 0
\(441\) 8.83471 0.420700
\(442\) 0 0
\(443\) 22.6940 1.07822 0.539112 0.842234i \(-0.318760\pi\)
0.539112 + 0.842234i \(0.318760\pi\)
\(444\) 0 0
\(445\) 12.6272 0.598588
\(446\) 0 0
\(447\) 63.7104 3.01340
\(448\) 0 0
\(449\) −16.1045 −0.760018 −0.380009 0.924983i \(-0.624079\pi\)
−0.380009 + 0.924983i \(0.624079\pi\)
\(450\) 0 0
\(451\) −33.2112 −1.56386
\(452\) 0 0
\(453\) −14.1564 −0.665124
\(454\) 0 0
\(455\) 1.05143 0.0492917
\(456\) 0 0
\(457\) −35.0112 −1.63775 −0.818876 0.573970i \(-0.805403\pi\)
−0.818876 + 0.573970i \(0.805403\pi\)
\(458\) 0 0
\(459\) 56.4961 2.63701
\(460\) 0 0
\(461\) 5.50691 0.256482 0.128241 0.991743i \(-0.459067\pi\)
0.128241 + 0.991743i \(0.459067\pi\)
\(462\) 0 0
\(463\) 25.5159 1.18582 0.592911 0.805268i \(-0.297978\pi\)
0.592911 + 0.805268i \(0.297978\pi\)
\(464\) 0 0
\(465\) −5.17010 −0.239758
\(466\) 0 0
\(467\) 20.6965 0.957720 0.478860 0.877891i \(-0.341050\pi\)
0.478860 + 0.877891i \(0.341050\pi\)
\(468\) 0 0
\(469\) 9.71156 0.448438
\(470\) 0 0
\(471\) −56.6946 −2.61235
\(472\) 0 0
\(473\) −40.5324 −1.86368
\(474\) 0 0
\(475\) 6.25564 0.287029
\(476\) 0 0
\(477\) 121.949 5.58364
\(478\) 0 0
\(479\) −39.3007 −1.79569 −0.897847 0.440308i \(-0.854869\pi\)
−0.897847 + 0.440308i \(0.854869\pi\)
\(480\) 0 0
\(481\) 6.32386 0.288343
\(482\) 0 0
\(483\) 10.9782 0.499525
\(484\) 0 0
\(485\) −11.3378 −0.514824
\(486\) 0 0
\(487\) 22.2391 1.00775 0.503875 0.863777i \(-0.331907\pi\)
0.503875 + 0.863777i \(0.331907\pi\)
\(488\) 0 0
\(489\) 2.73220 0.123554
\(490\) 0 0
\(491\) 33.8186 1.52621 0.763105 0.646275i \(-0.223674\pi\)
0.763105 + 0.646275i \(0.223674\pi\)
\(492\) 0 0
\(493\) −0.0304029 −0.00136928
\(494\) 0 0
\(495\) 53.5886 2.40863
\(496\) 0 0
\(497\) −3.61708 −0.162248
\(498\) 0 0
\(499\) −20.8934 −0.935316 −0.467658 0.883909i \(-0.654902\pi\)
−0.467658 + 0.883909i \(0.654902\pi\)
\(500\) 0 0
\(501\) 64.8547 2.89749
\(502\) 0 0
\(503\) −33.1978 −1.48021 −0.740107 0.672489i \(-0.765225\pi\)
−0.740107 + 0.672489i \(0.765225\pi\)
\(504\) 0 0
\(505\) −6.83127 −0.303988
\(506\) 0 0
\(507\) 3.44016 0.152783
\(508\) 0 0
\(509\) −12.8893 −0.571306 −0.285653 0.958333i \(-0.592211\pi\)
−0.285653 + 0.958333i \(0.592211\pi\)
\(510\) 0 0
\(511\) 2.95576 0.130755
\(512\) 0 0
\(513\) −32.2417 −1.42351
\(514\) 0 0
\(515\) 18.4700 0.813883
\(516\) 0 0
\(517\) 42.1496 1.85374
\(518\) 0 0
\(519\) −31.0896 −1.36468
\(520\) 0 0
\(521\) 12.0174 0.526493 0.263246 0.964729i \(-0.415207\pi\)
