Defining parameters
| Level: | \( N \) | \(=\) | \( 5776 = 2^{4} \cdot 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 5776.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 57 \) | ||
| Sturm bound: | \(1520\) | ||
| Trace bound: | \(15\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5776))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 820 | 179 | 641 |
| Cusp forms | 701 | 162 | 539 |
| Eisenstein series | 119 | 17 | 102 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(200\) | \(40\) | \(160\) | \(171\) | \(40\) | \(131\) | \(29\) | \(0\) | \(29\) | |||
| \(+\) | \(-\) | \(-\) | \(210\) | \(45\) | \(165\) | \(180\) | \(45\) | \(135\) | \(30\) | \(0\) | \(30\) | |||
| \(-\) | \(+\) | \(-\) | \(210\) | \(49\) | \(161\) | \(180\) | \(41\) | \(139\) | \(30\) | \(8\) | \(22\) | |||
| \(-\) | \(-\) | \(+\) | \(200\) | \(45\) | \(155\) | \(170\) | \(36\) | \(134\) | \(30\) | \(9\) | \(21\) | |||
| Plus space | \(+\) | \(400\) | \(85\) | \(315\) | \(341\) | \(76\) | \(265\) | \(59\) | \(9\) | \(50\) | ||||
| Minus space | \(-\) | \(420\) | \(94\) | \(326\) | \(360\) | \(86\) | \(274\) | \(60\) | \(8\) | \(52\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5776))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5776))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(5776)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(304))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1444))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2888))\)\(^{\oplus 2}\)