Properties

Label 152.2.q.c.9.3
Level $152$
Weight $2$
Character 152.9
Analytic conductor $1.214$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,2,Mod(9,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.q (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.21372611072\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 3 x^{17} + 21 x^{16} - 34 x^{15} + 204 x^{14} - 267 x^{13} + 1304 x^{12} - 972 x^{11} + \cdots + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 9.3
Root \(1.18094 + 2.04545i\) of defining polynomial
Character \(\chi\) \(=\) 152.9
Dual form 152.2.q.c.17.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.80930 - 1.51819i) q^{3} +(2.20161 + 0.801320i) q^{5} +(-2.07787 + 3.59897i) q^{7} +(0.447746 - 2.53930i) q^{9} +(-2.68364 - 4.64821i) q^{11} +(-2.26353 - 1.89933i) q^{13} +(5.19993 - 1.89262i) q^{15} +(0.962770 + 5.46014i) q^{17} +(-2.01029 - 3.86765i) q^{19} +(1.70442 + 9.66622i) q^{21} +(-1.68566 + 0.613531i) q^{23} +(0.374747 + 0.314450i) q^{25} +(0.497804 + 0.862221i) q^{27} +(-0.0374386 + 0.212325i) q^{29} +(1.20325 - 2.08410i) q^{31} +(-11.9124 - 4.33575i) q^{33} +(-7.45858 + 6.25849i) q^{35} +6.54964 q^{37} -6.97896 q^{39} +(-1.33930 + 1.12381i) q^{41} +(1.55003 + 0.564166i) q^{43} +(3.02055 - 5.23175i) q^{45} +(-1.19032 + 6.75067i) q^{47} +(-5.13507 - 8.89419i) q^{49} +(10.0315 + 8.41739i) q^{51} +(5.94835 - 2.16502i) q^{53} +(-2.18363 - 12.3840i) q^{55} +(-9.50904 - 3.94576i) q^{57} +(1.77838 + 10.0857i) q^{59} +(-9.39192 + 3.41838i) q^{61} +(8.20849 + 6.88774i) q^{63} +(-3.46145 - 5.99540i) q^{65} +(1.55400 - 8.81316i) q^{67} +(-2.11842 + 3.66921i) q^{69} +(10.0956 + 3.67449i) q^{71} +(9.55268 - 8.01565i) q^{73} +1.15542 q^{75} +22.3050 q^{77} +(-4.29216 + 3.60155i) q^{79} +(9.47859 + 3.44993i) q^{81} +(3.65613 - 6.33261i) q^{83} +(-2.25568 + 12.7926i) q^{85} +(0.254611 + 0.440999i) q^{87} +(4.15664 + 3.48783i) q^{89} +(11.5390 - 4.19984i) q^{91} +(-0.986995 - 5.59753i) q^{93} +(-1.32665 - 10.1259i) q^{95} +(-3.09867 - 17.5734i) q^{97} +(-13.0048 + 4.73334i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 9 q^{7} - 6 q^{9} - 3 q^{11} + 3 q^{13} + 33 q^{15} + 9 q^{17} - 24 q^{19} - 15 q^{21} + 6 q^{23} + 6 q^{25} - 12 q^{27} - 3 q^{29} - 6 q^{31} - 45 q^{33} - 15 q^{35} + 48 q^{37} + 12 q^{39} - 18 q^{41}+ \cdots + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.80930 1.51819i 1.04460 0.876525i 0.0520863 0.998643i \(-0.483413\pi\)
0.992516 + 0.122118i \(0.0389685\pi\)
\(4\) 0 0
\(5\) 2.20161 + 0.801320i 0.984590 + 0.358361i 0.783623 0.621237i \(-0.213369\pi\)
0.200967 + 0.979598i \(0.435592\pi\)
\(6\) 0 0
\(7\) −2.07787 + 3.59897i −0.785360 + 1.36028i 0.143424 + 0.989661i \(0.454189\pi\)
−0.928784 + 0.370622i \(0.879145\pi\)
\(8\) 0 0
\(9\) 0.447746 2.53930i 0.149249 0.846432i
\(10\) 0 0
\(11\) −2.68364 4.64821i −0.809149 1.40149i −0.913454 0.406942i \(-0.866595\pi\)
0.104305 0.994545i \(-0.466738\pi\)
\(12\) 0 0
\(13\) −2.26353 1.89933i −0.627792 0.526780i 0.272450 0.962170i \(-0.412166\pi\)
−0.900242 + 0.435390i \(0.856610\pi\)
\(14\) 0 0
\(15\) 5.19993 1.89262i 1.34262 0.488673i
\(16\) 0 0
\(17\) 0.962770 + 5.46014i 0.233506 + 1.32428i 0.845737 + 0.533600i \(0.179161\pi\)
−0.612231 + 0.790679i \(0.709728\pi\)
\(18\) 0 0
\(19\) −2.01029 3.86765i −0.461193 0.887300i
\(20\) 0 0
\(21\) 1.70442 + 9.66622i 0.371934 + 2.10934i
\(22\) 0 0
\(23\) −1.68566 + 0.613531i −0.351485 + 0.127930i −0.511728 0.859148i \(-0.670994\pi\)
0.160243 + 0.987078i \(0.448772\pi\)
\(24\) 0 0
\(25\) 0.374747 + 0.314450i 0.0749494 + 0.0628900i
\(26\) 0 0
\(27\) 0.497804 + 0.862221i 0.0958024 + 0.165935i
\(28\) 0 0
\(29\) −0.0374386 + 0.212325i −0.00695217 + 0.0394277i −0.988087 0.153900i \(-0.950817\pi\)
0.981134 + 0.193327i \(0.0619279\pi\)
\(30\) 0 0
\(31\) 1.20325 2.08410i 0.216111 0.374315i −0.737505 0.675342i \(-0.763996\pi\)
0.953616 + 0.301027i \(0.0973294\pi\)
\(32\) 0 0
\(33\) −11.9124 4.33575i −2.07368 0.754757i
\(34\) 0 0
\(35\) −7.45858 + 6.25849i −1.26073 + 1.05788i
\(36\) 0 0
\(37\) 6.54964 1.07676 0.538378 0.842704i \(-0.319037\pi\)
0.538378 + 0.842704i \(0.319037\pi\)
\(38\) 0 0
\(39\) −6.97896 −1.11753
\(40\) 0 0
\(41\) −1.33930 + 1.12381i −0.209164 + 0.175509i −0.741351 0.671117i \(-0.765815\pi\)
0.532187 + 0.846627i \(0.321370\pi\)
\(42\) 0 0
\(43\) 1.55003 + 0.564166i 0.236378 + 0.0860346i 0.457493 0.889213i \(-0.348747\pi\)
−0.221115 + 0.975248i \(0.570970\pi\)
\(44\) 0 0
\(45\) 3.02055 5.23175i 0.450277 0.779903i
\(46\) 0 0
\(47\) −1.19032 + 6.75067i −0.173627 + 0.984686i 0.766090 + 0.642733i \(0.222199\pi\)
−0.939717 + 0.341953i \(0.888912\pi\)
\(48\) 0 0
\(49\) −5.13507 8.89419i −0.733581 1.27060i
\(50\) 0 0
\(51\) 10.0315 + 8.41739i 1.40468 + 1.17867i
\(52\) 0 0
\(53\) 5.94835 2.16502i 0.817068 0.297388i 0.100528 0.994934i \(-0.467947\pi\)
0.716540 + 0.697546i \(0.245725\pi\)
\(54\) 0 0
\(55\) −2.18363 12.3840i −0.294441 1.66986i
\(56\) 0 0
\(57\) −9.50904 3.94576i −1.25950 0.522628i
\(58\) 0 0
\(59\) 1.77838 + 10.0857i 0.231525 + 1.31304i 0.849810 + 0.527089i \(0.176717\pi\)
−0.618285 + 0.785954i \(0.712172\pi\)
\(60\) 0 0
\(61\) −9.39192 + 3.41838i −1.20251 + 0.437679i −0.864100 0.503319i \(-0.832112\pi\)
−0.338412 + 0.940998i \(0.609890\pi\)
\(62\) 0 0
\(63\) 8.20849 + 6.88774i 1.03417 + 0.867774i
\(64\) 0 0
\(65\) −3.46145 5.99540i −0.429340 0.743638i
\(66\) 0 0
\(67\) 1.55400 8.81316i 0.189851 1.07670i −0.729712 0.683755i \(-0.760346\pi\)
0.919563 0.392944i \(-0.128543\pi\)
\(68\) 0 0