0.263246 + 0.964729i \(0.415207\pi\)
\(522\) 0 0
\(523\) −8.60299 −0.376183 −0.188091 0.982152i \(-0.560230\pi\)
−0.188091 + 0.982152i \(0.560230\pi\)
\(524\) 0 0
\(525\) 13.3977 0.584724
\(526\) 0 0
\(527\) −4.02311 −0.175250
\(528\) 0 0
\(529\) −12.8163 −0.557232
\(530\) 0 0
\(531\) −71.4683 −3.10146
\(532\) 0 0
\(533\) 5.75683 0.249356
\(534\) 0 0
\(535\) 4.12383 0.178289
\(536\) 0 0
\(537\) 77.6978 3.35291
\(538\) 0 0
\(539\) 5.76901 0.248489
\(540\) 0 0
\(541\) −3.29905 −0.141837 −0.0709186 0.997482i \(-0.522593\pi\)
−0.0709186 + 0.997482i \(0.522593\pi\)
\(542\) 0 0
\(543\) −77.2542 −3.31529
\(544\) 0 0
\(545\) −9.13846 −0.391449
\(546\) 0 0
\(547\) 35.5790 1.52125 0.760624 0.649193i \(-0.224893\pi\)
0.760624 + 0.649193i \(0.224893\pi\)
\(548\) 0 0
\(549\) −50.8599 −2.17065
\(550\) 0 0
\(551\) 0.0173506 0.000739160 0
\(552\) 0 0
\(553\) 11.7543 0.499843
\(554\) 0 0
\(555\) −22.8739 −0.970943
\(556\) 0 0
\(557\) −17.5244 −0.742533 −0.371266 0.928526i \(-0.621076\pi\)
−0.371266 + 0.928526i \(0.621076\pi\)
\(558\) 0 0
\(559\) 7.02589 0.297163
\(560\) 0 0
\(561\) 55.8600 2.35841
\(562\) 0 0
\(563\) 8.50995 0.358651 0.179326 0.983790i \(-0.442608\pi\)
0.179326 + 0.983790i \(0.442608\pi\)
\(564\) 0 0
\(565\) −10.7795 −0.453496
\(566\) 0 0
\(567\) −42.5479 −1.78684
\(568\) 0 0
\(569\) −44.1447 −1.85064 −0.925321 0.379184i \(-0.876205\pi\)
−0.925321 + 0.379184i \(0.876205\pi\)
\(570\) 0 0
\(571\) −15.6944 −0.656791 −0.328395 0.944540i \(-0.606508\pi\)
−0.328395 + 0.944540i \(0.606508\pi\)
\(572\) 0 0
\(573\) 40.8383 1.70605
\(574\) 0 0
\(575\) 12.4281 0.518286
\(576\) 0 0
\(577\) −1.57236 −0.0654582 −0.0327291 0.999464i \(-0.510420\pi\)
−0.0327291 + 0.999464i \(0.510420\pi\)
\(578\) 0 0
\(579\) −75.1701 −3.12396
\(580\) 0 0
\(581\) 3.88241 0.161070
\(582\) 0 0
\(583\) 79.6317 3.29801
\(584\) 0 0
\(585\) −9.28905 −0.384055
\(586\) 0 0
\(587\) −33.2622 −1.37288 −0.686438 0.727188i \(-0.740827\pi\)
−0.686438 + 0.727188i \(0.740827\pi\)
\(588\) 0 0
\(589\) 2.29594 0.0946027
\(590\) 0 0
\(591\) 33.9771 1.39763
\(592\) 0 0
\(593\) −28.7357 −1.18003 −0.590017 0.807391i \(-0.700879\pi\)
−0.590017 + 0.807391i \(0.700879\pi\)
\(594\) 0 0
\(595\) −2.95937 −0.121323
\(596\) 0 0
\(597\) 5.73274 0.234625
\(598\) 0 0
\(599\) −5.51603 −0.225379 −0.112689 0.993630i \(-0.535947\pi\)
−0.112689 + 0.993630i \(0.535947\pi\)
\(600\) 0 0
\(601\) 26.8938 1.09702 0.548510 0.836144i \(-0.315195\pi\)
