Properties

Label 5776.2.a
Level $5776$
Weight $2$
Character orbit 5776.a
Rep. character $\chi_{5776}(1,\cdot)$
Character field $\Q$
Dimension $162$
Newform subspaces $57$
Sturm bound $1520$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 5776 = 2^{4} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5776.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 57 \)
Sturm bound: \(1520\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(5776))\).

Total New Old
Modular forms 820 179 641
Cusp forms 701 162 539
Eisenstein series 119 17 102

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(19\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(200\)\(40\)\(160\)\(171\)\(40\)\(131\)\(29\)\(0\)\(29\)
\(+\)\(-\)\(-\)\(210\)\(45\)\(165\)\(180\)\(45\)\(135\)\(30\)\(0\)\(30\)
\(-\)\(+\)\(-\)\(210\)\(49\)\(161\)\(180\)\(41\)\(139\)\(30\)\(8\)\(22\)
\(-\)\(-\)\(+\)\(200\)\(45\)\(155\)\(170\)\(36\)\(134\)\(30\)\(9\)\(21\)
Plus space\(+\)\(400\)\(85\)\(315\)\(341\)\(76\)\(265\)\(59\)\(9\)\(50\)
Minus space\(-\)\(420\)\(94\)\(326\)\(360\)\(86\)\(274\)\(60\)\(8\)\(52\)

Trace form

\( 162 q + 2 q^{5} + 2 q^{7} + 144 q^{9} - 2 q^{11} + 2 q^{13} - 12 q^{15} - 2 q^{17} + 8 q^{21} + 10 q^{23} + 132 q^{25} + 2 q^{29} + 8 q^{33} - 12 q^{35} + 2 q^{37} + 14 q^{39} - 2 q^{41} + 14 q^{43} + 18 q^{45}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(5776))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 19
5776.2.a.a 5776.a 1.a $1$ $46.122$ \(\Q\) None 722.2.a.a \(0\) \(-3\) \(2\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+2q^{5}+3q^{7}+6q^{9}+2q^{11}+\cdots\)
5776.2.a.b 5776.a 1.a $1$ $46.122$ \(\Q\) None 152.2.a.a \(0\) \(-2\) \(-1\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}-q^{5}+3q^{7}+q^{9}+3q^{11}+\cdots\)
5776.2.a.c 5776.a 1.a $1$ $46.122$ \(\Q\) None 19.2.a.a \(0\) \(-2\) \(3\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+3q^{5}+q^{7}+q^{9}-3q^{11}+\cdots\)
5776.2.a.d 5776.a 1.a $1$ $46.122$ \(\Q\) None 38.2.a.b \(0\) \(-1\) \(-4\) \(-3\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{5}-3q^{7}-2q^{9}-2q^{11}+\cdots\)
5776.2.a.e 5776.a 1.a $1$ $46.122$ \(\Q\) None 152.2.i.b \(0\) \(-1\) \(-4\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}-4q^{5}-2q^{9}-3q^{11}+2q^{13}+\cdots\)
5776.2.a.f 5776.a 1.a $1$ $46.122$ \(\Q\) None 76.2.e.a \(0\) \(-1\) \(-1\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{3}-q^{5}-2q^{9}+4q^{11}+q^{13}+\cdots\)
5776.2.a.g 5776.a 1.a $1$ $46.122$ \(\Q\) None 38.2.c.a \(0\) \(-1\) \(0\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+4q^{7}-2q^{9}-3q^{11}+2q^{13}+\cdots\)
5776.2.a.h 5776.a 1.a $1$ $46.122$ \(\Q\) None 152.2.i.a \(0\) \(-1\) \(3\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{3}+3q^{5}-2q^{9}+4q^{11}-5q^{13}+\cdots\)
5776.2.a.i 5776.a 1.a $1$ $46.122$ \(\Q\) \(\Q(\sqrt{-19}) \) 361.2.a.a \(0\) \(0\) \(-1\) \(-3\) $-$ $+$ $N(\mathrm{U}(1))$ \(q-q^{5}-3q^{7}-3q^{9}+5q^{11}-7q^{17}+\cdots\)
5776.2.a.j 5776.a 1.a $1$ $46.122$ \(\Q\) None 152.2.i.b \(0\) \(1\) \(-4\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-4q^{5}-2q^{9}-3q^{11}-2q^{13}+\cdots\)
5776.2.a.k 5776.a 1.a $1$ $46.122$ \(\Q\) None 76.2.e.a \(0\) \(1\) \(-1\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-q^{5}-2q^{9}+4q^{11}-q^{13}+\cdots\)