\(69\) −2.11842 + 3.66921i −0.255028 + 0.441721i
\(70\) 0 0
\(71\) 10.0956 + 3.67449i 1.19812 + 0.436082i 0.862569 0.505939i \(-0.168854\pi\)
0.335555 + 0.942020i \(0.391076\pi\)
\(72\) 0 0
\(73\) 9.55268 8.01565i 1.11806 0.938161i 0.119552 0.992828i \(-0.461854\pi\)
0.998505 + 0.0546667i \(0.0174096\pi\)
\(74\) 0 0
\(75\) 1.15542 0.133417
\(76\) 0 0
\(77\) 22.3050 2.54189
\(78\) 0 0
\(79\) −4.29216 + 3.60155i −0.482906 + 0.405206i −0.851476 0.524394i \(-0.824292\pi\)
0.368570 + 0.929600i \(0.379847\pi\)
\(80\) 0 0
\(81\) 9.47859 + 3.44993i 1.05318 + 0.383325i
\(82\) 0 0
\(83\) 3.65613 6.33261i 0.401313 0.695094i −0.592572 0.805518i \(-0.701887\pi\)
0.993885 + 0.110423i \(0.0352207\pi\)
\(84\) 0 0
\(85\) −2.25568 + 12.7926i −0.244663 + 1.38755i
\(86\) 0 0
\(87\) 0.254611 + 0.440999i 0.0272971 + 0.0472800i
\(88\) 0 0
\(89\) 4.15664 + 3.48783i 0.440603 + 0.369710i 0.835935 0.548829i \(-0.184926\pi\)
−0.395332 + 0.918538i \(0.629371\pi\)
\(90\) 0 0
\(91\) 11.5390 4.19984i 1.20961 0.440263i
\(92\) 0 0
\(93\) −0.986995 5.59753i −0.102347 0.580436i
\(94\) 0 0
\(95\) −1.32665 10.1259i −0.136112 1.03890i
\(96\) 0 0
\(97\) −3.09867 17.5734i −0.314622 1.78431i −0.574329 0.818625i \(-0.694737\pi\)
0.259706 0.965688i \(-0.416374\pi\)
\(98\) 0 0
\(99\) −13.0048 + 4.73334i −1.30703 + 0.475719i
\(100\) 0 0
\(101\) −7.75287 6.50543i −0.771439 0.647314i 0.169638 0.985506i \(-0.445740\pi\)
−0.941077 + 0.338192i \(0.890185\pi\)
\(102\) 0 0
\(103\) −2.36474 4.09586i −0.233005 0.403577i 0.725686 0.688026i \(-0.241523\pi\)
−0.958691 + 0.284449i \(0.908189\pi\)
\(104\) 0 0
\(105\) −3.99328 + 22.6470i −0.389704 + 2.21012i
\(106\) 0 0
\(107\) −4.52267 + 7.83349i −0.437223 + 0.757292i −0.997474 0.0710306i \(-0.977371\pi\)
0.560251 + 0.828323i \(0.310705\pi\)
\(108\) 0 0
\(109\) −7.55953 2.75144i −0.724072 0.263541i −0.0464184 0.998922i \(-0.514781\pi\)
−0.677653 + 0.735382i \(0.737003\pi\)
\(110\) 0 0
\(111\) 11.8503 9.94358i 1.12478 0.943803i
\(112\) 0 0
\(113\) −4.20523 −0.395595 −0.197797 0.980243i \(-0.563379\pi\)
−0.197797 + 0.980243i \(0.563379\pi\)
\(114\) 0 0
\(115\) −4.20280 −0.391913
\(116\) 0 0
\(117\) −5.83645 + 4.89736i −0.539580 + 0.452762i
\(118\) 0 0
\(119\) −21.6514 7.88046i −1.98478 0.722401i
\(120\) 0 0
\(121\) −8.90388 + 15.4220i −0.809444 + 1.40200i
\(122\) 0 0
\(123\) −0.717055 + 4.06662i −0.0646547 + 0.366675i
\(124\) 0 0
\(125\) −5.28419 9.15248i −0.472632 0.818623i
\(126\) 0 0
\(127\) 4.06439 + 3.41043i 0.360657 + 0.302627i 0.805052 0.593204i \(-0.202137\pi\)
−0.444396 + 0.895831i \(0.646582\pi\)
\(128\) 0 0
\(129\) 3.66099 1.33249i 0.322332 0.117319i
\(130\) 0 0
\(131\) −0.428531 2.43032i −0.0374409 0.212338i 0.960348 0.278805i \(-0.0899383\pi\)
−0.997789 + 0.0664672i \(0.978827\pi\)
\(132\) 0 0
\(133\) 18.0967 + 0.801477i 1.56918 + 0.0694969i
\(134\) 0 0
\(135\) 0.405054 + 2.29717i 0.0348615 + 0.197709i
\(136\) 0 0
\(137\) −1.07126 + 0.389905i −0.0915235 + 0.0333118i −0.387376 0.921922i \(-0.626619\pi\)
0.295853 + 0.955234i \(0.404396\pi\)
\(138\) 0 0
\(139\) 12.8475 + 10.7804i 1.08971 + 0.914378i 0.996691 0.0812861i \(-0.0259028\pi\)
0.0930223 + 0.995664i \(0.470347\pi\)
\(140\) 0 0
\(141\) 8.09511 + 14.0211i 0.681731 + 1.18079i
\(142\) 0 0
\(143\) −2.75396 + 15.6185i −0.230298 + 1.30608i
\(144\) 0 0
\(145\) −0.252565 + 0.437456i −0.0209744 + 0.0363287i
\(146\) 0 0
\(147\) −22.7939 8.29631i −1.88001 0.684268i
\(148\) 0 0
\(149\) 4.93511 4.14105i 0.404300 0.339248i −0.417853 0.908515i \(-0.637217\pi\)
0.822153 + 0.569267i \(0.192773\pi\)
\(150\) 0 0
\(151\) −9.15755 −0.745231 −0.372616 0.927986i \(-0.621539\pi\)
−0.372616 + 0.927986i \(0.621539\pi\)
\(152\) 0 0
\(153\) 14.2960 1.15576
\(154\) 0 0
\(155\) 4.31912 3.62417i 0.346920 0.291101i
\(156\) 0 0
\(157\) −17.0488 6.20525i −1.36064 0.495233i −0.444389 0.895834i \(-0.646579\pi\)
−0.916253 + 0.400601i \(0.868801\pi\)
\(158\) 0 0
\(159\) 7.47546 12.9479i 0.592842 1.02683i
\(160\) 0 0
\(161\) 1.29450 7.34149i 0.102021 0.578590i
\(162\) 0 0
\(163\) 3.87556 + 6.71266i 0.303557 + 0.525776i 0.976939 0.213519i \(-0.0684924\pi\)
−0.673382 + 0.739295i \(0.735159\pi\)
\(164\) 0 0
\(165\) −22.7521 19.0912i −1.77124 1.48625i
\(166\) 0 0
\(167\) 4.42208 1.60950i 0.342191 0.124547i −0.165208 0.986259i \(-0.552829\pi\)
0.507398 + 0.861712i \(0.330607\pi\)
\(168\) 0 0
\(169\) −0.741296 4.20410i −0.0570227 0.323392i
\(170\) 0 0
\(171\) −10.7212 + 3.37300i −0.819871 + 0.257940i
\(172\) 0 0
\(173\) 3.73835 + 21.2012i 0.284221 + 1.61190i 0.708053 + 0.706159i \(0.249574\pi\)
−0.423832 + 0.905741i \(0.639315\pi\)
\(174\) 0 0
\(175\) −1.91037 + 0.695318i −0.144410 + 0.0525611i
\(176\) 0 0
\(177\) 18.5296 + 15.5481i 1.39277 + 1.16867i
\(178\) 0 0
\(179\) −5.56774 9.64362i −0.416153 0.720798i 0.579396 0.815046i \(-0.303288\pi\)
−0.995549 + 0.0942486i \(0.969955\pi\)
\(180\) 0 0
\(181\) −3.39994 + 19.2820i −0.252716 + 1.43322i 0.549152 + 0.835722i \(0.314951\pi\)
−0.801868 + 0.597501i \(0.796160\pi\)
\(182\) 0 0
\(183\) −11.8031 + 20.4436i −0.872510 + 1.51123i
\(184\) 0 0
\(185\) 14.4198 + 5.24836i 1.06016 + 0.385867i
\(186\) 0 0
\(187\) 22.7961 19.1282i 1.66702 1.39879i
\(188\) 0 0
\(189\) −4.13748 −0.300957
\(190\) 0 0
\(191\) −14.0015 −1.01312 −0.506558 0.862206i \(-0.669082\pi\)
−0.506558 + 0.862206i \(0.669082\pi\)
\(192\) 0 0
\(193\) −0.100174 + 0.0840556i −0.00721065 + 0.00605046i −0.646386 0.763011i \(-0.723720\pi\)
0.639175 + 0.769061i \(0.279276\pi\)
\(194\) 0 0
\(195\) −15.3649 5.59238i −1.10031 0.400479i
\(196\) 0 0