0.548510 + 0.836144i \(0.315195\pi\)
\(602\) 0 0
\(603\) −85.7988 −3.49400
\(604\) 0 0
\(605\) 23.4274 0.952458
\(606\) 0 0
\(607\) 14.8000 0.600712 0.300356 0.953827i \(-0.402895\pi\)
0.300356 + 0.953827i \(0.402895\pi\)
\(608\) 0 0
\(609\) 0.0371598 0.00150579
\(610\) 0 0
\(611\) −7.30622 −0.295578
\(612\) 0 0
\(613\) 28.5366 1.15258 0.576292 0.817244i \(-0.304499\pi\)
0.576292 + 0.817244i \(0.304499\pi\)
\(614\) 0 0
\(615\) −20.8229 −0.839661
\(616\) 0 0
\(617\) 40.5038 1.63062 0.815310 0.579024i \(-0.196566\pi\)
0.815310 + 0.579024i \(0.196566\pi\)
\(618\) 0 0
\(619\) −15.8087 −0.635404 −0.317702 0.948191i \(-0.602911\pi\)
−0.317702 + 0.948191i \(0.602911\pi\)
\(620\) 0 0
\(621\) −64.0545 −2.57042
\(622\) 0 0
\(623\) −12.0096 −0.481155
\(624\) 0 0
\(625\) 9.63965 0.385586
\(626\) 0 0
\(627\) −31.8787 −1.27311
\(628\) 0 0
\(629\) −17.7993 −0.709705
\(630\) 0 0
\(631\) 36.2717 1.44395 0.721977 0.691918i \(-0.243234\pi\)
0.721977 + 0.691918i \(0.243234\pi\)
\(632\) 0 0
\(633\) −6.28978 −0.249996
\(634\) 0 0
\(635\) 22.1597 0.879379
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) 31.9558 1.26415
\(640\) 0 0
\(641\) −28.0970 −1.10976 −0.554882 0.831929i \(-0.687237\pi\)
−0.554882 + 0.831929i \(0.687237\pi\)
\(642\) 0 0
\(643\) −5.54783 −0.218785 −0.109393 0.993999i \(-0.534891\pi\)
−0.109393 + 0.993999i \(0.534891\pi\)
\(644\) 0 0
\(645\) −25.4132 −1.00064
\(646\) 0 0
\(647\) 8.32318 0.327218 0.163609 0.986525i \(-0.447686\pi\)
0.163609 + 0.986525i \(0.447686\pi\)
\(648\) 0 0
\(649\) −46.6684 −1.83189
\(650\) 0 0
\(651\) 4.91722 0.192721
\(652\) 0 0
\(653\) −14.0819 −0.551069 −0.275534 0.961291i \(-0.588855\pi\)
−0.275534 + 0.961291i \(0.588855\pi\)
\(654\) 0 0
\(655\) 3.01623 0.117854
\(656\) 0 0
\(657\) −26.1133 −1.01878
\(658\) 0 0
\(659\) 8.64161 0.336629 0.168315 0.985733i \(-0.446168\pi\)
0.168315 + 0.985733i \(0.446168\pi\)
\(660\) 0 0
\(661\) 31.1208 1.21046 0.605230 0.796051i \(-0.293081\pi\)
0.605230 + 0.796051i \(0.293081\pi\)
\(662\) 0 0
\(663\) −9.68277 −0.376048
\(664\) 0 0
\(665\) 1.68888 0.0654920
\(666\) 0 0
\(667\) 0.0344704 0.00133470
\(668\) 0 0
\(669\) −78.7376 −3.04417
\(670\) 0 0
\(671\) −33.2112 −1.28211
\(672\) 0 0
\(673\) 17.3266 0.667893 0.333946 0.942592i \(-0.391620\pi\)
0.333946 + 0.942592i \(0.391620\pi\)
\(674\) 0 0
\(675\) −78.1717 −3.00883
\(676\) 0 0
\(677\) 39.3738 1.51326 0.756629 0.653844i \(-0.226845\pi\)
0.756629 + 0.653844i \(0.226845\pi\)
\(678\) 0 0
