Properties

Label 5776.2.a.cd.1.3
Level $5776$
Weight $2$
Character 5776.1
Self dual yes
Analytic conductor $46.122$
Analytic rank $1$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5776,2,Mod(1,5776)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5776, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5776.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5776 = 2^{4} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5776.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-3,0,3,0,-9,0,6,0,-3,0,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.1215922075\)
Analytic rank: \(1\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 12x^{7} + 35x^{6} + 45x^{5} - 117x^{4} - 55x^{3} + 96x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.36188\) of defining polynomial
Character \(\chi\) \(=\) 5776.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.36188 q^{3} -2.34290 q^{5} -4.15573 q^{7} +2.57847 q^{9} -5.36729 q^{11} -2.95483 q^{13} +5.53365 q^{15} +5.54437 q^{17} +9.81534 q^{21} -1.79384 q^{23} +0.489197 q^{25} +0.995607 q^{27} -0.215600 q^{29} +2.40651 q^{31} +12.6769 q^{33} +9.73649 q^{35} +6.54964 q^{37} +6.97896 q^{39} -1.74834 q^{41} +1.64951 q^{43} -6.04110 q^{45} +6.85481 q^{47} +10.2701 q^{49} -13.0951 q^{51} -6.33010 q^{53} +12.5750 q^{55} -10.2413 q^{59} +9.99468 q^{61} -10.7154 q^{63} +6.92289 q^{65} -8.94912 q^{67} +4.23684 q^{69} +10.7435 q^{71} +12.4701 q^{73} -1.15542 q^{75} +22.3050 q^{77} +5.60302 q^{79} -10.0869 q^{81} +7.31227 q^{83} -12.9899 q^{85} +0.509222 q^{87} +5.42611 q^{89} +12.2795 q^{91} -5.68388 q^{93} -17.8445 q^{97} -13.8394 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 3 q^{3} + 3 q^{5} - 9 q^{7} + 6 q^{9} - 3 q^{11} - 6 q^{13} - 3 q^{17} + 15 q^{21} - 24 q^{23} + 30 q^{25} - 12 q^{27} - 15 q^{29} - 6 q^{31} - 18 q^{33} - 15 q^{35} + 24 q^{37} - 6 q^{39} - 12 q^{41}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.36188 −1.36363 −0.681815 0.731524i \(-0.738809\pi\)
−0.681815 + 0.731524i \(0.738809\pi\)
\(4\) 0 0
\(5\) −2.34290 −1.04778 −0.523889 0.851786i \(-0.675519\pi\)
−0.523889 + 0.851786i \(0.675519\pi\)
\(6\) 0 0
\(7\) −4.15573 −1.57072 −0.785360 0.619039i \(-0.787522\pi\)
−0.785360 + 0.619039i \(0.787522\pi\)
\(8\) 0 0
\(9\) 2.57847 0.859489
\(10\) 0 0
\(11\) −5.36729 −1.61830 −0.809149 0.587604i \(-0.800071\pi\)
−0.809149 + 0.587604i \(0.800071\pi\)
\(12\) 0 0
\(13\) −2.95483 −0.819524 −0.409762 0.912193i \(-0.634388\pi\)
−0.409762 + 0.912193i \(0.634388\pi\)
\(14\) 0 0
\(15\) 5.53365 1.42878
\(16\) 0 0
\(17\) 5.54437 1.34471 0.672354 0.740230i \(-0.265283\pi\)
0.672354 + 0.740230i \(0.265283\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 9.81534 2.14188
\(22\) 0 0
\(23\) −1.79384 −0.374042 −0.187021 0.982356i \(-0.559883\pi\)
−0.187021 + 0.982356i \(0.559883\pi\)
\(24\) 0 0
\(25\) 0.489197 0.0978395
\(26\) 0 0
\(27\) 0.995607 0.191605
\(28\) 0 0
\(29\) −0.215600 −0.0400360 −0.0200180 0.999800i \(-0.506372\pi\)
−0.0200180 + 0.999800i \(0.506372\pi\)
\(30\) 0 0
\(31\) 2.40651 0.432221 0.216111 0.976369i \(-0.430663\pi\)
0.216111 + 0.976369i \(0.430663\pi\)
\(32\) 0 0
\(33\) 12.6769 2.20676
\(34\) 0 0
\(35\) 9.73649 1.64577
\(36\) 0 0
\(37\) 6.54964 1.07676 0.538378 0.842704i \(-0.319037\pi\)
0.538378 + 0.842704i \(0.319037\pi\)
\(38\) 0 0
\(39\) 6.97896 1.11753
\(40\) 0 0
\(41\) −1.74834 −0.273044 −0.136522 0.990637i \(-0.543592\pi\)
−0.136522 + 0.990637i \(0.543592\pi\)
\(42\) 0 0
\(43\) 1.64951 0.251548 0.125774 0.992059i \(-0.459859\pi\)
0.125774 + 0.992059i \(0.459859\pi\)
\(44\) 0 0
\(45\) −6.04110 −0.900554
\(46\) 0 0
\(47\) 6.85481 0.999876 0.499938 0.866061i \(-0.333356\pi\)
0.499938 + 0.866061i \(0.333356\pi\)
\(48\) 0 0
\(49\) 10.2701 1.46716
\(50\) 0 0
\(51\) −13.0951 −1.83368
\(52\) 0 0
\(53\) −6.33010 −0.869506 −0.434753 0.900550i \(-0.643164\pi\)
−0.434753 + 0.900550i \(0.643164\pi\)
\(54\) 0 0
\(55\) 12.5750 1.69562
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.2413 −1.33330 −0.666649 0.745371i \(-0.732272\pi\)
−0.666649 + 0.745371i \(0.732272\pi\)
\(60\) 0 0
\(61\) 9.99468 1.27969 0.639844 0.768505i \(-0.278999\pi\)
0.639844 + 0.768505i \(0.278999\pi\)
\(62\) 0 0
\(63\) −10.7154 −1.35002