\(197\) 6.05232 10.4829i 0.431210 0.746878i −0.565768 0.824565i \(-0.691420\pi\)
0.996978 + 0.0776867i \(0.0247534\pi\)
\(198\) 0 0
\(199\) 2.02946 11.5096i 0.143864 0.815895i −0.824408 0.565997i \(-0.808492\pi\)
0.968272 0.249899i \(-0.0803973\pi\)
\(200\) 0 0
\(201\) −10.5684 18.3049i −0.745435 1.29113i
\(202\) 0 0
\(203\) −0.686359 0.575923i −0.0481729 0.0404219i
\(204\) 0 0
\(205\) −3.84915 + 1.40098i −0.268836 + 0.0978484i
\(206\) 0 0
\(207\) 0.803187 + 4.55510i 0.0558254 + 0.316601i
\(208\) 0 0
\(209\) −12.5827 + 19.7236i −0.870365 + 1.36431i
\(210\) 0 0
\(211\) −0.286105 1.62258i −0.0196963 0.111703i 0.973375 0.229220i \(-0.0736176\pi\)
−0.993071 + 0.117517i \(0.962507\pi\)
\(212\) 0 0
\(213\) 23.8445 8.67870i 1.63380 0.594655i
\(214\) 0 0
\(215\) 2.96049 + 2.48415i 0.201904 + 0.169417i
\(216\) 0 0
\(217\) 5.00040 + 8.66095i 0.339449 + 0.587944i
\(218\) 0 0
\(219\) 5.11445 29.0055i 0.345603 1.96001i
\(220\) 0 0
\(221\) 8.19135 14.1878i 0.551010 0.954377i
\(222\) 0 0
\(223\) 17.3431 + 6.31237i 1.16138 + 0.422707i 0.849590 0.527444i \(-0.176850\pi\)
0.311789 + 0.950151i \(0.399072\pi\)
\(224\) 0 0
\(225\) 0.966273 0.810799i 0.0644182 0.0540533i
\(226\) 0 0
\(227\) 3.16564 0.210111 0.105055 0.994466i \(-0.466498\pi\)
0.105055 + 0.994466i \(0.466498\pi\)
\(228\) 0 0
\(229\) −12.8379 −0.848353 −0.424177 0.905580i \(-0.639436\pi\)
−0.424177 + 0.905580i \(0.639436\pi\)
\(230\) 0 0
\(231\) 40.3565 33.8632i 2.65527 2.22803i
\(232\) 0 0
\(233\) −5.43406 1.97784i −0.355997 0.129572i 0.157830 0.987466i \(-0.449550\pi\)
−0.513827 + 0.857894i \(0.671773\pi\)
\(234\) 0 0
\(235\) −8.03008 + 13.9085i −0.523824 + 0.907290i
\(236\) 0 0
\(237\) −2.29800 + 13.0326i −0.149271 + 0.846558i
\(238\) 0 0
\(239\) 6.52635 + 11.3040i 0.422154 + 0.731193i 0.996150 0.0876657i \(-0.0279407\pi\)
−0.573996 + 0.818858i \(0.694607\pi\)
\(240\) 0 0
\(241\) 8.31220 + 6.97476i 0.535436 + 0.449284i 0.869974 0.493098i \(-0.164136\pi\)
−0.334538 + 0.942382i \(0.608580\pi\)
\(242\) 0 0
\(243\) 19.5806 7.12675i 1.25610 0.457181i
\(244\) 0 0
\(245\) −4.17831 23.6964i −0.266942 1.51391i
\(246\) 0 0
\(247\) −2.79558 + 12.5728i −0.177879 + 0.799986i
\(248\) 0 0
\(249\) −2.99902 17.0083i −0.190055 1.07786i
\(250\) 0 0
\(251\) 10.5707 3.84743i 0.667219 0.242848i 0.0138689 0.999904i \(-0.495585\pi\)
0.653350 + 0.757056i \(0.273363\pi\)
\(252\) 0 0
\(253\) 7.37553 + 6.18881i 0.463696 + 0.389087i
\(254\) 0 0
\(255\) 15.3403 + 26.5702i 0.960648 + 1.66389i
\(256\) 0 0
\(257\) −3.55535 + 20.1634i −0.221776 + 1.25776i 0.646976 + 0.762510i \(0.276033\pi\)
−0.868753 + 0.495246i \(0.835078\pi\)
\(258\) 0 0
\(259\) −13.6093 + 23.5720i −0.845640 + 1.46469i
\(260\) 0 0
\(261\) 0.522392 + 0.190135i 0.0323353 + 0.0117691i
\(262\) 0 0
\(263\) −21.3665 + 17.9286i −1.31751 + 1.10552i −0.330687 + 0.943741i \(0.607280\pi\)
−0.986826 + 0.161784i \(0.948275\pi\)
\(264\) 0 0
\(265\) 14.8308 0.911049
\(266\) 0 0
\(267\) 12.8158 0.784314
\(268\) 0 0
\(269\) −4.01106 + 3.36568i −0.244559 + 0.205209i −0.756825 0.653617i \(-0.773251\pi\)
0.512266 + 0.858827i \(0.328806\pi\)
\(270\) 0 0
\(271\) −5.06671 1.84413i −0.307781 0.112023i 0.183512 0.983017i \(-0.441253\pi\)
−0.491293 + 0.870994i \(0.663476\pi\)
\(272\) 0 0
\(273\) 14.5014 25.1171i 0.877662 1.52015i
\(274\) 0 0
\(275\) 0.455941 2.58577i 0.0274943 0.155928i
\(276\) 0 0
\(277\) −12.7451 22.0752i −0.765781 1.32637i −0.939833 0.341635i \(-0.889019\pi\)
0.174052 0.984736i \(-0.444314\pi\)
\(278\) 0 0
\(279\) −4.75338 3.98856i −0.284578 0.238789i
\(280\) 0 0
\(281\) 17.2976 6.29580i 1.03189 0.375576i 0.230088 0.973170i \(-0.426099\pi\)
0.801799 + 0.597594i \(0.203876\pi\)
\(282\) 0 0
\(283\) 3.43385 + 19.4743i 0.204121 + 1.15763i 0.898817 + 0.438325i \(0.144428\pi\)
−0.694696 + 0.719304i \(0.744461\pi\)
\(284\) 0 0
\(285\) −17.7734 16.3068i −1.05280 0.965931i
\(286\) 0 0
\(287\) −1.26166 7.15524i −0.0744735 0.422360i
\(288\) 0 0
\(289\) −12.9114 + 4.69938i −0.759496 + 0.276434i
\(290\) 0 0
\(291\) −32.2862 27.0913i −1.89265 1.58812i
\(292\) 0 0
\(293\) 0.848104 + 1.46896i 0.0495468 + 0.0858175i 0.889735 0.456477i \(-0.150889\pi\)
−0.840188 + 0.542295i \(0.817556\pi\)
\(294\) 0 0
\(295\) −4.16657 + 23.6298i −0.242587 + 1.37578i
\(296\) 0 0
\(297\) 2.67185 4.62779i 0.155037 0.268531i
\(298\) 0 0
\(299\) 4.98085 + 1.81288i 0.288050 + 0.104842i
\(300\) 0 0
\(301\) −5.25118 + 4.40627i −0.302673 + 0.253973i
\(302\) 0 0
\(303\) −23.9037 −1.37323
\(304\) 0 0
\(305\) −23.4166 −1.34083
\(306\) 0 0
\(307\) −17.3246 + 14.5371i −0.988769 + 0.829676i −0.985389 0.170319i \(-0.945520\pi\)
−0.00337987 + 0.999994i \(0.501076\pi\)
\(308\) 0 0
\(309\) −10.4968 3.82053i −0.597143 0.217342i
\(310\) 0 0
\(311\) −0.649314 + 1.12464i −0.0368192 + 0.0637727i −0.883848 0.467775i \(-0.845056\pi\)
0.847029 + 0.531547i \(0.178389\pi\)
\(312\) 0 0
\(313\) −1.40380 + 7.96137i −0.0793477 + 0.450003i 0.919086 + 0.394057i \(0.128929\pi\)
−0.998434 + 0.0559462i \(0.982182\pi\)
\(314\) 0 0
\(315\) 12.5526 + 21.7418i 0.707259 + 1.22501i
\(316\) 0 0
\(317\) −5.47537 4.59438i −0.307527 0.258046i 0.475942 0.879477i \(-0.342107\pi\)
−0.783469 + 0.621431i \(0.786552\pi\)
\(318\) 0 0
\(319\) 1.08740 0.395782i 0.0608828 0.0221595i
\(320\) 0 0
\(321\) 3.70982 + 21.0394i 0.207062 + 1.17431i
\(322\) 0 0
\(323\) 19.1825 14.7001i 1.06734 0.817938i
\(324\) 0 0
\(325\) −0.251008 1.42354i −0.0139234 0.0789636i
\(326\) 0 0
\(327\) −17.8547 + 6.49858i −0.987367 + 0.359372i
\(328\) 0 0
\(329\) −21.8221 18.3109i −1.20309 1.00951i
