Properties

Label 2888.2.a.x.1.3
Level $2888$
Weight $2$
Character 2888.1
Self dual yes
Analytic conductor $23.061$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2888,2,Mod(1,2888)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2888, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2888.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2888 = 2^{3} \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2888.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-3,0,3,0,9,0,6,0,3,0,6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.0607961037\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 3x^{8} - 12x^{7} + 35x^{6} + 45x^{5} - 117x^{4} - 55x^{3} + 96x^{2} - 6x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.36188\) of defining polynomial
Character \(\chi\) \(=\) 2888.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.36188 q^{3} -2.34290 q^{5} +4.15573 q^{7} +2.57847 q^{9} +5.36729 q^{11} +2.95483 q^{13} +5.53365 q^{15} +5.54437 q^{17} -9.81534 q^{21} +1.79384 q^{23} +0.489197 q^{25} +0.995607 q^{27} +0.215600 q^{29} +2.40651 q^{31} -12.6769 q^{33} -9.73649 q^{35} -6.54964 q^{37} -6.97896 q^{39} +1.74834 q^{41} -1.64951 q^{43} -6.04110 q^{45} -6.85481 q^{47} +10.2701 q^{49} -13.0951 q^{51} +6.33010 q^{53} -12.5750 q^{55} -10.2413 q^{59} +9.99468 q^{61} +10.7154 q^{63} -6.92289 q^{65} -8.94912 q^{67} -4.23684 q^{69} +10.7435 q^{71} +12.4701 q^{73} -1.15542 q^{75} +22.3050 q^{77} +5.60302 q^{79} -10.0869 q^{81} -7.31227 q^{83} -12.9899 q^{85} -0.509222 q^{87} -5.42611 q^{89} +12.2795 q^{91} -5.68388 q^{93} +17.8445 q^{97} +13.8394 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 3 q^{3} + 3 q^{5} + 9 q^{7} + 6 q^{9} + 3 q^{11} + 6 q^{13} - 3 q^{17} - 15 q^{21} + 24 q^{23} + 30 q^{25} - 12 q^{27} + 15 q^{29} - 6 q^{31} + 18 q^{33} + 15 q^{35} - 24 q^{37} + 6 q^{39} + 12 q^{41}+ \cdots + 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.36188 −1.36363 −0.681815 0.731524i \(-0.738809\pi\)
−0.681815 + 0.731524i \(0.738809\pi\)
\(4\) 0 0
\(5\) −2.34290 −1.04778 −0.523889 0.851786i \(-0.675519\pi\)
−0.523889 + 0.851786i \(0.675519\pi\)
\(6\) 0 0
\(7\) 4.15573 1.57072 0.785360 0.619039i \(-0.212478\pi\)
0.785360 + 0.619039i \(0.212478\pi\)
\(8\) 0 0
\(9\) 2.57847 0.859489
\(10\) 0 0
\(11\) 5.36729 1.61830 0.809149 0.587604i \(-0.199929\pi\)
0.809149 + 0.587604i \(0.199929\pi\)
\(12\) 0 0
\(13\) 2.95483 0.819524 0.409762 0.912193i \(-0.365612\pi\)
0.409762 + 0.912193i \(0.365612\pi\)
\(14\) 0 0
\(15\) 5.53365 1.42878
\(16\) 0 0