\(64\) 0 0
\(65\) 6.92289 0.858679
\(66\) 0 0
\(67\) −8.94912 −1.09331 −0.546654 0.837358i \(-0.684099\pi\)
−0.546654 + 0.837358i \(0.684099\pi\)
\(68\) 0 0
\(69\) 4.23684 0.510056
\(70\) 0 0
\(71\) 10.7435 1.27502 0.637509 0.770443i \(-0.279965\pi\)
0.637509 + 0.770443i \(0.279965\pi\)
\(72\) 0 0
\(73\) 12.4701 1.45952 0.729760 0.683704i \(-0.239632\pi\)
0.729760 + 0.683704i \(0.239632\pi\)
\(74\) 0 0
\(75\) −1.15542 −0.133417
\(76\) 0 0
\(77\) 22.3050 2.54189
\(78\) 0 0
\(79\) 5.60302 0.630389 0.315194 0.949027i \(-0.397930\pi\)
0.315194 + 0.949027i \(0.397930\pi\)
\(80\) 0 0
\(81\) −10.0869 −1.12077
\(82\) 0 0
\(83\) 7.31227 0.802626 0.401313 0.915941i \(-0.368554\pi\)
0.401313 + 0.915941i \(0.368554\pi\)
\(84\) 0 0
\(85\) −12.9899 −1.40896
\(86\) 0 0
\(87\) 0.509222 0.0545943
\(88\) 0 0
\(89\) 5.42611 0.575166 0.287583 0.957756i \(-0.407148\pi\)
0.287583 + 0.957756i \(0.407148\pi\)
\(90\) 0 0
\(91\) 12.2795 1.28724
\(92\) 0 0
\(93\) −5.68388 −0.589391
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −17.8445 −1.81184 −0.905919 0.423451i \(-0.860819\pi\)
−0.905919 + 0.423451i \(0.860819\pi\)
\(98\) 0 0
\(99\) −13.8394 −1.39091
\(100\) 0 0
\(101\) −10.1207 −1.00704 −0.503521 0.863983i \(-0.667962\pi\)
−0.503521 + 0.863983i \(0.667962\pi\)
\(102\) 0 0
\(103\) −4.72949 −0.466010 −0.233005 0.972475i \(-0.574856\pi\)
−0.233005 + 0.972475i \(0.574856\pi\)
\(104\) 0 0
\(105\) −22.9964 −2.24422
\(106\) 0 0
\(107\) −9.04533 −0.874446 −0.437223 0.899353i \(-0.644038\pi\)
−0.437223 + 0.899353i \(0.644038\pi\)
\(108\) 0 0
\(109\) 8.04468 0.770541 0.385270 0.922804i \(-0.374108\pi\)
0.385270 + 0.922804i \(0.374108\pi\)
\(110\) 0 0
\(111\) −15.4695 −1.46830
\(112\) 0 0
\(113\) −4.20523 −0.395595 −0.197797 0.980243i \(-0.563379\pi\)
−0.197797 + 0.980243i \(0.563379\pi\)
\(114\) 0 0
\(115\) 4.20280 0.391913
\(116\) 0 0
\(117\) −7.61895 −0.704372
\(118\) 0 0
\(119\) −23.0409 −2.11216
\(120\) 0 0
\(121\) 17.8078 1.61889
\(122\) 0 0
\(123\) 4.12935 0.372331
\(124\) 0 0
\(125\) 10.5684 0.945264
\(126\) 0 0
\(127\) −5.30569 −0.470804 −0.235402 0.971898i \(-0.575641\pi\)
−0.235402 + 0.971898i \(0.575641\pi\)
\(128\) 0 0
\(129\) −3.89595 −0.343019
\(130\) 0 0
\(131\) 2.46781 0.215614 0.107807 0.994172i \(-0.465617\pi\)
0.107807 + 0.994172i \(0.465617\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.33261 −0.200759
\(136\) 0 0
\(137\) 1.14001 0.0973973 0.0486987 0.998814i \(-0.484493\pi\)
0.0486987 + 0.998814i \(0.484493\pi\)
\(138\) 0 0
\(139\) −16.7713 −1.42252 −0.711260 0.702929i \(-0.751875\pi\)
−0.711260 + 0.702929i \(0.751875\pi\)
\(140\) 0 0
\(141\) −16.1902 −1.36346
\(142\) 0 0
\(143\) 15.8594 1.32623
\(144\) 0 0
\(145\) 0.505131 0.0419488
\(146\) 0 0
\(147\) −24.2568 −2.00067
\(148\) 0 0
\(149\) 6.44232 0.527776 0.263888 0.964553i \(-0.414995\pi\)
0.263888 + 0.964553i \(0.414995\pi\)
\(150\) 0 0
\(151\) 9.15755 0.745231 0.372616 0.927986i \(-0.378461\pi\)
0.372616 + 0.927986i \(0.378461\pi\)
\(152\) 0 0
\(153\) 14.2960 1.15576
\(154\) 0 0
\(155\) −5.63821 −0.452872
\(156\) 0 0
\(157\) 18.1429 1.44796 0.723982 0.689819i \(-0.242310\pi\)
0.723982 + 0.689819i \(0.242310\pi\)
\(158\) 0 0
\(159\) 14.9509 1.18568
\(160\) 0 0
\(161\) 7.45474 0.587516
\(162\) 0 0
\(163\) 7.75111 0.607114 0.303557 0.952813i \(-0.401826\pi\)
0.303557 + 0.952813i \(0.401826\pi\)
\(164\) 0 0
\(165\) −29.7007 −2.31220
\(166\) 0 0
\(167\) 4.70588 0.364152 0.182076 0.983285i \(-0.441718\pi\)
0.182076 + 0.983285i \(0.441718\pi\)
\(168\) 0 0
\(169\) −4.26895 −0.328381
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 21.5283 1.63677 0.818383 0.574673i \(-0.194871\pi\)
0.818383 + 0.574673i \(0.194871\pi\)
\(174\) 0 0
\(175\) −2.03297 −0.153678
\(176\) 0 0
\(177\) 24.1886 1.81813
\(178\) 0 0
\(179\) −11.1355 −0.832305 −0.416153 0.909295i \(-0.636622\pi\)
−0.416153 + 0.909295i \(0.636622\pi\)
\(180\) 0 0
\(181\) −19.5795 −1.45533 −0.727666 0.685931i \(-0.759395\pi\)
−0.727666 + 0.685931i \(0.759395\pi\)
\(182\) 0 0
\(183\) −23.6062 −1.74502
\(184\) 0 0
\(185\) −15.3452 −1.12820
\(186\) 0 0
\(187\) −29.7582 −2.17614
\(188\) 0 0
\(189\) −4.13748 −0.300957
\(190\) 0 0
\(191\) 14.0015 1.01312 0.506558 0.862206i \(-0.330918\pi\)