\(330\) 0 0
\(331\) −13.6322 23.6116i −0.749292 1.29781i −0.948162 0.317786i \(-0.897060\pi\)
0.198870 0.980026i \(-0.436273\pi\)
\(332\) 0 0
\(333\) 2.93258 16.6315i 0.160704 0.911400i
\(334\) 0 0
\(335\) 10.4835 18.1579i 0.572772 0.992071i
\(336\) 0 0
\(337\) 23.0029 + 8.37237i 1.25305 + 0.456072i 0.881430 0.472314i \(-0.156581\pi\)
0.371617 + 0.928386i \(0.378803\pi\)
\(338\) 0 0
\(339\) −7.60853 + 6.38432i −0.413239 + 0.346749i
\(340\) 0 0
\(341\) −12.9164 −0.699463
\(342\) 0 0
\(343\) 13.5898 0.733780
\(344\) 0 0
\(345\) −7.60415 + 6.38064i −0.409394 + 0.343522i
\(346\) 0 0
\(347\) 21.4518 + 7.80782i 1.15159 + 0.419146i 0.846087 0.533045i \(-0.178952\pi\)
0.305506 + 0.952190i \(0.401174\pi\)
\(348\) 0 0
\(349\) −1.29358 + 2.24054i −0.0692435 + 0.119933i −0.898569 0.438833i \(-0.855392\pi\)
0.829325 + 0.558767i \(0.188725\pi\)
\(350\) 0 0
\(351\) 0.510848 2.89716i 0.0272670 0.154639i
\(352\) 0 0
\(353\) 5.48049 + 9.49249i 0.291697 + 0.505234i 0.974211 0.225638i \(-0.0724467\pi\)
−0.682514 + 0.730872i \(0.739113\pi\)
\(354\) 0 0
\(355\) 19.2821 + 16.1796i 1.02339 + 0.858723i
\(356\) 0 0
\(357\) −51.1380 + 18.6127i −2.70651 + 0.985088i
\(358\) 0 0
\(359\) −4.08393 23.1611i −0.215542 1.22240i −0.879964 0.475040i \(-0.842433\pi\)
0.664422 0.747357i \(-0.268678\pi\)
\(360\) 0 0
\(361\) −10.9174 + 15.5502i −0.574602 + 0.818433i
\(362\) 0 0
\(363\) 7.30360 + 41.4208i 0.383340 + 2.17403i
\(364\) 0 0
\(365\) 27.4544 9.99258i 1.43703 0.523035i
\(366\) 0 0
\(367\) −6.14137 5.15322i −0.320577 0.268996i 0.468270 0.883585i \(-0.344877\pi\)
−0.788847 + 0.614589i \(0.789322\pi\)
\(368\) 0 0
\(369\) 2.25401 + 3.90407i 0.117339 + 0.203238i
\(370\) 0 0
\(371\) −4.56802 + 25.9066i −0.237160 + 1.34500i
\(372\) 0 0
\(373\) 8.48051 14.6887i 0.439104 0.760551i −0.558516 0.829493i \(-0.688629\pi\)
0.997621 + 0.0689426i \(0.0219625\pi\)
\(374\) 0 0
\(375\) −23.4559 8.53724i −1.21126 0.440861i
\(376\) 0 0
\(377\) 0.488019 0.409496i 0.0251342 0.0210901i
\(378\) 0 0
\(379\) −22.6828 −1.16513 −0.582567 0.812782i \(-0.697952\pi\)
−0.582567 + 0.812782i \(0.697952\pi\)
\(380\) 0 0
\(381\) 12.5314 0.642002
\(382\) 0 0
\(383\) 9.46785 7.94447i 0.483784 0.405943i −0.368008 0.929823i \(-0.619960\pi\)
0.851792 + 0.523879i \(0.175516\pi\)
\(384\) 0 0
\(385\) 49.1069 + 17.8735i 2.50272 + 0.910916i
\(386\) 0 0
\(387\) 2.12661 3.68339i 0.108102 0.187237i
\(388\) 0 0
\(389\) −3.36690 + 19.0947i −0.170709 + 0.968138i 0.772272 + 0.635292i \(0.219120\pi\)
−0.942981 + 0.332846i \(0.891991\pi\)
\(390\) 0 0
\(391\) −4.97287 8.61326i −0.251489 0.435591i
\(392\) 0 0
\(393\) −4.46502 3.74660i −0.225230 0.188991i
\(394\) 0 0
\(395\) −12.3357 + 4.48981i −0.620674 + 0.225907i
\(396\) 0 0
\(397\) 0.956093 + 5.42227i 0.0479849 + 0.272136i 0.999355 0.0359147i \(-0.0114345\pi\)
−0.951370 + 0.308051i \(0.900323\pi\)
\(398\) 0 0
\(399\) 33.9592 26.0240i 1.70009 1.30283i
\(400\) 0 0
\(401\) −1.22303 6.93616i −0.0610753 0.346375i −0.999997 0.00224576i \(-0.999285\pi\)
0.938922 0.344130i \(-0.111826\pi\)
\(402\) 0 0
\(403\) −6.68200 + 2.43205i −0.332854 + 0.121149i
\(404\) 0 0
\(405\) 18.1037 + 15.1908i 0.899578 + 0.754836i
\(406\) 0 0
\(407\) −17.5769 30.4441i −0.871255 1.50906i
\(408\) 0 0
\(409\) 6.62579 37.5767i 0.327624 1.85805i −0.162929 0.986638i \(-0.552094\pi\)
0.490553 0.871411i \(-0.336795\pi\)
\(410\) 0 0
\(411\) −1.34628 + 2.33182i −0.0664070 + 0.115020i
\(412\) 0 0
\(413\) −39.9933 14.5564i −1.96794 0.716272i
\(414\) 0 0
\(415\) 13.1238 11.0122i 0.644223 0.540568i
\(416\) 0 0
\(417\) 39.6117 1.93979
\(418\) 0 0
\(419\) 8.28410 0.404705 0.202352 0.979313i \(-0.435141\pi\)
0.202352 + 0.979313i \(0.435141\pi\)
\(420\) 0 0
\(421\) −0.0605690 + 0.0508234i −0.00295195 + 0.00247698i −0.644262 0.764805i \(-0.722836\pi\)
0.641310 + 0.767282i \(0.278391\pi\)
\(422\) 0 0
\(423\) 16.6090 + 6.04517i 0.807556 + 0.293926i
\(424\) 0 0
\(425\) −1.35615 + 2.34891i −0.0657827 + 0.113939i
\(426\) 0 0
\(427\) 7.21251 40.9042i 0.349038 1.97949i
\(428\) 0 0
\(429\) 18.7290 + 32.4396i 0.904246 + 1.56620i
\(430\) 0 0
\(431\) 0.679798 + 0.570418i 0.0327447 + 0.0274761i 0.659013 0.752131i \(-0.270974\pi\)
−0.626268 + 0.779607i \(0.715419\pi\)
\(432\) 0 0
\(433\) −13.6455 + 4.96655i −0.655760 + 0.238677i −0.648405 0.761296i \(-0.724563\pi\)
−0.00735516 + 0.999973i \(0.502341\pi\)
\(434\) 0 0
\(435\) 0.207172 + 1.17493i 0.00993315 + 0.0563337i
\(436\) 0 0
\(437\) 5.76160 + 5.28617i 0.275615 + 0.252872i
\(438\) 0 0
\(439\) −2.02637 11.4921i −0.0967134 0.548489i −0.994209 0.107465i \(-0.965727\pi\)
0.897495 0.441024i \(-0.145385\pi\)
\(440\) 0 0
\(441\) −24.8842 + 9.05710i −1.18496 + 0.431291i
\(442\) 0 0
\(443\) −8.35367 7.00956i −0.396895 0.333034i 0.422397 0.906411i \(-0.361189\pi\)
−0.819292 + 0.573377i \(0.805633\pi\)
\(444\) 0 0
\(445\) 6.35642 + 11.0096i 0.301323 + 0.521907i
\(446\) 0 0
\(447\) 2.64223 14.9848i 0.124973 0.708758i
\(448\) 0 0
\(449\) −1.40626 + 2.43571i −0.0663655 + 0.114948i −0.897299 0.441424i \(-0.854474\pi\)
0.830933 + 0.556372i \(0.187807\pi\)
\(450\) 0 0
\(451\) 8.81790 + 3.20945i 0.415219 + 0.151127i
\(452\) 0 0
\(453\) −16.5688 + 13.9029i −0.778470 + 0.653214i
\(454\) 0 0
\(455\) 28.7697 1.34874
\(456\) 0 0
\(457\) 4.19534 0.196250 0.0981248 0.995174i \(-0.468716\pi\)
0.0981248 + 0.995174i \(0.468716\pi\)
\(458\) 0 0
\(459\) −4.22858 + 3.54820i −0.197373 + 0.165616i
\(460\) 0 0
\(461\) 30.4257 + 11.0741i 1.41707 + 0.515771i 0.933196 0.359368i \(-0.117008\pi\)
0.483872 + 0.875139i \(0.339230\pi\)