\(679\) 10.7833 0.413824
\(680\) 0 0
\(681\) −6.34514 −0.243146
\(682\) 0 0
\(683\) 15.9637 0.610832 0.305416 0.952219i \(-0.401204\pi\)
0.305416 + 0.952219i \(0.401204\pi\)
\(684\) 0 0
\(685\) 4.19290 0.160203
\(686\) 0 0
\(687\) 7.10441 0.271050
\(688\) 0 0
\(689\) −13.8034 −0.525866
\(690\) 0 0
\(691\) −5.50647 −0.209476 −0.104738 0.994500i \(-0.533400\pi\)
−0.104738 + 0.994500i \(0.533400\pi\)
\(692\) 0 0
\(693\) −50.9675 −1.93610
\(694\) 0 0
\(695\) 14.2911 0.542092
\(696\) 0 0
\(697\) −16.2033 −0.613745
\(698\) 0 0
\(699\) −61.4868 −2.32565
\(700\) 0 0
\(701\) −25.3011 −0.955610 −0.477805 0.878466i \(-0.658568\pi\)
−0.477805 + 0.878466i \(0.658568\pi\)
\(702\) 0 0
\(703\) 10.1579 0.383111
\(704\) 0 0
\(705\) 26.4271 0.995304
\(706\) 0 0
\(707\) 6.49714 0.244350
\(708\) 0 0
\(709\) 37.4215 1.40539 0.702697 0.711489i \(-0.251979\pi\)
0.702697 + 0.711489i \(0.251979\pi\)
\(710\) 0 0
\(711\) −103.846 −3.89451
\(712\) 0 0
\(713\) 4.56135 0.170824
\(714\) 0 0
\(715\) −6.06569 −0.226844
\(716\) 0 0
\(717\) −90.3876 −3.37559
\(718\) 0 0
\(719\) 19.3116 0.720203 0.360101 0.932913i \(-0.382742\pi\)
0.360101 + 0.932913i \(0.382742\pi\)
\(720\) 0 0
\(721\) −17.5666 −0.654213
\(722\) 0 0
\(723\) −69.4724 −2.58371
\(724\) 0 0
\(725\) 0.0420675 0.00156235
\(726\) 0 0
\(727\) −5.88441 −0.218241 −0.109120 0.994029i \(-0.534803\pi\)
−0.109120 + 0.994029i \(0.534803\pi\)
\(728\) 0 0
\(729\) 168.742 6.24971
\(730\) 0 0
\(731\) −19.7753 −0.731414
\(732\) 0 0
\(733\) −47.4603 −1.75299 −0.876493 0.481414i \(-0.840123\pi\)
−0.876493 + 0.481414i \(0.840123\pi\)
\(734\) 0 0
\(735\) 3.61708 0.133418
\(736\) 0 0
\(737\) −56.0261 −2.06375
\(738\) 0 0
\(739\) 6.41585 0.236011 0.118005 0.993013i \(-0.462350\pi\)
0.118005 + 0.993013i \(0.462350\pi\)
\(740\) 0 0
\(741\) 5.52585 0.202997
\(742\) 0 0
\(743\) 5.71193 0.209550 0.104775 0.994496i \(-0.466588\pi\)
0.104775 + 0.994496i \(0.466588\pi\)
\(744\) 0 0
\(745\) 19.4720 0.713399
\(746\) 0 0
\(747\) −34.3000 −1.25497
\(748\) 0 0
\(749\) −3.92213 −0.143311
\(750\) 0 0
\(751\) −1.20506 −0.0439731 −0.0219866 0.999758i \(-0.506999\pi\)
−0.0219866 + 0.999758i \(0.506999\pi\)
\(752\) 0 0
\(753\) 30.7388 1.12018
\(754\) 0 0
\(755\) −4.32665 −0.157463
\(756\) 0 0
\(757\) 6.03447 0.219327 0.109663 0.993969i \(-0.465023\pi\)
0.109663 + 0.993969i \(0.465023\pi\)
\(758\) 0 0
\(759\) −63.3333 −2.29885
\(760\) 0 0
\(761\) −38.5211 −1.39639 −0.698194 0.715908i \(-0.746013\pi\)