0.506558 + 0.862206i \(0.330918\pi\)
\(192\) 0 0
\(193\) −0.130767 −0.00941284 −0.00470642 0.999989i \(-0.501498\pi\)
−0.00470642 + 0.999989i \(0.501498\pi\)
\(194\) 0 0
\(195\) −16.3510 −1.17092
\(196\) 0 0
\(197\) −12.1046 −0.862420 −0.431210 0.902251i \(-0.641913\pi\)
−0.431210 + 0.902251i \(0.641913\pi\)
\(198\) 0 0
\(199\) −11.6872 −0.828482 −0.414241 0.910167i \(-0.635953\pi\)
−0.414241 + 0.910167i \(0.635953\pi\)
\(200\) 0 0
\(201\) 21.1367 1.49087
\(202\) 0 0
\(203\) 0.895978 0.0628853
\(204\) 0 0
\(205\) 4.09618 0.286090
\(206\) 0 0
\(207\) −4.62537 −0.321485
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.64762 0.113427 0.0567133 0.998391i \(-0.481938\pi\)
0.0567133 + 0.998391i \(0.481938\pi\)
\(212\) 0 0
\(213\) −25.3748 −1.73865
\(214\) 0 0
\(215\) −3.86465 −0.263567
\(216\) 0 0
\(217\) −10.0008 −0.678899
\(218\) 0 0
\(219\) −29.4530 −1.99025
\(220\) 0 0
\(221\) −16.3827 −1.10202
\(222\) 0 0
\(223\) 18.4561 1.23591 0.617957 0.786212i \(-0.287961\pi\)
0.617957 + 0.786212i \(0.287961\pi\)
\(224\) 0 0
\(225\) 1.26138 0.0840920
\(226\) 0 0
\(227\) −3.16564 −0.210111 −0.105055 0.994466i \(-0.533502\pi\)
−0.105055 + 0.994466i \(0.533502\pi\)
\(228\) 0 0
\(229\) −12.8379 −0.848353 −0.424177 0.905580i \(-0.639436\pi\)
−0.424177 + 0.905580i \(0.639436\pi\)
\(230\) 0 0
\(231\) −52.6817 −3.46620
\(232\) 0 0
\(233\) 5.78280 0.378844 0.189422 0.981896i \(-0.439339\pi\)
0.189422 + 0.981896i \(0.439339\pi\)
\(234\) 0 0
\(235\) −16.0602 −1.04765
\(236\) 0 0
\(237\) −13.2336 −0.859618
\(238\) 0 0
\(239\) 13.0527 0.844308 0.422154 0.906524i \(-0.361274\pi\)
0.422154 + 0.906524i \(0.361274\pi\)
\(240\) 0 0
\(241\) 10.8508 0.698962 0.349481 0.936943i \(-0.386358\pi\)
0.349481 + 0.936943i \(0.386358\pi\)
\(242\) 0 0
\(243\) 20.8372 1.33671
\(244\) 0 0
\(245\) −24.0619 −1.53726
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −17.2707 −1.09449
\(250\) 0 0
\(251\) 11.2491 0.710039 0.355020 0.934859i \(-0.384474\pi\)
0.355020 + 0.934859i \(0.384474\pi\)
\(252\) 0 0
\(253\) 9.62807 0.605312
\(254\) 0 0
\(255\) 30.6806 1.92130
\(256\) 0 0
\(257\) −20.4744 −1.27716 −0.638580 0.769556i \(-0.720478\pi\)
−0.638580 + 0.769556i \(0.720478\pi\)
\(258\) 0 0
\(259\) −27.2186 −1.69128
\(260\) 0 0
\(261\) −0.555918 −0.0344105
\(262\) 0 0
\(263\) 27.8919 1.71989 0.859946 0.510386i \(-0.170497\pi\)
0.859946 + 0.510386i \(0.170497\pi\)
\(264\) 0 0
\(265\) 14.8308 0.911049
\(266\) 0 0
\(267\) −12.8158 −0.784314
\(268\) 0 0
\(269\) −5.23607 −0.319249 −0.159625 0.987178i \(-0.551028\pi\)
−0.159625 + 0.987178i \(0.551028\pi\)
\(270\) 0 0
\(271\) −5.39188 −0.327533 −0.163767 0.986499i \(-0.552364\pi\)
−0.163767 + 0.986499i \(0.552364\pi\)
\(272\) 0 0
\(273\) −29.0027 −1.75532
\(274\) 0 0
\(275\) −2.62566 −0.158333
\(276\) 0 0
\(277\) 25.4903 1.53156 0.765781 0.643102i \(-0.222353\pi\)
0.765781 + 0.643102i \(0.222353\pi\)
\(278\) 0 0
\(279\) 6.20510 0.371490
\(280\) 0 0
\(281\) −18.4077 −1.09811 −0.549056 0.835786i \(-0.685012\pi\)
−0.549056 + 0.835786i \(0.685012\pi\)
\(282\) 0 0
\(283\) −19.7747 −1.17549 −0.587743 0.809047i \(-0.699983\pi\)
−0.587743 + 0.809047i \(0.699983\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.26562 0.428876
\(288\) 0 0
\(289\) 13.7401 0.808239
\(290\) 0 0
\(291\) 42.1466 2.47068
\(292\) 0 0
\(293\) −1.69621 −0.0990936 −0.0495468 0.998772i \(-0.515778\pi\)
−0.0495468 + 0.998772i \(0.515778\pi\)
\(294\) 0 0
\(295\) 23.9943 1.39700
\(296\) 0 0
\(297\) −5.34371 −0.310073
\(298\) 0 0
\(299\) 5.30051 0.306537
\(300\) 0 0
\(301\) −6.85493 −0.395112
\(302\) 0 0
\(303\) 23.9037 1.37323
\(304\) 0 0
\(305\) −23.4166 −1.34083
\(306\) 0 0
\(307\) 22.6157 1.29075 0.645373 0.763868i \(-0.276702\pi\)
0.645373 + 0.763868i \(0.276702\pi\)
\(308\) 0 0
\(309\) 11.1705 0.635466
\(310\) 0 0
\(311\) −1.29863 −0.0736384 −0.0368192 0.999322i \(-0.511723\pi\)
−0.0368192 + 0.999322i \(0.511723\pi\)
\(312\) 0 0
\(313\) −8.08418 −0.456945 −0.228473 0.973550i \(-0.573373\pi\)
−0.228473 + 0.973550i \(0.573373\pi\)
\(314\) 0 0
\(315\) 25.1052 1.41452
\(316\) 0 0
\(317\) −7.14759 −0.401449 −0.200724 0.979648i \(-0.564330\pi\)
−0.200724 + 0.979648i \(0.564330\pi\)
\(318\) 0 0
\(319\) 1.15719 0.0647901