\(462\) 0 0
\(463\) −11.0196 + 19.0865i −0.512124 + 0.887025i 0.487777 + 0.872968i \(0.337808\pi\)
−0.999901 + 0.0140569i \(0.995525\pi\)
\(464\) 0 0
\(465\) 2.31243 13.1145i 0.107237 0.608169i
\(466\) 0 0
\(467\) −7.67905 13.3005i −0.355344 0.615474i 0.631833 0.775105i \(-0.282303\pi\)
−0.987177 + 0.159631i \(0.948970\pi\)
\(468\) 0 0
\(469\) 28.4893 + 23.9054i 1.31551 + 1.10385i
\(470\) 0 0
\(471\) −40.2672 + 14.6561i −1.85541 + 0.675315i
\(472\) 0 0
\(473\) −1.53738 8.71890i −0.0706887 0.400895i
\(474\) 0 0
\(475\) 0.462832 2.08153i 0.0212362 0.0955070i
\(476\) 0 0
\(477\) −2.83428 16.0740i −0.129773 0.735977i
\(478\) 0 0
\(479\) −19.0736 + 6.94223i −0.871497 + 0.317199i −0.738773 0.673954i \(-0.764594\pi\)
−0.132723 + 0.991153i \(0.542372\pi\)
\(480\) 0 0
\(481\) −14.8253 12.4399i −0.675978 0.567213i
\(482\) 0 0
\(483\) −8.80359 15.2483i −0.400577 0.693820i
\(484\) 0 0
\(485\) 7.25989 41.1729i 0.329655 1.86956i
\(486\) 0 0
\(487\) 14.9451 25.8857i 0.677227 1.17299i −0.298586 0.954383i \(-0.596515\pi\)
0.975813 0.218609i \(-0.0701518\pi\)
\(488\) 0 0
\(489\) 17.2031 + 6.26143i 0.777952 + 0.283152i
\(490\) 0 0
\(491\) 5.73209 4.80980i 0.258686 0.217063i −0.504216 0.863578i \(-0.668218\pi\)
0.762902 + 0.646515i \(0.223774\pi\)
\(492\) 0 0
\(493\) −1.19537 −0.0538367
\(494\) 0 0
\(495\) −32.4243 −1.45736
\(496\) 0 0
\(497\) −34.2017 + 28.6986i −1.53415 + 1.28731i
\(498\) 0 0
\(499\) 9.36579 + 3.40887i 0.419270 + 0.152602i 0.543036 0.839710i \(-0.317275\pi\)
−0.123765 + 0.992312i \(0.539497\pi\)
\(500\) 0 0
\(501\) 5.55735 9.62562i 0.248284 0.430041i
\(502\) 0 0
\(503\) −1.28858 + 7.30788i −0.0574548 + 0.325842i −0.999965 0.00833436i \(-0.997347\pi\)
0.942511 + 0.334177i \(0.108458\pi\)
\(504\) 0 0
\(505\) −11.8559 20.5349i −0.527579 0.913793i
\(506\) 0 0
\(507\) −7.72383 6.48106i −0.343027 0.287834i
\(508\) 0 0
\(509\) 39.2336 14.2799i 1.73900 0.632943i 0.739794 0.672834i \(-0.234923\pi\)
0.999204 + 0.0398901i \(0.0127008\pi\)
\(510\) 0 0
\(511\) 8.99890 + 51.0353i 0.398088 + 2.25767i
\(512\) 0 0
\(513\) 2.33404 3.65865i 0.103050 0.161533i
\(514\) 0 0
\(515\) −1.92415 10.9124i −0.0847882 0.480858i
\(516\) 0 0
\(517\) 34.5729 12.5835i 1.52051 0.553422i
\(518\) 0 0
\(519\) 38.9512 + 32.6840i 1.70977 + 1.43467i
\(520\) 0 0
\(521\) 16.6434 + 28.8272i 0.729160 + 1.26294i 0.957239 + 0.289299i \(0.0934223\pi\)
−0.228079 + 0.973643i \(0.573244\pi\)
\(522\) 0 0
\(523\) 5.29947 30.0548i 0.231730 1.31421i −0.617663 0.786443i \(-0.711920\pi\)
0.849392 0.527762i \(-0.176969\pi\)
\(524\) 0 0
\(525\) −2.40082 + 4.15834i −0.104780 + 0.181485i
\(526\) 0 0
\(527\) 12.5379 + 4.56343i 0.546160 + 0.198786i
\(528\) 0 0
\(529\) −15.1540 + 12.7157i −0.658869 + 0.552857i
\(530\) 0 0
\(531\) 26.4068 1.14596
\(532\) 0 0
\(533\) 5.16604 0.223766
\(534\) 0 0
\(535\) −16.2343 + 13.6222i −0.701869 + 0.588938i
\(536\) 0 0
\(537\) −24.7145 8.99536i −1.06651 0.388178i
\(538\) 0 0
\(539\) −27.5614 + 47.7377i −1.18715 + 2.05621i
\(540\) 0 0
\(541\) 0.432458 2.45259i 0.0185928 0.105445i −0.974099 0.226122i \(-0.927395\pi\)
0.992692 + 0.120677i \(0.0385064\pi\)
\(542\) 0 0
\(543\) 23.1222 + 40.0488i 0.992268 + 1.71866i
\(544\) 0 0
\(545\) −14.4383 12.1152i −0.618471 0.518959i
\(546\) 0 0
\(547\) 13.3326 4.85266i 0.570059 0.207485i −0.0408772 0.999164i \(-0.513015\pi\)
0.610937 + 0.791680i \(0.290793\pi\)
\(548\) 0 0
\(549\) 4.47508 + 25.3794i 0.190992 + 1.08317i
\(550\) 0 0
\(551\) 0.896461 0.282036i 0.0381905 0.0120151i
\(552\) 0 0
\(553\) −4.04334 22.9309i −0.171940 0.975121i
\(554\) 0 0
\(555\) 34.0577 12.3960i 1.44567 0.526181i
\(556\) 0 0
\(557\) 4.90694 + 4.11741i 0.207914 + 0.174460i 0.740798 0.671728i \(-0.234447\pi\)
−0.532884 + 0.846188i \(0.678892\pi\)
\(558\) 0 0
\(559\) −2.43702 4.22104i −0.103075 0.178531i
\(560\) 0 0
\(561\) 12.2049 69.2175i 0.515292 2.92237i
\(562\) 0 0
\(563\) 14.1747 24.5513i 0.597393 1.03471i −0.395812 0.918332i \(-0.629537\pi\)
0.993204 0.116383i \(-0.0371299\pi\)
\(564\) 0 0
\(565\) −9.25827 3.36973i −0.389498 0.141766i
\(566\) 0 0
\(567\) −32.1114 + 26.9447i −1.34855 + 1.13157i
\(568\) 0 0
\(569\) −16.4200 −0.688362 −0.344181 0.938903i \(-0.611843\pi\)
−0.344181 + 0.938903i \(0.611843\pi\)
\(570\) 0 0
\(571\) −36.9283 −1.54540 −0.772701 0.634771i \(-0.781095\pi\)
−0.772701 + 0.634771i \(0.781095\pi\)
\(572\) 0 0
\(573\) −25.3331 + 21.2570i −1.05830 + 0.888022i
\(574\) 0 0
\(575\) −0.824621 0.300138i −0.0343891 0.0125166i
\(576\) 0 0
\(577\) −20.5819 + 35.6489i −0.856835 + 1.48408i 0.0180977 + 0.999836i \(0.494239\pi\)
−0.874932 + 0.484245i \(0.839094\pi\)
\(578\) 0 0
\(579\) −0.0536324 + 0.304164i −0.00222889 + 0.0126406i
\(580\) 0 0
\(581\) 15.1939 + 26.3166i 0.630350 + 1.09180i
\(582\) 0 0
\(583\) −26.0267 21.8390i −1.07792 0.904479i
\(584\) 0 0
\(585\) −16.7739 + 6.10522i −0.693517 + 0.252420i
\(586\) 0 0
\(587\) 1.26956 + 7.20005i 0.0524005 + 0.297178i 0.999734 0.0230713i \(-0.00734449\pi\)
−0.947333 + 0.320249i \(0.896233\pi\)
\(588\) 0 0
\(589\) −10.4794 0.464120i −0.431798 0.0191237i
\(590\) 0 0
\(591\) −4.96455 28.1554i −0.204214 1.15816i
\(592\) 0 0
\(593\) −0.174214 + 0.0634086i −0.00715410 + 0.00260388i −0.345595 0.938384i \(-0.612323\pi\)
0.338441 + 0.940988i \(0.390101\pi\)
\(594\) 0 0
\(595\) −41.3531 34.6994i −1.69531 1.42254i
\(596\) 0 0
\(597\) −13.8018 23.9055i −0.564872 0.978386i
\(598\) 0 0
\(599\) 4.06132 23.0329i 0.165941 0.941099i −0.782147 0.623093i \(-0.785876\pi\)
0.948089 0.318006i \(-0.103013\pi\)