−0.698194 + 0.715908i \(0.746013\pi\)
\(762\) 0 0
\(763\) 8.69148 0.314653
\(764\) 0 0
\(765\) 26.1452 0.945282
\(766\) 0 0
\(767\) 8.08949 0.292095
\(768\) 0 0
\(769\) −47.2558 −1.70409 −0.852044 0.523470i \(-0.824637\pi\)
−0.852044 + 0.523470i \(0.824637\pi\)
\(770\) 0 0
\(771\) 18.2905 0.658717
\(772\) 0 0
\(773\) 0.269359 0.00968816 0.00484408 0.999988i \(-0.498458\pi\)
0.00484408 + 0.999988i \(0.498458\pi\)
\(774\) 0 0
\(775\) 5.56664 0.199960
\(776\) 0 0
\(777\) 21.7551 0.780460
\(778\) 0 0
\(779\) 9.24706 0.331310
\(780\) 0 0
\(781\) 20.8670 0.746679
\(782\) 0 0
\(783\) −0.216816 −0.00774838
\(784\) 0 0
\(785\) −17.3278 −0.618454
\(786\) 0 0
\(787\) −14.9545 −0.533069 −0.266534 0.963825i \(-0.585879\pi\)
−0.266534 + 0.963825i \(0.585879\pi\)
\(788\) 0 0
\(789\) 32.8850 1.17074
\(790\) 0 0
\(791\) 10.2522 0.364527
\(792\) 0 0
\(793\) 5.75683 0.204431
\(794\) 0 0
\(795\) 49.9278 1.77076
\(796\) 0 0
\(797\) 27.2080 0.963758 0.481879 0.876238i \(-0.339955\pi\)
0.481879 + 0.876238i \(0.339955\pi\)
\(798\) 0 0
\(799\) 20.5643 0.727512
\(800\) 0 0
\(801\) 106.101 3.74891
\(802\) 0 0
\(803\) −17.0518 −0.601746
\(804\) 0 0
\(805\) 3.35530 0.118259
\(806\) 0 0
\(807\) 18.0282 0.634621
\(808\) 0 0
\(809\) 33.1514 1.16554 0.582770 0.812637i \(-0.301969\pi\)
0.582770 + 0.812637i \(0.301969\pi\)
\(810\) 0 0
\(811\) 32.5660 1.14355 0.571774 0.820411i \(-0.306255\pi\)
0.571774 + 0.820411i \(0.306255\pi\)
\(812\) 0 0
\(813\) 6.10374 0.214067
\(814\) 0 0
\(815\) 0.835049 0.0292505
\(816\) 0 0
\(817\) 11.2855 0.394830
\(818\) 0 0
\(819\) 8.83471 0.308710
\(820\) 0 0
\(821\) 17.5724 0.613280 0.306640 0.951826i \(-0.400795\pi\)
0.306640 + 0.951826i \(0.400795\pi\)
\(822\) 0 0
\(823\) −14.0374 −0.489312 −0.244656 0.969610i \(-0.578675\pi\)
−0.244656 + 0.969610i \(0.578675\pi\)
\(824\) 0 0
\(825\) −77.2916 −2.69095
\(826\) 0 0
\(827\) 2.20153 0.0765547 0.0382773 0.999267i \(-0.487813\pi\)
0.0382773 + 0.999267i \(0.487813\pi\)
\(828\) 0 0
\(829\) −27.5802 −0.957901 −0.478950 0.877842i \(-0.658983\pi\)
−0.478950 + 0.877842i \(0.658983\pi\)
\(830\) 0 0
\(831\) −19.2103 −0.666396
\(832\) 0 0
\(833\) 2.81463 0.0975211
\(834\) 0 0
\(835\) 19.8217 0.685959
\(836\) 0 0
\(837\) −28.6906 −0.991691
\(838\) 0 0
\(839\) 4.85302 0.167545 0.0837724 0.996485i \(-0.473303\pi\)
0.0837724 + 0.996485i \(0.473303\pi\)
\(840\) 0 0
\(841\) −28.9999 −0.999996
\(842\) 0 0
\(843\) −27.5799 −0.949903
\(844\) 0 0
\(845\) 1.05143 0.0361702