\(320\) 0 0
\(321\) 21.3640 1.19242
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.44550 −0.0801818
\(326\) 0 0
\(327\) −19.0006 −1.05073
\(328\) 0 0
\(329\) −28.4868 −1.57053
\(330\) 0 0
\(331\) −27.2644 −1.49858 −0.749292 0.662239i \(-0.769606\pi\)
−0.749292 + 0.662239i \(0.769606\pi\)
\(332\) 0 0
\(333\) 16.8880 0.925459
\(334\) 0 0
\(335\) 20.9669 1.14554
\(336\) 0 0
\(337\) −24.4792 −1.33347 −0.666733 0.745297i \(-0.732308\pi\)
−0.666733 + 0.745297i \(0.732308\pi\)
\(338\) 0 0
\(339\) 9.93224 0.539445
\(340\) 0 0
\(341\) −12.9164 −0.699463
\(342\) 0 0
\(343\) −13.5898 −0.733780
\(344\) 0 0
\(345\) −9.92651 −0.534425
\(346\) 0 0
\(347\) 22.8285 1.22550 0.612750 0.790277i \(-0.290063\pi\)
0.612750 + 0.790277i \(0.290063\pi\)
\(348\) 0 0
\(349\) 2.58715 0.138487 0.0692435 0.997600i \(-0.477941\pi\)
0.0692435 + 0.997600i \(0.477941\pi\)
\(350\) 0 0
\(351\) −2.94186 −0.157025
\(352\) 0 0
\(353\) −10.9610 −0.583394 −0.291697 0.956511i \(-0.594220\pi\)
−0.291697 + 0.956511i \(0.594220\pi\)
\(354\) 0 0
\(355\) −25.1710 −1.33594
\(356\) 0 0
\(357\) 54.4199 2.88021
\(358\) 0 0
\(359\) 23.5184 1.24126 0.620628 0.784105i \(-0.286878\pi\)
0.620628 + 0.784105i \(0.286878\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −42.0598 −2.20756
\(364\) 0 0
\(365\) −29.2163 −1.52925
\(366\) 0 0
\(367\) 8.01699 0.418484 0.209242 0.977864i \(-0.432900\pi\)
0.209242 + 0.977864i \(0.432900\pi\)
\(368\) 0 0
\(369\) −4.50803 −0.234678
\(370\) 0 0
\(371\) 26.3062 1.36575
\(372\) 0 0
\(373\) −16.9610 −0.878209 −0.439104 0.898436i \(-0.644704\pi\)
−0.439104 + 0.898436i \(0.644704\pi\)
\(374\) 0 0
\(375\) −24.9612 −1.28899
\(376\) 0 0
\(377\) 0.637063 0.0328104
\(378\) 0 0
\(379\) 22.6828 1.16513 0.582567 0.812782i \(-0.302048\pi\)
0.582567 + 0.812782i \(0.302048\pi\)
\(380\) 0 0
\(381\) 12.5314 0.642002
\(382\) 0 0
\(383\) −12.3594 −0.631536 −0.315768 0.948837i \(-0.602262\pi\)
−0.315768 + 0.948837i \(0.602262\pi\)
\(384\) 0 0
\(385\) −52.2585 −2.66334
\(386\) 0 0
\(387\) 4.25321 0.216203
\(388\) 0 0
\(389\) −19.3892 −0.983073 −0.491536 0.870857i \(-0.663565\pi\)
−0.491536 + 0.870857i \(0.663565\pi\)
\(390\) 0 0
\(391\) −9.94574 −0.502978
\(392\) 0 0
\(393\) −5.82867 −0.294017
\(394\) 0 0
\(395\) −13.1273 −0.660508
\(396\) 0 0
\(397\) 5.50592 0.276334 0.138167 0.990409i \(-0.455879\pi\)
0.138167 + 0.990409i \(0.455879\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.04316 −0.351719 −0.175859 0.984415i \(-0.556270\pi\)
−0.175859 + 0.984415i \(0.556270\pi\)
\(402\) 0 0
\(403\) −7.11083 −0.354216
\(404\) 0 0
\(405\) 23.6327 1.17432
\(406\) 0 0
\(407\) −35.1538 −1.74251
\(408\) 0 0
\(409\) 38.1564 1.88671 0.943356 0.331782i \(-0.107650\pi\)
0.943356 + 0.331782i \(0.107650\pi\)
\(410\) 0 0
\(411\) −2.69256 −0.132814
\(412\) 0 0
\(413\) 42.5600 2.09424
\(414\) 0 0
\(415\) −17.1319 −0.840974
\(416\) 0 0
\(417\) 39.6117 1.93979
\(418\) 0 0
\(419\) −8.28410 −0.404705 −0.202352 0.979313i \(-0.564859\pi\)
−0.202352 + 0.979313i \(0.564859\pi\)
\(420\) 0 0
\(421\) −0.0790672 −0.00385350 −0.00192675 0.999998i \(-0.500613\pi\)
−0.00192675 + 0.999998i \(0.500613\pi\)
\(422\) 0 0
\(423\) 17.6749 0.859383
\(424\) 0 0
\(425\) 2.71229 0.131565
\(426\) 0 0
\(427\) −41.5352 −2.01003
\(428\) 0 0
\(429\) −37.4581 −1.80849
\(430\) 0 0
\(431\) −0.887413 −0.0427452 −0.0213726 0.999772i \(-0.506804\pi\)
−0.0213726 + 0.999772i \(0.506804\pi\)
\(432\) 0 0
\(433\) 14.5212 0.697845 0.348922 0.937152i \(-0.386548\pi\)
0.348922 + 0.937152i \(0.386548\pi\)
\(434\) 0 0
\(435\) −1.19306 −0.0572027
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 11.6694 0.556950 0.278475 0.960443i \(-0.410171\pi\)
0.278475 + 0.960443i \(0.410171\pi\)
\(440\) 0 0
\(441\) 26.4812 1.26101
\(442\) 0 0
\(443\) 10.9049 0.518109 0.259055 0.965863i \(-0.416589\pi\)
0.259055 + 0.965863i \(0.416589\pi\)
\(444\) 0 0
\(445\) −12.7128 −0.602646
\(446\) 0 0
\(447\) −15.2160 −0.719691
\(448\) 0 0
\(449\) 2.81252 0.132731 0.0663655 0.997795i \(-0.478860\pi\)
0.0663655 + 0.997795i \(0.478860\pi\)
\(450\) 0 0
\(451\) 9.38381 0.441867
\(452\) 0 0
\(453\) −21.6290 −1.01622
\(454\) 0 0
\(455\) −28.7697 −1.34874
\(456\) 0 0
\(457\) 4.19534 0.196250 0.0981248 0.995174i \(-0.468716\pi\)