\(600\) 0 0
\(601\) −13.3289 + 23.0863i −0.543697 + 0.941710i 0.454991 + 0.890496i \(0.349643\pi\)
−0.998688 + 0.0512144i \(0.983691\pi\)
\(602\) 0 0
\(603\) −21.6834 7.89212i −0.883017 0.321392i
\(604\) 0 0
\(605\) −31.9608 + 26.8183i −1.29939 + 1.09032i
\(606\) 0 0
\(607\) 20.2286 0.821052 0.410526 0.911849i \(-0.365345\pi\)
0.410526 + 0.911849i \(0.365345\pi\)
\(608\) 0 0
\(609\) −2.11619 −0.0857523
\(610\) 0 0
\(611\) 15.5161 13.0195i 0.627714 0.526715i
\(612\) 0 0
\(613\) −22.7806 8.29147i −0.920101 0.334889i −0.161822 0.986820i \(-0.551737\pi\)
−0.758279 + 0.651931i \(0.773959\pi\)
\(614\) 0 0
\(615\) −4.83734 + 8.37852i −0.195060 + 0.337854i
\(616\) 0 0
\(617\) −3.84962 + 21.8323i −0.154980 + 0.878934i 0.803825 + 0.594866i \(0.202795\pi\)
−0.958804 + 0.284067i \(0.908316\pi\)
\(618\) 0 0
\(619\) −5.33292 9.23690i −0.214348 0.371262i 0.738722 0.674010i \(-0.235429\pi\)
−0.953071 + 0.302748i \(0.902096\pi\)
\(620\) 0 0
\(621\) −1.36813 1.14800i −0.0549011 0.0460675i
\(622\) 0 0
\(623\) −21.1896 + 7.71237i −0.848942 + 0.308989i
\(624\) 0 0
\(625\) −4.72439 26.7933i −0.188976 1.07173i
\(626\) 0 0
\(627\) 7.17819 + 54.7890i 0.286669 + 2.18806i
\(628\) 0 0
\(629\) 6.30580 + 35.7620i 0.251429 + 1.42592i
\(630\) 0 0
\(631\) −36.6833 + 13.3516i −1.46034 + 0.531520i −0.945459 0.325742i \(-0.894386\pi\)
−0.514881 + 0.857262i \(0.672164\pi\)
\(632\) 0 0
\(633\) −2.98104 2.50139i −0.118486 0.0994212i
\(634\) 0 0
\(635\) 6.21536 + 10.7653i 0.246649 + 0.427208i
\(636\) 0 0
\(637\) −5.26962 + 29.8855i −0.208790 + 1.18411i
\(638\) 0 0
\(639\) 13.8509 23.9904i 0.547932 0.949046i
\(640\) 0 0
\(641\) −14.9266 5.43283i −0.589564 0.214584i 0.0299734 0.999551i \(-0.490458\pi\)
−0.619538 + 0.784967i \(0.712680\pi\)
\(642\) 0 0
\(643\) −20.1664 + 16.9216i −0.795285 + 0.667324i −0.947048 0.321093i \(-0.895950\pi\)
0.151762 + 0.988417i \(0.451505\pi\)
\(644\) 0 0
\(645\) 9.12783 0.359408
\(646\) 0 0
\(647\) 27.2044 1.06952 0.534758 0.845005i \(-0.320403\pi\)
0.534758 + 0.845005i \(0.320403\pi\)
\(648\) 0 0
\(649\) 42.1078 35.3326i 1.65287 1.38693i
\(650\) 0 0
\(651\) 22.1962 + 8.07875i 0.869937 + 0.316631i
\(652\) 0 0
\(653\) −15.2033 + 26.3329i −0.594952 + 1.03049i 0.398601 + 0.917124i \(0.369496\pi\)
−0.993554 + 0.113363i \(0.963838\pi\)
\(654\) 0 0
\(655\) 1.00401 5.69400i 0.0392298 0.222483i
\(656\) 0 0
\(657\) −16.0769 27.8461i −0.627221 1.08638i
\(658\) 0 0
\(659\) 11.6154 + 9.74647i 0.452471 + 0.379668i 0.840352 0.542041i \(-0.182348\pi\)
−0.387881 + 0.921710i \(0.626793\pi\)
\(660\) 0 0
\(661\) 8.83885 3.21708i 0.343791 0.125130i −0.164353 0.986402i \(-0.552554\pi\)
0.508145 + 0.861272i \(0.330331\pi\)
\(662\) 0 0
\(663\) −6.71913 38.1061i −0.260949 1.47992i
\(664\) 0 0
\(665\) 39.1996 + 16.2658i 1.52010 + 0.630760i
\(666\) 0 0
\(667\) −0.0671590 0.380878i −0.00260041 0.0147476i
\(668\) 0 0
\(669\) 40.9623 14.9090i 1.58369 0.576417i
\(670\) 0 0
\(671\) 41.0939 + 34.4819i 1.58641 + 1.33116i
\(672\) 0 0
\(673\) −20.8035 36.0328i −0.801917 1.38896i −0.918353 0.395763i \(-0.870480\pi\)
0.116436 0.993198i \(-0.462853\pi\)
\(674\) 0 0
\(675\) −0.0845751 + 0.479649i −0.00325530 + 0.0184617i
\(676\) 0 0
\(677\) 16.4951 28.5704i 0.633959 1.09805i −0.352776 0.935708i \(-0.614762\pi\)
0.986735 0.162341i \(-0.0519044\pi\)
\(678\) 0 0
\(679\) 69.6849 + 25.3632i 2.67426 + 0.973352i
\(680\) 0 0
\(681\) 5.72760 4.80603i 0.219482 0.184168i
\(682\) 0 0
\(683\) −42.6980 −1.63379 −0.816896 0.576785i \(-0.804307\pi\)
−0.816896 + 0.576785i \(0.804307\pi\)
\(684\) 0 0
\(685\) −2.67093 −0.102051
\(686\) 0 0
\(687\) −23.2277 + 19.4903i −0.886191 + 0.743603i
\(688\) 0 0
\(689\) −17.5764 6.39728i −0.669607 0.243717i
\(690\) 0 0
\(691\) 17.3407 30.0350i 0.659671 1.14258i −0.321030 0.947069i \(-0.604029\pi\)
0.980701 0.195515i \(-0.0626377\pi\)
\(692\) 0 0
\(693\) 9.98699 56.6390i 0.379374 2.15154i
\(694\) 0 0
\(695\) 19.6467 + 34.0291i 0.745243 + 1.29080i
\(696\) 0 0
\(697\) −7.42559 6.23081i −0.281264 0.236009i
\(698\) 0 0
\(699\) −12.8346 + 4.67141i −0.485448 + 0.176689i
\(700\) 0 0
\(701\) −2.22493 12.6182i −0.0840345 0.476584i −0.997561 0.0698037i \(-0.977763\pi\)
0.913526 0.406780i \(-0.133348\pi\)
\(702\) 0 0
\(703\) −13.1667 25.3317i −0.496592 0.955405i
\(704\) 0 0
\(705\) 6.58684 + 37.3558i 0.248075 + 1.40690i
\(706\) 0 0
\(707\) 39.5223 14.3849i 1.48639 0.541001i
\(708\) 0 0
\(709\) −22.0852 18.5317i −0.829427 0.695972i 0.125732 0.992064i \(-0.459872\pi\)
−0.955159 + 0.296092i \(0.904316\pi\)
\(710\) 0 0
\(711\) 7.22360 + 12.5116i 0.270906 + 0.469223i
\(712\) 0 0
\(713\) −0.749622 + 4.25132i −0.0280735 + 0.159213i
\(714\) 0 0
\(715\) −18.5786 + 32.1790i −0.694799 + 1.20343i
\(716\) 0 0
\(717\) 28.9697 + 10.5441i 1.08189 + 0.393776i
\(718\) 0 0
\(719\) −1.75518 + 1.47277i −0.0654570 + 0.0549249i −0.674929 0.737883i \(-0.735826\pi\)
0.609472 + 0.792807i \(0.291381\pi\)
\(720\) 0 0
\(721\) 19.6545 0.731972
\(722\) 0 0
\(723\) 25.6283 0.953126
\(724\) 0 0
\(725\) −0.0807955 + 0.0677955i −0.00300067 + 0.00251786i
\(726\) 0 0
\(727\) 36.8332 + 13.4062i 1.36607 + 0.497208i 0.917925 0.396754i \(-0.129863\pi\)
0.448143 + 0.893962i \(0.352086\pi\)
\(728\) 0 0
\(729\) 9.47713 16.4149i 0.351005 0.607958i
\(730\) 0 0
\(731\) −1.58810 + 9.00657i −0.0587380 + 0.333120i
\(732\) 0 0
\(733\) 8.76216 + 15.1765i 0.323638 + 0.560557i 0.981236 0.192812i \(-0.0617608\pi\)
−0.657598 + 0.753369i \(0.728427\pi\)
\(734\) 0 0
\(735\) −43.5353 36.5305i −1.60582 1.34745i
\(736\) 0 0
\(737\) −45.1357 + 16.4281i −1.66260 + 0.605136i