\(846\) 0 0
\(847\) −22.2815 −0.765601
\(848\) 0 0
\(849\) 54.0136 1.85374
\(850\) 0 0
\(851\) 20.1806 0.691782
\(852\) 0 0
\(853\) −44.3108 −1.51717 −0.758587 0.651572i \(-0.774110\pi\)
−0.758587 + 0.651572i \(0.774110\pi\)
\(854\) 0 0
\(855\) −14.9208 −0.510280
\(856\) 0 0
\(857\) 33.9517 1.15977 0.579884 0.814699i \(-0.303098\pi\)
0.579884 + 0.814699i \(0.303098\pi\)
\(858\) 0 0
\(859\) −5.48700 −0.187214 −0.0936071 0.995609i \(-0.529840\pi\)
−0.0936071 + 0.995609i \(0.529840\pi\)
\(860\) 0 0
\(861\) 19.8044 0.674933
\(862\) 0 0
\(863\) −23.4104 −0.796899 −0.398449 0.917190i \(-0.630452\pi\)
−0.398449 + 0.917190i \(0.630452\pi\)
\(864\) 0 0
\(865\) −9.50200 −0.323078
\(866\) 0 0
\(867\) −31.2293 −1.06060
\(868\) 0 0
\(869\) −67.8106 −2.30032
\(870\) 0 0
\(871\) 9.71156 0.329064
\(872\) 0 0
\(873\) −95.2671 −3.22430
\(874\) 0 0
\(875\) 9.35192 0.316153
\(876\) 0 0
\(877\) −14.0392 −0.474071 −0.237036 0.971501i \(-0.576176\pi\)
−0.237036 + 0.971501i \(0.576176\pi\)
\(878\) 0 0
\(879\) −66.1179 −2.23010
\(880\) 0 0
\(881\) 7.62250 0.256808 0.128404 0.991722i \(-0.459015\pi\)
0.128404 + 0.991722i \(0.459015\pi\)
\(882\) 0 0
\(883\) −13.4738 −0.453431 −0.226715 0.973961i \(-0.572799\pi\)
−0.226715 + 0.973961i \(0.572799\pi\)
\(884\) 0 0
\(885\) −29.2603 −0.983575
\(886\) 0 0
\(887\) 24.8602 0.834723 0.417362 0.908740i \(-0.362955\pi\)
0.417362 + 0.908740i \(0.362955\pi\)
\(888\) 0 0
\(889\) −21.0758 −0.706859
\(890\) 0 0
\(891\) 245.459 8.22320
\(892\) 0 0
\(893\) −11.7358 −0.392723
\(894\) 0 0
\(895\) 23.7470 0.793775
\(896\) 0 0
\(897\) 10.9782 0.366551
\(898\) 0 0
\(899\) 0.0154396 0.000514939 0
\(900\) 0 0
\(901\) 38.8513 1.29432
\(902\) 0 0
\(903\) 24.1702 0.804334
\(904\) 0 0
\(905\) −23.6114 −0.784871
\(906\) 0 0
\(907\) 37.1017 1.23194 0.615971 0.787769i \(-0.288764\pi\)
0.615971 + 0.787769i \(0.288764\pi\)
\(908\) 0 0
\(909\) −57.4003 −1.90385
\(910\) 0 0
\(911\) −35.5028 −1.17626 −0.588130 0.808767i \(-0.700136\pi\)
−0.588130 + 0.808767i \(0.700136\pi\)
\(912\) 0 0
\(913\) −22.3977 −0.741255
\(914\) 0 0
\(915\) −20.8229 −0.688384
\(916\) 0 0
\(917\) −2.86870 −0.0947328
\(918\) 0 0
\(919\) −44.9888 −1.48404 −0.742022 0.670376i \(-0.766133\pi\)
−0.742022 + 0.670376i \(0.766133\pi\)
\(920\) 0 0
\(921\) 36.2221 1.19356
\(922\) 0 0
\(923\) −3.61708 −0.119058
\(924\) 0 0
\(925\) 24.6283 0.809773
\(926\) 0 0
\(927\) 155.195 5.09728
\(928\) 0 0
\(929\) 44.1538 1.44864 0.724320 0.689464i \(-0.242154\pi\)