\(17\) 5.54437 1.34471 0.672354 0.740230i \(-0.265283\pi\)
0.672354 + 0.740230i \(0.265283\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) −9.81534 −2.14188
\(22\) 0 0
\(23\) 1.79384 0.374042 0.187021 0.982356i \(-0.440117\pi\)
0.187021 + 0.982356i \(0.440117\pi\)
\(24\) 0 0
\(25\) 0.489197 0.0978395
\(26\) 0 0
\(27\) 0.995607 0.191605
\(28\) 0 0
\(29\) 0.215600 0.0400360 0.0200180 0.999800i \(-0.493628\pi\)
0.0200180 + 0.999800i \(0.493628\pi\)
\(30\) 0 0
\(31\) 2.40651 0.432221 0.216111 0.976369i \(-0.430663\pi\)
0.216111 + 0.976369i \(0.430663\pi\)
\(32\) 0 0
\(33\) −12.6769 −2.20676
\(34\) 0 0
\(35\) −9.73649 −1.64577
\(36\) 0 0
\(37\) −6.54964 −1.07676 −0.538378 0.842704i \(-0.680963\pi\)
−0.538378 + 0.842704i \(0.680963\pi\)
\(38\) 0 0
\(39\) −6.97896 −1.11753
\(40\) 0 0
\(41\) 1.74834 0.273044 0.136522 0.990637i \(-0.456408\pi\)
0.136522 + 0.990637i \(0.456408\pi\)
\(42\) 0 0
\(43\) −1.64951 −0.251548 −0.125774 0.992059i \(-0.540141\pi\)
−0.125774 + 0.992059i \(0.540141\pi\)
\(44\) 0 0
\(45\) −6.04110 −0.900554
\(46\) 0 0
\(47\) −6.85481 −0.999876 −0.499938 0.866061i \(-0.666644\pi\)
−0.499938 + 0.866061i \(0.666644\pi\)
\(48\) 0 0
\(49\) 10.2701 1.46716
\(50\) 0 0
\(51\) −13.0951 −1.83368
\(52\) 0 0
\(53\) 6.33010 0.869506 0.434753 0.900550i \(-0.356836\pi\)
0.434753 + 0.900550i \(0.356836\pi\)
\(54\) 0 0
\(55\) −12.5750 −1.69562
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.2413 −1.33330 −0.666649 0.745371i \(-0.732272\pi\)
−0.666649 + 0.745371i \(0.732272\pi\)
\(60\) 0 0
\(61\) 9.99468 1.27969 0.639844 0.768505i \(-0.278999\pi\)
0.639844 + 0.768505i \(0.278999\pi\)
\(62\) 0 0
\(63\) 10.7154 1.35002
\(64\) 0 0
\(65\) −6.92289 −0.858679
\(66\) 0 0
\(67\) −8.94912 −1.09331 −0.546654 0.837358i \(-0.684099\pi\)
−0.546654 + 0.837358i \(0.684099\pi\)
\(68\) 0 0
\(69\) −4.23684 −0.510056
\(70\) 0 0
\(71\) 10.7435 1.27502 0.637509 0.770443i \(-0.279965\pi\)
0.637509 + 0.770443i \(0.279965\pi\)
\(72\) 0 0
\(73\) 12.4701 1.45952 0.729760 0.683704i \(-0.239632\pi\)
0.729760 + 0.683704i \(0.239632\pi\)
\(74\) 0 0
\(75\) −1.15542 −0.133417
\(76\) 0 0
\(77\) 22.3050 2.54189
\(78\) 0 0
\(79\) 5.60302 0.630389 0.315194 0.949027i \(-0.397930\pi\)
0.315194 + 0.949027i \(0.397930\pi\)
\(80\) 0 0
\(81\) −10.0869 −1.12077
\(82\) 0 0
\(83\) −7.31227 −0.802626 −0.401313 0.915941i \(-0.631446\pi\)
−0.401313 + 0.915941i \(0.631446\pi\)
\(84\) 0 0
\(85\) −12.9899 −1.40896
\(86\) 0 0
\(87\) −0.509222 −0.0545943
\(88\) 0 0
\(89\) −5.42611 −0.575166 −0.287583 0.957756i \(-0.592852\pi\)