5776.2.a.l 5776.a 1.a $1$ $46.122$ \(\Q\) None 152.2.a.b \(0\) \(1\) \(0\) \(-3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}-3q^{7}-2q^{9}-2q^{11}-q^{13}+\cdots\)
5776.2.a.m 5776.a 1.a $1$ $46.122$ \(\Q\) None 38.2.a.a \(0\) \(1\) \(0\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+q^{7}-2q^{9}+6q^{11}-5q^{13}+\cdots\)
5776.2.a.n 5776.a 1.a $1$ $46.122$ \(\Q\) None 38.2.c.a \(0\) \(1\) \(0\) \(4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+4q^{7}-2q^{9}-3q^{11}-2q^{13}+\cdots\)
5776.2.a.o 5776.a 1.a $1$ $46.122$ \(\Q\) None 152.2.i.a \(0\) \(1\) \(3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{3}+3q^{5}-2q^{9}+4q^{11}+5q^{13}+\cdots\)
5776.2.a.p 5776.a 1.a $1$ $46.122$ \(\Q\) None 76.2.a.a \(0\) \(2\) \(-1\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}-q^{5}+3q^{7}+q^{9}-5q^{11}+\cdots\)
5776.2.a.q 5776.a 1.a $1$ $46.122$ \(\Q\) None 722.2.a.a \(0\) \(3\) \(2\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+2q^{5}+3q^{7}+6q^{9}+2q^{11}+\cdots\)
5776.2.a.r 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 361.2.a.d \(0\) \(-4\) \(1\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2q^{3}+\beta q^{5}+(2-2\beta )q^{7}+q^{9}+(-2+\cdots)q^{11}+\cdots\)
5776.2.a.s 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 361.2.a.c \(0\) \(-3\) \(2\) \(-6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta )q^{3}+(2-2\beta )q^{5}-3q^{7}+\cdots\)
5776.2.a.t 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 722.2.a.h \(0\) \(-2\) \(-5\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-2\beta q^{3}+(-3+\beta )q^{5}+(2-2\beta )q^{7}+\cdots\)
5776.2.a.u 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 2888.2.a.g \(0\) \(-2\) \(5\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2\beta q^{3}+(2+\beta )q^{5}+2q^{7}+(1+4\beta )q^{9}+\cdots\)
5776.2.a.v 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{17}) \) None 2888.2.a.h \(0\) \(-1\) \(-3\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{3}+(-1-\beta )q^{5}-q^{7}+(1+\beta )q^{9}+\cdots\)
5776.2.a.w 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 1444.2.a.d \(0\) \(-1\) \(-2\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}-2\beta q^{5}+(-1-2\beta )q^{7}+(-2+\cdots)q^{9}+\cdots\)
5776.2.a.x 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 2888.2.a.i \(0\) \(-1\) \(-2\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{3}-2\beta q^{5}+(-3+2\beta )q^{7}+(-2+\cdots)q^{9}+\cdots\)
5776.2.a.y 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{57}) \) \(\Q(\sqrt{-19}) \) 1444.2.a.e \(0\) \(0\) \(1\) \(3\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+\beta q^{5}+(2-\beta )q^{7}-3q^{9}+(-2-\beta )q^{11}+\cdots\)
5776.2.a.z 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{7}) \) None 38.2.c.b \(0\) \(0\) \(2\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(1-\beta )q^{5}+(-1-\beta )q^{7}+4q^{9}+\cdots\)
5776.2.a.ba 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{7}) \) None 38.2.c.b \(0\) \(0\) \(2\) \(-2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(1+\beta )q^{5}+(-1+\beta )q^{7}+4q^{9}+\cdots\)
5776.2.a.bb 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{17}) \) None 2888.2.a.h \(0\) \(1\) \(-3\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta q^{3}+(-1-\beta )q^{5}-q^{7}+(1+\beta )q^{9}+\cdots\)