0.0981248 + 0.995174i \(0.468716\pi\)
\(458\) 0 0
\(459\) 5.52002 0.257652
\(460\) 0 0
\(461\) −32.3784 −1.50801 −0.754006 0.656867i \(-0.771881\pi\)
−0.754006 + 0.656867i \(0.771881\pi\)
\(462\) 0 0
\(463\) −22.0392 −1.02425 −0.512124 0.858911i \(-0.671141\pi\)
−0.512124 + 0.858911i \(0.671141\pi\)
\(464\) 0 0
\(465\) 13.3168 0.617551
\(466\) 0 0
\(467\) −15.3581 −0.710688 −0.355344 0.934736i \(-0.615636\pi\)
−0.355344 + 0.934736i \(0.615636\pi\)
\(468\) 0 0
\(469\) 37.1901 1.71728
\(470\) 0 0
\(471\) −42.8514 −1.97449
\(472\) 0 0
\(473\) −8.85340 −0.407080
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −16.3220 −0.747331
\(478\) 0 0
\(479\) −20.2977 −0.927427 −0.463714 0.885985i \(-0.653483\pi\)
−0.463714 + 0.885985i \(0.653483\pi\)
\(480\) 0 0
\(481\) −19.3531 −0.882426
\(482\) 0 0
\(483\) −17.6072 −0.801155
\(484\) 0 0
\(485\) 41.8080 1.89841
\(486\) 0 0
\(487\) 29.8902 1.35445 0.677227 0.735774i \(-0.263182\pi\)
0.677227 + 0.735774i \(0.263182\pi\)
\(488\) 0 0
\(489\) −18.3072 −0.827880
\(490\) 0 0
\(491\) −7.48271 −0.337690 −0.168845 0.985643i \(-0.554004\pi\)
−0.168845 + 0.985643i \(0.554004\pi\)
\(492\) 0 0
\(493\) −1.19537 −0.0538367
\(494\) 0 0
\(495\) 32.4243 1.45736
\(496\) 0 0
\(497\) −44.6471 −2.00270
\(498\) 0 0
\(499\) 9.96687 0.446178 0.223089 0.974798i \(-0.428386\pi\)
0.223089 + 0.974798i \(0.428386\pi\)
\(500\) 0 0
\(501\) −11.1147 −0.496568
\(502\) 0 0
\(503\) 7.42061 0.330869 0.165434 0.986221i \(-0.447097\pi\)
0.165434 + 0.986221i \(0.447097\pi\)
\(504\) 0 0
\(505\) 23.7117 1.05516
\(506\) 0 0
\(507\) 10.0827 0.447790
\(508\) 0 0
\(509\) −41.7515 −1.85060 −0.925301 0.379232i \(-0.876188\pi\)
−0.925301 + 0.379232i \(0.876188\pi\)
\(510\) 0 0
\(511\) −51.8226 −2.29250
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.0807 0.488276
\(516\) 0 0
\(517\) −36.7917 −1.61810
\(518\) 0 0
\(519\) −50.8472 −2.23195
\(520\) 0 0
\(521\) −33.2868 −1.45832 −0.729160 0.684343i \(-0.760089\pi\)
−0.729160 + 0.684343i \(0.760089\pi\)
\(522\) 0 0
\(523\) −30.5185 −1.33448 −0.667239 0.744843i \(-0.732524\pi\)
−0.667239 + 0.744843i \(0.732524\pi\)
\(524\) 0 0
\(525\) 4.80164 0.209561
\(526\) 0 0
\(527\) 13.3426 0.581211
\(528\) 0 0
\(529\) −19.7821 −0.860092
\(530\) 0 0
\(531\) −26.4068 −1.14596
\(532\) 0 0
\(533\) 5.16604 0.223766
\(534\) 0 0
\(535\) 21.1923 0.916225
\(536\) 0 0
\(537\) 26.3007 1.13496
\(538\) 0 0
\(539\) −55.1227 −2.37430
\(540\) 0 0
\(541\) 2.49043 0.107072 0.0535360 0.998566i \(-0.482951\pi\)
0.0535360 + 0.998566i \(0.482951\pi\)
\(542\) 0 0
\(543\) 46.2444 1.98454
\(544\) 0 0
\(545\) −18.8479 −0.807356
\(546\) 0 0
\(547\) 14.1882 0.606644 0.303322 0.952888i \(-0.401904\pi\)
0.303322 + 0.952888i \(0.401904\pi\)
\(548\) 0 0
\(549\) 25.7709 1.09988
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −23.2847 −0.990164
\(554\) 0 0
\(555\) 36.2435 1.53845
\(556\) 0 0
\(557\) 6.40556 0.271412 0.135706 0.990749i \(-0.456670\pi\)
0.135706 + 0.990749i \(0.456670\pi\)
\(558\) 0 0
\(559\) −4.87404 −0.206150
\(560\) 0 0
\(561\) 70.2853 2.96745
\(562\) 0 0
\(563\) 28.3494 1.19479 0.597393 0.801949i \(-0.296203\pi\)
0.597393 + 0.801949i \(0.296203\pi\)
\(564\) 0 0
\(565\) 9.85244 0.414495
\(566\) 0 0
\(567\) 41.9185 1.76041
\(568\) 0 0
\(569\) −16.4200 −0.688362 −0.344181 0.938903i \(-0.611843\pi\)
−0.344181 + 0.938903i \(0.611843\pi\)
\(570\) 0 0
\(571\) 36.9283 1.54540 0.772701 0.634771i \(-0.218905\pi\)
0.772701 + 0.634771i \(0.218905\pi\)
\(572\) 0 0
\(573\) −33.0700 −1.38152
\(574\) 0 0
\(575\) −0.877544 −0.0365961
\(576\) 0 0
\(577\) 41.1638 1.71367 0.856835 0.515591i \(-0.172428\pi\)
0.856835 + 0.515591i \(0.172428\pi\)
\(578\) 0 0
\(579\) 0.308857 0.0128356
\(580\) 0 0
\(581\) −30.3878 −1.26070
\(582\) 0 0
\(583\) 33.9754 1.40712
\(584\) 0 0
\(585\) 17.8505 0.738026
\(586\) 0 0
\(587\) −7.31112 −0.301762 −0.150881 0.988552i \(-0.548211\pi\)
−0.150881 + 0.988552i \(0.548211\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 28.5897 1.17602
\(592\) 0 0
\(593\) 0.185394 0.00761323 0.00380662 0.999993i \(-0.498788\pi\)
0.00380662 + 0.999993i \(0.498788\pi\)
\(594\) 0 0
\(595\) 53.9827 2.21307
\(596\) 0 0
\(597\) 27.6037 1.12974
\(598\) 0 0