−0.287583 + 0.957756i \(0.592852\pi\)
\(90\) 0 0
\(91\) 12.2795 1.28724
\(92\) 0 0
\(93\) −5.68388 −0.589391
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 17.8445 1.81184 0.905919 0.423451i \(-0.139181\pi\)
0.905919 + 0.423451i \(0.139181\pi\)
\(98\) 0 0
\(99\) 13.8394 1.39091
\(100\) 0 0
\(101\) −10.1207 −1.00704 −0.503521 0.863983i \(-0.667962\pi\)
−0.503521 + 0.863983i \(0.667962\pi\)
\(102\) 0 0
\(103\) −4.72949 −0.466010 −0.233005 0.972475i \(-0.574856\pi\)
−0.233005 + 0.972475i \(0.574856\pi\)
\(104\) 0 0
\(105\) 22.9964 2.24422
\(106\) 0 0
\(107\) −9.04533 −0.874446 −0.437223 0.899353i \(-0.644038\pi\)
−0.437223 + 0.899353i \(0.644038\pi\)
\(108\) 0 0
\(109\) −8.04468 −0.770541 −0.385270 0.922804i \(-0.625892\pi\)
−0.385270 + 0.922804i \(0.625892\pi\)
\(110\) 0 0
\(111\) 15.4695 1.46830
\(112\) 0 0
\(113\) 4.20523 0.395595 0.197797 0.980243i \(-0.436621\pi\)
0.197797 + 0.980243i \(0.436621\pi\)
\(114\) 0 0
\(115\) −4.20280 −0.391913
\(116\) 0 0
\(117\) 7.61895 0.704372
\(118\) 0 0
\(119\) 23.0409 2.11216
\(120\) 0 0
\(121\) 17.8078 1.61889
\(122\) 0 0
\(123\) −4.12935 −0.372331
\(124\) 0 0
\(125\) 10.5684 0.945264
\(126\) 0 0
\(127\) −5.30569 −0.470804 −0.235402 0.971898i \(-0.575641\pi\)
−0.235402 + 0.971898i \(0.575641\pi\)
\(128\) 0 0
\(129\) 3.89595 0.343019
\(130\) 0 0
\(131\) −2.46781 −0.215614 −0.107807 0.994172i \(-0.534383\pi\)
−0.107807 + 0.994172i \(0.534383\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.33261 −0.200759
\(136\) 0 0
\(137\) 1.14001 0.0973973 0.0486987 0.998814i \(-0.484493\pi\)
0.0486987 + 0.998814i \(0.484493\pi\)
\(138\) 0 0
\(139\) 16.7713 1.42252 0.711260 0.702929i \(-0.248125\pi\)
0.711260 + 0.702929i \(0.248125\pi\)
\(140\) 0 0
\(141\) 16.1902 1.36346
\(142\) 0 0
\(143\) 15.8594 1.32623
\(144\) 0 0
\(145\) −0.505131 −0.0419488
\(146\) 0 0
\(147\) −24.2568 −2.00067
\(148\) 0 0
\(149\) 6.44232 0.527776 0.263888 0.964553i \(-0.414995\pi\)
0.263888 + 0.964553i \(0.414995\pi\)
\(150\) 0 0
\(151\) 9.15755 0.745231 0.372616 0.927986i \(-0.378461\pi\)
0.372616 + 0.927986i \(0.378461\pi\)
\(152\) 0 0
\(153\) 14.2960 1.15576
\(154\) 0 0
\(155\) −5.63821 −0.452872
\(156\) 0 0
\(157\) 18.1429 1.44796 0.723982 0.689819i \(-0.242310\pi\)
0.723982 + 0.689819i \(0.242310\pi\)
\(158\) 0 0
\(159\) −14.9509 −1.18568
\(160\) 0 0
\(161\) 7.45474 0.587516
\(162\) 0 0
\(163\) −7.75111 −0.607114 −0.303557 0.952813i \(-0.598174\pi\)
−0.303557 + 0.952813i \(0.598174\pi\)
\(164\) 0 0
\(165\) 29.7007 2.31220
\(166\) 0 0