0.724320 + 0.689464i \(0.242154\pi\)
\(930\) 0 0
\(931\) −1.60628 −0.0526436
\(932\) 0 0
\(933\) −58.3713 −1.91099
\(934\) 0 0
\(935\) 17.0727 0.558336
\(936\) 0 0
\(937\) −2.32343 −0.0759032 −0.0379516 0.999280i \(-0.512083\pi\)
−0.0379516 + 0.999280i \(0.512083\pi\)
\(938\) 0 0
\(939\) 53.2673 1.73831
\(940\) 0 0
\(941\) 2.14275 0.0698515 0.0349257 0.999390i \(-0.488881\pi\)
0.0349257 + 0.999390i \(0.488881\pi\)
\(942\) 0 0
\(943\) 18.3711 0.598246
\(944\) 0 0
\(945\) −21.1046 −0.686532
\(946\) 0 0
\(947\) −33.9204 −1.10226 −0.551132 0.834418i \(-0.685804\pi\)
−0.551132 + 0.834418i \(0.685804\pi\)
\(948\) 0 0
\(949\) 2.95576 0.0959480
\(950\) 0 0
\(951\) 26.0027 0.843195
\(952\) 0 0
\(953\) 4.88157 0.158129 0.0790647 0.996869i \(-0.474807\pi\)
0.0790647 + 0.996869i \(0.474807\pi\)
\(954\) 0 0
\(955\) 12.4815 0.403893
\(956\) 0 0
\(957\) −0.214375 −0.00692977
\(958\) 0 0
\(959\) −3.98782 −0.128773
\(960\) 0 0
\(961\) −28.9569 −0.934095
\(962\) 0 0
\(963\) 34.6508 1.11661
\(964\) 0 0
\(965\) −22.9745 −0.739575
\(966\) 0 0
\(967\) 41.2856 1.32766 0.663828 0.747886i \(-0.268931\pi\)
0.663828 + 0.747886i \(0.268931\pi\)
\(968\) 0 0
\(969\) −15.5532 −0.499641
\(970\) 0 0
\(971\) −52.3660 −1.68050 −0.840252 0.542196i \(-0.817593\pi\)
−0.840252 + 0.542196i \(0.817593\pi\)
\(972\) 0 0
\(973\) −13.5921 −0.435743
\(974\) 0 0
\(975\) 13.3977 0.429070
\(976\) 0 0
\(977\) 47.3847 1.51597 0.757986 0.652271i \(-0.226183\pi\)
0.757986 + 0.652271i \(0.226183\pi\)
\(978\) 0 0
\(979\) 69.2836 2.21431
\(980\) 0 0
\(981\) −76.7867 −2.45161
\(982\) 0 0
\(983\) −10.3959 −0.331577 −0.165789 0.986161i \(-0.553017\pi\)
−0.165789 + 0.986161i \(0.553017\pi\)
\(984\) 0 0
\(985\) 10.3845 0.330878
\(986\) 0 0
\(987\) −25.1346 −0.800042
\(988\) 0 0
\(989\) 22.4209 0.712943
\(990\) 0 0
\(991\) 36.9544 1.17389 0.586947 0.809625i \(-0.300330\pi\)
0.586947 + 0.809625i \(0.300330\pi\)
\(992\) 0 0
\(993\) −96.5157 −3.06283
\(994\) 0 0
\(995\) 1.75211 0.0555457
\(996\) 0 0
\(997\) 25.1668 0.797039 0.398520 0.917160i \(-0.369524\pi\)
0.398520 + 0.917160i \(0.369524\pi\)
\(998\) 0 0
\(999\) −126.935 −4.01603
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.a.t.1.5 yes 5
4.3 odd 2 2912.2.a.q.1.1 5
8.3 odd 2 5824.2.a.cl.1.5 5
8.5 even 2 5824.2.a.ci.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2912.2.a.q.1.1 5 4.3 odd 2
2912.2.a.t.1.5 yes 5 1.1 even 1 trivial
5824.2.a.ci.1.1 5 8.5 even 2
5824.2.a.cl.1.5 5 8.3 odd 2