\(599\) −23.3882 −0.955617 −0.477809 0.878464i \(-0.658569\pi\)
−0.477809 + 0.878464i \(0.658569\pi\)
\(600\) 0 0
\(601\) 26.6578 1.08739 0.543697 0.839282i \(-0.317024\pi\)
0.543697 + 0.839282i \(0.317024\pi\)
\(602\) 0 0
\(603\) −23.0750 −0.939687
\(604\) 0 0
\(605\) −41.7219 −1.69623
\(606\) 0 0
\(607\) −20.2286 −0.821052 −0.410526 0.911849i \(-0.634655\pi\)
−0.410526 + 0.911849i \(0.634655\pi\)
\(608\) 0 0
\(609\) −2.11619 −0.0857523
\(610\) 0 0
\(611\) −20.2548 −0.819422
\(612\) 0 0
\(613\) 24.2426 0.979151 0.489576 0.871961i \(-0.337152\pi\)
0.489576 + 0.871961i \(0.337152\pi\)
\(614\) 0 0
\(615\) −9.67468 −0.390121
\(616\) 0 0
\(617\) −22.1691 −0.892493 −0.446246 0.894910i \(-0.647239\pi\)
−0.446246 + 0.894910i \(0.647239\pi\)
\(618\) 0 0
\(619\) −10.6658 −0.428697 −0.214348 0.976757i \(-0.568763\pi\)
−0.214348 + 0.976757i \(0.568763\pi\)
\(620\) 0 0
\(621\) −1.78596 −0.0716683
\(622\) 0 0
\(623\) −22.5495 −0.903425
\(624\) 0 0
\(625\) −27.2067 −1.08827
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 36.3137 1.44792
\(630\) 0 0
\(631\) −39.0376 −1.55406 −0.777031 0.629463i \(-0.783275\pi\)
−0.777031 + 0.629463i \(0.783275\pi\)
\(632\) 0 0
\(633\) −3.89147 −0.154672
\(634\) 0 0
\(635\) 12.4307 0.493298
\(636\) 0 0
\(637\) −30.3465 −1.20237
\(638\) 0 0
\(639\) 27.7017 1.09586
\(640\) 0 0
\(641\) 15.8845 0.627401 0.313701 0.949522i \(-0.398431\pi\)
0.313701 + 0.949522i \(0.398431\pi\)
\(642\) 0 0
\(643\) 26.3254 1.03817 0.519086 0.854722i \(-0.326273\pi\)
0.519086 + 0.854722i \(0.326273\pi\)
\(644\) 0 0
\(645\) 9.12783 0.359408
\(646\) 0 0
\(647\) −27.2044 −1.06952 −0.534758 0.845005i \(-0.679597\pi\)
−0.534758 + 0.845005i \(0.679597\pi\)
\(648\) 0 0
\(649\) 54.9678 2.15767
\(650\) 0 0
\(651\) 23.6207 0.925768
\(652\) 0 0
\(653\) 30.4067 1.18990 0.594952 0.803761i \(-0.297171\pi\)
0.594952 + 0.803761i \(0.297171\pi\)
\(654\) 0 0
\(655\) −5.78184 −0.225915
\(656\) 0 0
\(657\) 32.1539 1.25444
\(658\) 0 0
\(659\) −15.1628 −0.590659 −0.295330 0.955395i \(-0.595429\pi\)
−0.295330 + 0.955395i \(0.595429\pi\)
\(660\) 0 0
\(661\) −9.40611 −0.365855 −0.182928 0.983126i \(-0.558557\pi\)
−0.182928 + 0.983126i \(0.558557\pi\)
\(662\) 0 0
\(663\) 38.6939 1.50275
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.386753 0.0149751
\(668\) 0 0
\(669\) −43.5911 −1.68533
\(670\) 0 0
\(671\) −53.6443 −2.07091
\(672\) 0 0
\(673\) 41.6071 1.60383 0.801917 0.597435i \(-0.203814\pi\)
0.801917 + 0.597435i \(0.203814\pi\)
\(674\) 0 0
\(675\) 0.487048 0.0187465
\(676\) 0 0
\(677\) −32.9902 −1.26792 −0.633959 0.773367i \(-0.718571\pi\)
−0.633959 + 0.773367i \(0.718571\pi\)
\(678\) 0 0
\(679\) 74.1572 2.84589
\(680\) 0 0
\(681\) 7.47686 0.286514
\(682\) 0 0
\(683\) 42.6980 1.63379 0.816896 0.576785i \(-0.195693\pi\)
0.816896 + 0.576785i \(0.195693\pi\)
\(684\) 0 0
\(685\) −2.67093 −0.102051
\(686\) 0 0
\(687\) 30.3216 1.15684
\(688\) 0 0
\(689\) 18.7044 0.712581
\(690\) 0 0
\(691\) 34.6814 1.31934 0.659671 0.751555i \(-0.270696\pi\)
0.659671 + 0.751555i \(0.270696\pi\)
\(692\) 0 0
\(693\) 57.5128 2.18473
\(694\) 0 0
\(695\) 39.2934 1.49049
\(696\) 0 0
\(697\) −9.69342 −0.367164
\(698\) 0 0
\(699\) −13.6583 −0.516603
\(700\) 0 0
\(701\) −12.8129 −0.483936 −0.241968 0.970284i \(-0.577793\pi\)
−0.241968 + 0.970284i \(0.577793\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 37.9321 1.42861
\(706\) 0 0
\(707\) 42.0587 1.58178
\(708\) 0 0
\(709\) −28.8302 −1.08274 −0.541370 0.840784i \(-0.682094\pi\)
−0.541370 + 0.840784i \(0.682094\pi\)
\(710\) 0 0
\(711\) 14.4472 0.541812
\(712\) 0 0
\(713\) −4.31690 −0.161669
\(714\) 0 0
\(715\) −37.1571 −1.38960
\(716\) 0 0
\(717\) −30.8289 −1.15133
\(718\) 0 0
\(719\) 2.29122 0.0854480 0.0427240 0.999087i \(-0.486396\pi\)
0.0427240 + 0.999087i \(0.486396\pi\)
\(720\) 0 0
\(721\) 19.6545 0.731972
\(722\) 0 0
\(723\) −25.6283 −0.953126
\(724\) 0 0
\(725\) −0.105471 −0.00391710
\(726\) 0 0
\(727\) 39.1971 1.45374 0.726870 0.686775i \(-0.240974\pi\)
0.726870 + 0.686775i \(0.240974\pi\)
\(728\) 0 0
\(729\) −18.9543 −0.702010
\(730\) 0 0
\(731\) 9.14551 0.338259
\(732\) 0 0
\(733\) −17.5243 −0.647275 −0.323638 0.946181i \(-0.604906\pi\)
−0.323638 + 0.946181i \(0.604906\pi\)
\(734\) 0 0