\(738\) 0 0
\(739\) 5.84262 + 33.1352i 0.214924 + 1.21890i 0.881038 + 0.473046i \(0.156846\pi\)
−0.666113 + 0.745851i \(0.732043\pi\)
\(740\) 0 0
\(741\) 14.0298 + 26.9922i 0.515396 + 0.991582i
\(742\) 0 0
\(743\) 1.08832 + 6.17214i 0.0399264 + 0.226434i 0.998241 0.0592799i \(-0.0188804\pi\)
−0.958315 + 0.285714i \(0.907769\pi\)
\(744\) 0 0
\(745\) 14.1835 5.16236i 0.519643 0.189134i
\(746\) 0 0
\(747\) −14.4433 12.1194i −0.528454 0.443426i
\(748\) 0 0
\(749\) −18.7950 32.5539i −0.686755 1.18949i
\(750\) 0 0
\(751\) −0.608536 + 3.45118i −0.0222058 + 0.125935i −0.993896 0.110325i \(-0.964811\pi\)
0.971690 + 0.236261i \(0.0759219\pi\)
\(752\) 0 0
\(753\) 13.2845 23.0095i 0.484116 0.838513i
\(754\) 0 0
\(755\) −20.1614 7.33813i −0.733747 0.267062i
\(756\) 0 0
\(757\) 13.9306 11.6892i 0.506316 0.424850i −0.353515 0.935429i \(-0.615014\pi\)
0.859831 + 0.510579i \(0.170569\pi\)
\(758\) 0 0
\(759\) 22.7403 0.825422
\(760\) 0 0
\(761\) −30.9777 −1.12294 −0.561469 0.827497i \(-0.689764\pi\)
−0.561469 + 0.827497i \(0.689764\pi\)
\(762\) 0 0
\(763\) 25.6101 21.4894i 0.927147 0.777969i
\(764\) 0 0
\(765\) 31.4742 + 11.4557i 1.13795 + 0.414180i
\(766\) 0 0
\(767\) 15.1306 26.2070i 0.546335 0.946280i
\(768\) 0 0
\(769\) 7.65535 43.4156i 0.276059 1.56561i −0.459519 0.888168i \(-0.651978\pi\)
0.735578 0.677440i \(-0.236911\pi\)
\(770\) 0 0
\(771\) 24.1790 + 41.8793i 0.870787 + 1.50825i
\(772\) 0 0
\(773\) 5.60200 + 4.70064i 0.201490 + 0.169070i 0.737950 0.674856i \(-0.235794\pi\)
−0.536460 + 0.843926i \(0.680239\pi\)
\(774\) 0 0
\(775\) 1.10626 0.402646i 0.0397380 0.0144635i
\(776\) 0 0
\(777\) 11.1633 + 63.3103i 0.400482 + 2.27125i
\(778\) 0 0
\(779\) 7.03889 + 2.92077i 0.252194 + 0.104647i
\(780\) 0 0
\(781\) −10.0131 56.7874i −0.358298 2.03201i
\(782\) 0 0
\(783\) −0.201708 + 0.0734157i −0.00720846 + 0.00262366i
\(784\) 0 0
\(785\) −32.5624 27.3231i −1.16220 0.975203i
\(786\) 0 0
\(787\) 19.4063 + 33.6127i 0.691760 + 1.19816i 0.971261 + 0.238018i \(0.0764976\pi\)
−0.279501 + 0.960145i \(0.590169\pi\)
\(788\) 0 0
\(789\) −11.4395 + 64.8766i −0.407256 + 2.30967i
\(790\) 0 0
\(791\) 8.73791 15.1345i 0.310684 0.538121i
\(792\) 0 0
\(793\) 27.7516 + 10.1007i 0.985488 + 0.358688i
\(794\) 0 0
\(795\) 26.8334 22.5159i 0.951684 0.798558i
\(796\) 0 0
\(797\) −29.8075 −1.05583 −0.527917 0.849296i \(-0.677027\pi\)
−0.527917 + 0.849296i \(0.677027\pi\)
\(798\) 0 0
\(799\) −38.0056 −1.34454
\(800\) 0 0
\(801\) 10.7178 8.99327i 0.378693 0.317761i
\(802\) 0 0
\(803\) −62.8944 22.8917i −2.21949 0.807830i
\(804\) 0 0
\(805\) 8.73287 15.1258i 0.307793 0.533113i
\(806\) 0 0
\(807\) −2.14750 + 12.1791i −0.0755956 + 0.428724i
\(808\) 0 0
\(809\) 16.9308 + 29.3251i 0.595257 + 1.03101i 0.993511 + 0.113740i \(0.0362830\pi\)
−0.398254 + 0.917275i \(0.630384\pi\)
\(810\) 0 0
\(811\) 2.54668 + 2.13691i 0.0894259 + 0.0750372i 0.686405 0.727220i \(-0.259188\pi\)
−0.596979 + 0.802257i \(0.703632\pi\)
\(812\) 0 0
\(813\) −11.9669 + 4.35561i −0.419699 + 0.152758i
\(814\) 0 0
\(815\) 3.15347 + 17.8842i 0.110461 + 0.626457i
\(816\) 0 0
\(817\) −0.934025 7.12913i −0.0326774 0.249417i
\(818\) 0 0
\(819\) −5.49810 31.1813i −0.192119 1.08956i
\(820\) 0 0
\(821\) −51.9452 + 18.9065i −1.81290 + 0.659842i −0.816284 + 0.577650i \(0.803970\pi\)
−0.996617 + 0.0821917i \(0.973808\pi\)
\(822\) 0 0
\(823\) −29.3090 24.5932i −1.02165 0.857264i −0.0318139 0.999494i \(-0.510128\pi\)
−0.989834 + 0.142230i \(0.954573\pi\)
\(824\) 0 0
\(825\) −3.10075 5.37065i −0.107954 0.186982i
\(826\) 0 0
\(827\) 0.106962 0.606611i 0.00371943 0.0210939i −0.982892 0.184185i \(-0.941035\pi\)
0.986611 + 0.163091i \(0.0521465\pi\)
\(828\) 0 0
\(829\) −0.151334 + 0.262118i −0.00525604 + 0.00910372i −0.868641 0.495441i \(-0.835006\pi\)
0.863385 + 0.504545i \(0.168340\pi\)
\(830\) 0 0
\(831\) −56.5741 20.5913i −1.96253 0.714304i
\(832\) 0 0
\(833\) 43.6197 36.6012i 1.51133 1.26816i
\(834\) 0 0
\(835\) 11.0254 0.381550
\(836\) 0 0
\(837\) 2.39594 0.0828157
\(838\) 0 0
\(839\) 14.8062 12.4238i 0.511166 0.428919i −0.350374 0.936610i \(-0.613945\pi\)
0.861539 + 0.507691i \(0.169501\pi\)
\(840\) 0 0
\(841\) 27.2074 + 9.90269i 0.938186 + 0.341472i
\(842\) 0 0
\(843\) 21.7384 37.6520i 0.748709 1.29680i
\(844\) 0 0
\(845\) 1.73678 9.84979i 0.0597472 0.338843i
\(846\) 0 0
\(847\) −37.0022 64.0896i −1.27141 2.20215i
\(848\) 0 0
\(849\) 35.7785 + 30.0217i 1.22792 + 1.03034i
\(850\) 0 0
\(851\) −11.0405 + 4.01841i −0.378463 + 0.137749i
\(852\) 0 0
\(853\) 2.45154 + 13.9034i 0.0839392 + 0.476043i 0.997580 + 0.0695214i \(0.0221472\pi\)
−0.913641 + 0.406521i \(0.866742\pi\)
\(854\) 0 0
\(855\) −26.3068 1.16509i −0.899672 0.0398452i
\(856\) 0 0
\(857\) −3.03064 17.1876i −0.103525 0.587118i −0.991799 0.127805i \(-0.959207\pi\)
0.888275 0.459313i \(-0.151904\pi\)
\(858\) 0 0
\(859\) −2.93068 + 1.06668i −0.0999935 + 0.0363947i −0.391532 0.920164i \(-0.628055\pi\)
0.291539 + 0.956559i \(0.405833\pi\)
\(860\) 0 0
\(861\) −13.1457 11.0306i −0.448004 0.375920i
\(862\) 0 0
\(863\) 26.6218 + 46.1104i 0.906217 + 1.56961i 0.819275 + 0.573401i \(0.194376\pi\)
0.0869427 + 0.996213i \(0.472290\pi\)
\(864\) 0 0
\(865\) −8.75859 + 49.6725i −0.297801 + 1.68891i
\(866\) 0 0
\(867\) −16.2262 + 28.1045i −0.551070 + 0.954480i
\(868\) 0 0
\(869\) 28.2594 + 10.2856i 0.958634 + 0.348914i
\(870\) 0 0
\(871\) −20.2566 + 16.9973i −0.686370 + 0.575933i
\(872\) 0 0
\(873\) −46.0116 −1.55726
\(874\) 0 0
\(875\) 43.9194 1.48475
\(876\) 0 0