5776.2.a.bc 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 1444.2.a.d \(0\) \(1\) \(-2\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-2\beta q^{5}+(-1-2\beta )q^{7}+(-2+\cdots)q^{9}+\cdots\)
5776.2.a.bd 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 2888.2.a.i \(0\) \(1\) \(-2\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{3}-2\beta q^{5}+(-3+2\beta )q^{7}+(-2+\cdots)q^{9}+\cdots\)
5776.2.a.be 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 722.2.a.h \(0\) \(2\) \(-5\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{3}+(-3+\beta )q^{5}+(2-2\beta )q^{7}+\cdots\)
5776.2.a.bf 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 2888.2.a.g \(0\) \(2\) \(5\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2\beta q^{3}+(2+\beta )q^{5}+2q^{7}+(1+4\beta )q^{9}+\cdots\)
5776.2.a.bg 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 361.2.a.c \(0\) \(3\) \(2\) \(-6\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{3}+(2-2\beta )q^{5}-3q^{7}+(-1+\cdots)q^{9}+\cdots\)
5776.2.a.bh 5776.a 1.a $2$ $46.122$ \(\Q(\sqrt{5}) \) None 361.2.a.d \(0\) \(4\) \(1\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{3}+(1-\beta )q^{5}+2\beta q^{7}+q^{9}+(-4+\cdots)q^{11}+\cdots\)
5776.2.a.bi 5776.a 1.a $3$ $46.122$ \(\Q(\zeta_{18})^+\) None 19.2.e.a \(0\) \(-3\) \(-3\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{1})q^{3}+(-1+\beta _{1})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
5776.2.a.bj 5776.a 1.a $3$ $46.122$ \(\Q(\zeta_{18})^+\) None 152.2.q.b \(0\) \(-3\) \(-3\) \(6\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1-2\beta _{1}+\beta _{2})q^{3}+(-1-\beta _{2})q^{5}+\cdots\)
5776.2.a.bk 5776.a 1.a $3$ $46.122$ 3.3.316.1 None 152.2.i.c \(0\) \(-1\) \(1\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+\beta _{2})q^{3}+\beta _{1}q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)
5776.2.a.bl 5776.a 1.a $3$ $46.122$ \(\Q(\zeta_{18})^+\) None 152.2.q.a \(0\) \(0\) \(0\) \(3\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(\beta _{1}-\beta _{2})q^{5}+(1+2\beta _{1})q^{7}+\cdots\)
5776.2.a.bm 5776.a 1.a $3$ $46.122$ \(\Q(\zeta_{18})^+\) None 152.2.q.a \(0\) \(0\) \(0\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(\beta _{1}-\beta _{2})q^{5}+(1+2\beta _{1})q^{7}+\cdots\)
5776.2.a.bn 5776.a 1.a $3$ $46.122$ \(\Q(\zeta_{18})^+\) None 38.2.e.a \(0\) \(0\) \(6\) \(-6\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+2q^{5}+(-2-2\beta _{2})q^{7}+(-1+\cdots)q^{9}+\cdots\)
5776.2.a.bo 5776.a 1.a $3$ $46.122$ \(\Q(\zeta_{18})^+\) None 38.2.e.a \(0\) \(0\) \(6\) \(-6\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+2q^{5}+(-2-2\beta _{2})q^{7}+(-1+\cdots)q^{9}+\cdots\)
5776.2.a.bp 5776.a 1.a $3$ $46.122$ 3.3.961.1 None 152.2.a.c \(0\) \(1\) \(1\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}-\beta _{2}q^{5}+(-2+\beta _{1}-\beta _{2})q^{7}+\cdots\)
5776.2.a.bq 5776.a 1.a $3$ $46.122$ 3.3.316.1 None 152.2.i.c \(0\) \(1\) \(1\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}-\beta _{2})q^{3}+\beta _{1}q^{5}+(1-\beta _{1}-\beta _{2})q^{7}+\cdots\)
5776.2.a.br 5776.a 1.a $3$ $46.122$ \(\Q(\zeta_{18})^+\) None 19.2.e.a \(0\) \(3\) \(-3\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{1})q^{3}+(-1+\beta _{1})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