\(735\) 56.8313 2.09626
\(736\) 0 0
\(737\) 48.0325 1.76930
\(738\) 0 0
\(739\) −33.6463 −1.23770 −0.618850 0.785509i \(-0.712401\pi\)
−0.618850 + 0.785509i \(0.712401\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.26736 −0.229927 −0.114964 0.993370i \(-0.536675\pi\)
−0.114964 + 0.993370i \(0.536675\pi\)
\(744\) 0 0
\(745\) −15.0937 −0.552992
\(746\) 0 0
\(747\) 18.8544 0.689848
\(748\) 0 0
\(749\) 37.5900 1.37351
\(750\) 0 0
\(751\) 3.50442 0.127878 0.0639391 0.997954i \(-0.479634\pi\)
0.0639391 + 0.997954i \(0.479634\pi\)
\(752\) 0 0
\(753\) −26.5691 −0.968232
\(754\) 0 0
\(755\) −21.4553 −0.780837
\(756\) 0 0
\(757\) 18.1851 0.660948 0.330474 0.943815i \(-0.392791\pi\)
0.330474 + 0.943815i \(0.392791\pi\)
\(758\) 0 0
\(759\) −22.7403 −0.825422
\(760\) 0 0
\(761\) −30.9777 −1.12294 −0.561469 0.827497i \(-0.689764\pi\)
−0.561469 + 0.827497i \(0.689764\pi\)
\(762\) 0 0
\(763\) −33.4316 −1.21030
\(764\) 0 0
\(765\) −33.4941 −1.21098
\(766\) 0 0
\(767\) 30.2612 1.09267
\(768\) 0 0
\(769\) 44.0854 1.58976 0.794880 0.606767i \(-0.207534\pi\)
0.794880 + 0.606767i \(0.207534\pi\)
\(770\) 0 0
\(771\) 48.3581 1.74157
\(772\) 0 0
\(773\) 7.31289 0.263027 0.131513 0.991314i \(-0.458016\pi\)
0.131513 + 0.991314i \(0.458016\pi\)
\(774\) 0 0
\(775\) 1.17726 0.0422883
\(776\) 0 0
\(777\) 64.2870 2.30628
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −57.6634 −2.06336
\(782\) 0 0
\(783\) −0.214653 −0.00767108
\(784\) 0 0
\(785\) −42.5072 −1.51715
\(786\) 0 0
\(787\) 38.8126 1.38352 0.691760 0.722128i \(-0.256836\pi\)
0.691760 + 0.722128i \(0.256836\pi\)
\(788\) 0 0
\(789\) −65.8774 −2.34530
\(790\) 0 0
\(791\) 17.4758 0.621368
\(792\) 0 0
\(793\) −29.5326 −1.04873
\(794\) 0 0
\(795\) −35.0286 −1.24233
\(796\) 0 0
\(797\) −29.8075 −1.05583 −0.527917 0.849296i \(-0.677027\pi\)
−0.527917 + 0.849296i \(0.677027\pi\)
\(798\) 0 0
\(799\) 38.0056 1.34454
\(800\) 0 0
\(801\) 13.9910 0.494349
\(802\) 0 0
\(803\) −66.9308 −2.36194
\(804\) 0 0
\(805\) −17.4657 −0.615586
\(806\) 0 0
\(807\) 12.3670 0.435338
\(808\) 0 0
\(809\) −33.8617 −1.19051 −0.595257 0.803536i \(-0.702950\pi\)
−0.595257 + 0.803536i \(0.702950\pi\)
\(810\) 0 0
\(811\) −3.32445 −0.116737 −0.0583686 0.998295i \(-0.518590\pi\)
−0.0583686 + 0.998295i \(0.518590\pi\)
\(812\) 0 0
\(813\) 12.7350 0.446635
\(814\) 0 0
\(815\) −18.1601 −0.636121
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 31.6623 1.10637
\(820\) 0 0
\(821\) 55.2790 1.92925 0.964624 0.263628i \(-0.0849191\pi\)
0.964624 + 0.263628i \(0.0849191\pi\)
\(822\) 0 0
\(823\) 38.2602 1.33367 0.666833 0.745207i \(-0.267649\pi\)
0.666833 + 0.745207i \(0.267649\pi\)
\(824\) 0 0
\(825\) 6.20149 0.215908
\(826\) 0 0
\(827\) −0.615969 −0.0214194 −0.0107097 0.999943i \(-0.503409\pi\)
−0.0107097 + 0.999943i \(0.503409\pi\)
\(828\) 0 0
\(829\) 0.302667 0.0105121 0.00525604 0.999986i \(-0.498327\pi\)
0.00525604 + 0.999986i \(0.498327\pi\)
\(830\) 0 0
\(831\) −60.2049 −2.08848
\(832\) 0 0
\(833\) 56.9414 1.97290
\(834\) 0 0
\(835\) −11.0254 −0.381550
\(836\) 0 0
\(837\) 2.39594 0.0828157
\(838\) 0 0
\(839\) −19.3281 −0.667279 −0.333640 0.942701i \(-0.608277\pi\)
−0.333640 + 0.942701i \(0.608277\pi\)
\(840\) 0 0
\(841\) −28.9535 −0.998397
\(842\) 0 0
\(843\) 43.4767 1.49742
\(844\) 0 0
\(845\) 10.0017 0.344070
\(846\) 0 0
\(847\) −74.0043 −2.54282
\(848\) 0 0
\(849\) 46.7055 1.60293
\(850\) 0 0
\(851\) −11.7490 −0.402752
\(852\) 0 0
\(853\) 14.1179 0.483386 0.241693 0.970353i \(-0.422297\pi\)
0.241693 + 0.970353i \(0.422297\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −17.4528 −0.596175 −0.298088 0.954539i \(-0.596349\pi\)
−0.298088 + 0.954539i \(0.596349\pi\)
\(858\) 0 0
\(859\) −3.11876 −0.106411 −0.0532054 0.998584i \(-0.516944\pi\)
−0.0532054 + 0.998584i \(0.516944\pi\)
\(860\) 0 0
\(861\) −17.1605 −0.584828
\(862\) 0 0
\(863\) 53.2436 1.81243 0.906217 0.422812i \(-0.138957\pi\)
0.906217 + 0.422812i \(0.138957\pi\)
\(864\) 0 0
\(865\) −50.4387 −1.71497
\(866\) 0 0
\(867\) −32.4523 −1.10214
\(868\) 0 0
\(869\) −30.0730 −1.02016
\(870\) 0 0
\(871\) 26.4432 0.895992
\(872\) 0 0
\(873\) −46.0116 −1.55726
\(874\) 0 0
\(875\) −43.9194 −1.48475
\(876\) 0 0