\(877\) 21.9957 18.4566i 0.742743 0.623235i −0.190830 0.981623i \(-0.561118\pi\)
0.933573 + 0.358388i \(0.116673\pi\)
\(878\) 0 0
\(879\) 3.76463 + 1.37021i 0.126978 + 0.0462162i
\(880\) 0 0
\(881\) −3.32686 + 5.76228i −0.112085 + 0.194136i −0.916611 0.399781i \(-0.869086\pi\)
0.804526 + 0.593917i \(0.202419\pi\)
\(882\) 0 0
\(883\) −2.27954 + 12.9279i −0.0767126 + 0.435058i 0.922127 + 0.386888i \(0.126450\pi\)
−0.998839 + 0.0481702i \(0.984661\pi\)
\(884\) 0 0
\(885\) 28.3358 + 49.0790i 0.952497 + 1.64977i
\(886\) 0 0
\(887\) 8.11349 + 6.80803i 0.272424 + 0.228591i 0.768757 0.639542i \(-0.220876\pi\)
−0.496332 + 0.868133i \(0.665320\pi\)
\(888\) 0 0
\(889\) −20.7193 + 7.54121i −0.694903 + 0.252924i
\(890\) 0 0
\(891\) −9.40119 53.3168i −0.314952 1.78618i
\(892\) 0 0
\(893\) 28.5021 8.96706i 0.953787 0.300071i
\(894\) 0 0
\(895\) −4.53037 25.6930i −0.151434 0.858823i
\(896\) 0 0
\(897\) 11.7642 4.28181i 0.392794 0.142965i
\(898\) 0 0
\(899\) 0.397457 + 0.333506i 0.0132559 + 0.0111231i
\(900\) 0 0
\(901\) 17.5482 + 30.3944i 0.584615 + 1.01258i
\(902\) 0 0
\(903\) −2.81145 + 15.9445i −0.0935593 + 0.530601i
\(904\) 0 0
\(905\) −22.9364 + 39.7271i −0.762433 + 1.32057i
\(906\) 0 0
\(907\) 34.8416 + 12.6813i 1.15690 + 0.421076i 0.847988 0.530015i \(-0.177814\pi\)
0.308909 + 0.951092i \(0.400036\pi\)
\(908\) 0 0
\(909\) −19.9905 + 16.7740i −0.663044 + 0.556360i
\(910\) 0 0
\(911\) −29.8600 −0.989307 −0.494653 0.869090i \(-0.664705\pi\)
−0.494653 + 0.869090i \(0.664705\pi\)
\(912\) 0 0
\(913\) −39.2470 −1.29889
\(914\) 0 0
\(915\) −42.3677 + 35.5507i −1.40063 + 1.17527i
\(916\) 0 0
\(917\) 9.63708 + 3.50761i 0.318244 + 0.115831i
\(918\) 0 0
\(919\) 14.6117 25.3082i 0.481996 0.834841i −0.517791 0.855507i \(-0.673245\pi\)
0.999786 + 0.0206665i \(0.00657882\pi\)
\(920\) 0 0
\(921\) −9.27551 + 52.6040i −0.305638 + 1.73336i
\(922\) 0 0
\(923\) −15.8726 27.4922i −0.522454 0.904916i
\(924\) 0 0
\(925\) 2.45446 + 2.05954i 0.0807021 + 0.0677171i
\(926\) 0 0
\(927\) −11.4594 + 4.17088i −0.376376 + 0.136990i
\(928\) 0 0
\(929\) 1.74740 + 9.90999i 0.0573303 + 0.325136i 0.999962 0.00869779i \(-0.00276863\pi\)
−0.942632 + 0.333834i \(0.891658\pi\)
\(930\) 0 0
\(931\) −24.0766 + 37.7406i −0.789080 + 1.23690i
\(932\) 0 0
\(933\) 0.532614 + 3.02060i 0.0174370 + 0.0988901i
\(934\) 0 0
\(935\) 65.5160 23.8459i 2.14260 0.779843i
\(936\) 0 0
\(937\) −5.44819 4.57157i −0.177985 0.149347i 0.549443 0.835531i \(-0.314840\pi\)
−0.727428 + 0.686184i \(0.759284\pi\)
\(938\) 0 0
\(939\) 9.54693 + 16.5358i 0.311552 + 0.539624i
\(940\) 0 0
\(941\) 5.66400 32.1221i 0.184641 1.04715i −0.741775 0.670649i \(-0.766016\pi\)
0.926416 0.376502i \(-0.122873\pi\)
\(942\) 0 0
\(943\) 1.56812 2.71606i 0.0510650 0.0884472i
\(944\) 0 0
\(945\) −9.10911 3.31545i −0.296319 0.107851i
\(946\) 0 0
\(947\) −1.60857 + 1.34975i −0.0522716 + 0.0438611i −0.668549 0.743668i \(-0.733084\pi\)
0.616278 + 0.787529i \(0.288640\pi\)
\(948\) 0 0
\(949\) −36.8472 −1.19611
\(950\) 0 0
\(951\) −16.8817 −0.547428
\(952\) 0 0
\(953\) 12.2947 10.3165i 0.398264 0.334183i −0.421558 0.906801i \(-0.638517\pi\)
0.819822 + 0.572618i \(0.194072\pi\)
\(954\) 0 0
\(955\) −30.8259 11.2197i −0.997504 0.363062i
\(956\) 0 0
\(957\) 1.36657 2.36697i 0.0441749 0.0765132i
\(958\) 0 0
\(959\) 0.822669 4.66559i 0.0265654 0.150660i
\(960\) 0 0
\(961\) 12.6044 + 21.8314i 0.406592 + 0.704239i
\(962\) 0 0
\(963\) 17.8665 + 14.9918i 0.575741 + 0.483104i
\(964\) 0 0
\(965\) −0.287899 + 0.104787i −0.00926778 + 0.00337320i
\(966\) 0 0
\(967\) −5.18726 29.4184i −0.166811 0.946032i −0.947178 0.320710i \(-0.896079\pi\)
0.780367 0.625322i \(-0.215032\pi\)
\(968\) 0 0
\(969\) 12.3894 55.7196i 0.398003 1.78997i
\(970\) 0 0
\(971\) −3.38976 19.2243i −0.108783 0.616937i −0.989642 0.143559i \(-0.954145\pi\)
0.880859 0.473379i \(-0.156966\pi\)
\(972\) 0 0
\(973\) −65.4937 + 23.8377i −2.09963 + 0.764203i
\(974\) 0 0
\(975\) −2.61534 2.19453i −0.0837580 0.0702813i
\(976\) 0 0
\(977\) 27.0586 + 46.8668i 0.865681 + 1.49940i 0.866370 + 0.499403i \(0.166447\pi\)
−0.000688697 1.00000i \(0.500219\pi\)
\(978\) 0 0
\(979\) 5.05724 28.6810i 0.161630 0.916649i
\(980\) 0 0
\(981\) −10.3715 + 17.9639i −0.331136 + 0.573544i
\(982\) 0 0
\(983\) 24.5517 + 8.93610i 0.783079 + 0.285017i 0.702456 0.711727i \(-0.252087\pi\)
0.0806230 + 0.996745i \(0.474309\pi\)
\(984\) 0 0
\(985\) 21.7250 18.2295i 0.692217 0.580839i
\(986\) 0 0
\(987\) −67.2822 −2.14162
\(988\) 0 0
\(989\) −2.95897 −0.0940897
\(990\) 0 0
\(991\) 18.7980 15.7734i 0.597138 0.501059i −0.293386 0.955994i \(-0.594782\pi\)
0.890524 + 0.454935i \(0.150338\pi\)
\(992\) 0 0
\(993\) −60.5116 22.0244i −1.92028 0.698924i
\(994\) 0 0
\(995\) 13.6910 23.7134i 0.434033 0.751767i
\(996\) 0 0
\(997\) 1.96904 11.1670i 0.0623602 0.353663i −0.937622 0.347657i \(-0.886977\pi\)
0.999982 0.00600537i \(-0.00191158\pi\)
\(998\) 0 0
\(999\) 3.26044 + 5.64724i 0.103156 + 0.178671i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.2.q.c.9.3 18
4.3 odd 2 304.2.u.f.161.1 18
19.6 even 9 2888.2.a.y.1.7 9
19.13 odd 18 2888.2.a.x.1.3 9
19.17 even 9 inner 152.2.q.c.17.3 yes 18
76.51 even 18 5776.2.a.ce.1.7 9
76.55 odd 18 304.2.u.f.17.1 18
76.63 odd 18 5776.2.a.cd.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.c.9.3 18 1.1 even 1 trivial
152.2.q.c.17.3 yes 18 19.17 even 9 inner
304.2.u.f.17.1 18 76.55 odd 18
304.2.u.f.161.1 18 4.3 odd 2
2888.2.a.x.1.3 9 19.13 odd 18
2888.2.a.y.1.7 9 19.6 even 9
5776.2.a.cd.1.3 9 76.63 odd 18
5776.2.a.ce.1.7 9 76.51 even 18