5776.2.a.bs 5776.a 1.a $3$ $46.122$ \(\Q(\zeta_{18})^+\) None 152.2.q.b \(0\) \(3\) \(-3\) \(6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+2\beta _{1}-\beta _{2})q^{3}+(-1-\beta _{2})q^{5}+\cdots\)
5776.2.a.bt 5776.a 1.a $4$ $46.122$ \(\Q(\zeta_{20})^+\) None 722.2.a.m \(0\) \(-2\) \(-2\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2}-\beta _{3})q^{3}+(-1-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
5776.2.a.bu 5776.a 1.a $4$ $46.122$ \(\Q(\zeta_{20})^+\) None 361.2.a.i \(0\) \(0\) \(-4\) \(8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-2-2\beta _{2})q^{5}+(1-2\beta _{2}+\cdots)q^{7}+\cdots\)
5776.2.a.bv 5776.a 1.a $4$ $46.122$ \(\Q(\zeta_{20})^+\) None 722.2.a.m \(0\) \(2\) \(-2\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2}+\beta _{3})q^{3}+(-1-\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)
5776.2.a.bw 5776.a 1.a $6$ $46.122$ 6.6.20319417.1 None 76.2.i.a \(0\) \(-3\) \(-3\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}-\beta _{2}-\beta _{3})q^{3}-\beta _{4}q^{5}+(1+\cdots)q^{7}+\cdots\)
5776.2.a.bx 5776.a 1.a $6$ $46.122$ 6.6.3022625.1 None 2888.2.a.t \(0\) \(-3\) \(2\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{3}+(-\beta _{1}-\beta _{5})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots\)
5776.2.a.by 5776.a 1.a $6$ $46.122$ 6.6.20319417.1 None 76.2.i.a \(0\) \(3\) \(-3\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}+\beta _{2}+\beta _{3})q^{3}-\beta _{4}q^{5}+(1-\beta _{1}+\cdots)q^{7}+\cdots\)
5776.2.a.bz 5776.a 1.a $6$ $46.122$ 6.6.3022625.1 None 2888.2.a.t \(0\) \(3\) \(2\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{2})q^{3}+(-\beta _{1}-\beta _{5})q^{5}+(-\beta _{2}+\cdots)q^{7}+\cdots\)
5776.2.a.ca 5776.a 1.a $8$ $46.122$ 8.8.\(\cdots\).1 None 2888.2.a.v \(0\) \(-6\) \(-2\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{3}+(-1+\beta _{3}+\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots\)
5776.2.a.cb 5776.a 1.a $8$ $46.122$ 8.8.\(\cdots\).1 None 1444.2.a.i \(0\) \(0\) \(14\) \(-8\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(\beta _{3}+\beta _{5})q^{3}+(1+\beta _{1}+\beta _{4})q^{5}+(-2+\cdots)q^{7}+\cdots\)
5776.2.a.cc 5776.a 1.a $8$ $46.122$ 8.8.\(\cdots\).1 None 2888.2.a.v \(0\) \(6\) \(-2\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{3}+(-1+\beta _{3}+\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots\)
5776.2.a.cd 5776.a 1.a $9$ $46.122$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 152.2.q.c \(0\) \(-3\) \(3\) \(-9\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(\beta _{4}+\beta _{5})q^{5}+(-1-\beta _{6}+\cdots)q^{7}+\cdots\)
5776.2.a.ce 5776.a 1.a $9$ $46.122$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 152.2.q.c \(0\) \(3\) \(3\) \(-9\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(\beta _{4}+\beta _{5})q^{5}+(-1-\beta _{6}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(5776))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(5776)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(76))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(152))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(304))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1444))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2888))\)\(^{\oplus 2}\)