\(877\) 28.7134 0.969582 0.484791 0.874630i \(-0.338896\pi\)
0.484791 + 0.874630i \(0.338896\pi\)
\(878\) 0 0
\(879\) 4.00624 0.135127
\(880\) 0 0
\(881\) 6.65371 0.224169 0.112085 0.993699i \(-0.464247\pi\)
0.112085 + 0.993699i \(0.464247\pi\)
\(882\) 0 0
\(883\) 13.1273 0.441770 0.220885 0.975300i \(-0.429105\pi\)
0.220885 + 0.975300i \(0.429105\pi\)
\(884\) 0 0
\(885\) −56.6716 −1.90499
\(886\) 0 0
\(887\) −10.5914 −0.355625 −0.177812 0.984064i \(-0.556902\pi\)
−0.177812 + 0.984064i \(0.556902\pi\)
\(888\) 0 0
\(889\) 22.0490 0.739501
\(890\) 0 0
\(891\) 54.1393 1.81374
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 26.0894 0.872072
\(896\) 0 0
\(897\) −12.5192 −0.418003
\(898\) 0 0
\(899\) −0.518844 −0.0173044
\(900\) 0 0
\(901\) −35.0964 −1.16923
\(902\) 0 0
\(903\) 16.1905 0.538787
\(904\) 0 0
\(905\) 45.8729 1.52487
\(906\) 0 0
\(907\) 37.0777 1.23114 0.615572 0.788081i \(-0.288925\pi\)
0.615572 + 0.788081i \(0.288925\pi\)
\(908\) 0 0
\(909\) −26.0958 −0.865542
\(910\) 0 0
\(911\) 29.8600 0.989307 0.494653 0.869090i \(-0.335295\pi\)
0.494653 + 0.869090i \(0.335295\pi\)
\(912\) 0 0
\(913\) −39.2470 −1.29889
\(914\) 0 0
\(915\) 55.3071 1.82840
\(916\) 0 0
\(917\) −10.2556 −0.338669
\(918\) 0 0
\(919\) 29.2234 0.963991 0.481996 0.876174i \(-0.339912\pi\)
0.481996 + 0.876174i \(0.339912\pi\)
\(920\) 0 0
\(921\) −53.4155 −1.76010
\(922\) 0 0
\(923\) −31.7452 −1.04491
\(924\) 0 0
\(925\) 3.20407 0.105349
\(926\) 0 0
\(927\) −12.1948 −0.400531
\(928\) 0 0
\(929\) 10.0629 0.330152 0.165076 0.986281i \(-0.447213\pi\)
0.165076 + 0.986281i \(0.447213\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 3.06720 0.100416
\(934\) 0 0
\(935\) 69.7207 2.28011
\(936\) 0 0
\(937\) −7.11210 −0.232342 −0.116171 0.993229i \(-0.537062\pi\)
−0.116171 + 0.993229i \(0.537062\pi\)
\(938\) 0 0
\(939\) 19.0939 0.623104
\(940\) 0 0
\(941\) 32.6177 1.06331 0.531653 0.846962i \(-0.321571\pi\)
0.531653 + 0.846962i \(0.321571\pi\)
\(942\) 0 0
\(943\) 3.13624 0.102130
\(944\) 0 0
\(945\) 9.69372 0.315337
\(946\) 0 0
\(947\) 2.09984 0.0682357 0.0341178 0.999418i \(-0.489138\pi\)
0.0341178 + 0.999418i \(0.489138\pi\)
\(948\) 0 0
\(949\) −36.8472 −1.19611
\(950\) 0 0
\(951\) 16.8817 0.547428
\(952\) 0 0
\(953\) 16.0496 0.519897 0.259948 0.965623i \(-0.416294\pi\)
0.259948 + 0.965623i \(0.416294\pi\)
\(954\) 0 0
\(955\) −32.8043 −1.06152
\(956\) 0 0
\(957\) −2.73314 −0.0883498
\(958\) 0 0
\(959\) −4.73756 −0.152984
\(960\) 0 0
\(961\) −25.2087 −0.813185
\(962\) 0 0
\(963\) −23.3231 −0.751577
\(964\) 0 0
\(965\) 0.306375 0.00986257
\(966\) 0 0
\(967\) 29.8722 0.960626 0.480313 0.877097i \(-0.340523\pi\)
0.480313 + 0.877097i \(0.340523\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.5209 0.626455 0.313227 0.949678i \(-0.398590\pi\)
0.313227 + 0.949678i \(0.398590\pi\)
\(972\) 0 0
\(973\) 69.6969 2.23438
\(974\) 0 0
\(975\) 3.41409 0.109338
\(976\) 0 0
\(977\) −54.1172 −1.73136 −0.865681 0.500596i \(-0.833114\pi\)
−0.865681 + 0.500596i \(0.833114\pi\)
\(978\) 0 0
\(979\) −29.1235 −0.930790
\(980\) 0 0
\(981\) 20.7430 0.662272
\(982\) 0 0
\(983\) 26.1274 0.833335 0.416668 0.909059i \(-0.363198\pi\)
0.416668 + 0.909059i \(0.363198\pi\)
\(984\) 0 0
\(985\) 28.3600 0.903626
\(986\) 0 0
\(987\) 67.2822 2.14162
\(988\) 0 0
\(989\) −2.95897 −0.0940897
\(990\) 0 0
\(991\) −24.5391 −0.779509 −0.389754 0.920919i \(-0.627440\pi\)
−0.389754 + 0.920919i \(0.627440\pi\)
\(992\) 0 0
\(993\) 64.3951 2.04352
\(994\) 0 0
\(995\) 27.3819 0.868065
\(996\) 0 0
\(997\) 11.3393 0.359118 0.179559 0.983747i \(-0.442533\pi\)
0.179559 + 0.983747i \(0.442533\pi\)
\(998\) 0 0
\(999\) 6.52087 0.206311
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5776.2.a.cd.1.3 9
4.3 odd 2 2888.2.a.y.1.7 9
19.6 even 9 304.2.u.f.17.1 18
19.16 even 9 304.2.u.f.161.1 18
19.18 odd 2 5776.2.a.ce.1.7 9
76.35 odd 18 152.2.q.c.9.3 18
76.63 odd 18 152.2.q.c.17.3 yes 18
76.75 even 2 2888.2.a.x.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.c.9.3 18 76.35 odd 18
152.2.q.c.17.3 yes 18 76.63 odd 18
304.2.u.f.17.1 18 19.6 even 9
304.2.u.f.161.1 18 19.16 even 9
2888.2.a.x.1.3 9 76.75 even 2
2888.2.a.y.1.7 9 4.3 odd 2
5776.2.a.cd.1.3 9 1.1 even 1 trivial
5776.2.a.ce.1.7 9 19.18 odd 2