\(167\) 4.70588 0.364152 0.182076 0.983285i \(-0.441718\pi\)
0.182076 + 0.983285i \(0.441718\pi\)
\(168\) 0 0
\(169\) −4.26895 −0.328381
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −21.5283 −1.63677 −0.818383 0.574673i \(-0.805129\pi\)
−0.818383 + 0.574673i \(0.805129\pi\)
\(174\) 0 0
\(175\) 2.03297 0.153678
\(176\) 0 0
\(177\) 24.1886 1.81813
\(178\) 0 0
\(179\) −11.1355 −0.832305 −0.416153 0.909295i \(-0.636622\pi\)
−0.416153 + 0.909295i \(0.636622\pi\)
\(180\) 0 0
\(181\) 19.5795 1.45533 0.727666 0.685931i \(-0.240605\pi\)
0.727666 + 0.685931i \(0.240605\pi\)
\(182\) 0 0
\(183\) −23.6062 −1.74502
\(184\) 0 0
\(185\) 15.3452 1.12820
\(186\) 0 0
\(187\) 29.7582 2.17614
\(188\) 0 0
\(189\) 4.13748 0.300957
\(190\) 0 0
\(191\) −14.0015 −1.01312 −0.506558 0.862206i \(-0.669082\pi\)
−0.506558 + 0.862206i \(0.669082\pi\)
\(192\) 0 0
\(193\) 0.130767 0.00941284 0.00470642 0.999989i \(-0.498502\pi\)
0.00470642 + 0.999989i \(0.498502\pi\)
\(194\) 0 0
\(195\) 16.3510 1.17092
\(196\) 0 0
\(197\) −12.1046 −0.862420 −0.431210 0.902251i \(-0.641913\pi\)
−0.431210 + 0.902251i \(0.641913\pi\)
\(198\) 0 0
\(199\) 11.6872 0.828482 0.414241 0.910167i \(-0.364047\pi\)
0.414241 + 0.910167i \(0.364047\pi\)
\(200\) 0 0
\(201\) 21.1367 1.49087
\(202\) 0 0
\(203\) 0.895978 0.0628853
\(204\) 0 0
\(205\) −4.09618 −0.286090
\(206\) 0 0
\(207\) 4.62537 0.321485
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.64762 0.113427 0.0567133 0.998391i \(-0.481938\pi\)
0.0567133 + 0.998391i \(0.481938\pi\)
\(212\) 0 0
\(213\) −25.3748 −1.73865
\(214\) 0 0
\(215\) 3.86465 0.263567
\(216\) 0 0
\(217\) 10.0008 0.678899
\(218\) 0 0
\(219\) −29.4530 −1.99025
\(220\) 0 0
\(221\) 16.3827 1.10202
\(222\) 0 0
\(223\) 18.4561 1.23591 0.617957 0.786212i \(-0.287961\pi\)
0.617957 + 0.786212i \(0.287961\pi\)
\(224\) 0 0
\(225\) 1.26138 0.0840920
\(226\) 0 0
\(227\) −3.16564 −0.210111 −0.105055 0.994466i \(-0.533502\pi\)
−0.105055 + 0.994466i \(0.533502\pi\)
\(228\) 0 0
\(229\) −12.8379 −0.848353 −0.424177 0.905580i \(-0.639436\pi\)
−0.424177 + 0.905580i \(0.639436\pi\)
\(230\) 0 0
\(231\) −52.6817 −3.46620
\(232\) 0 0
\(233\) 5.78280 0.378844 0.189422 0.981896i \(-0.439339\pi\)
0.189422 + 0.981896i \(0.439339\pi\)
\(234\) 0 0
\(235\) 16.0602 1.04765
\(236\) 0 0
\(237\) −13.2336 −0.859618
\(238\) 0 0
\(239\) −13.0527 −0.844308 −0.422154 0.906524i \(-0.638726\pi\)
−0.422154 + 0.906524i \(0.638726\pi\)
\(240\) 0 0
\(241\) −10.8508 −0.698962 −0.349481 0.936943i \(-0.613642\pi\)
−0.349481 + 0.936943i \(0.613642\pi\)
\(242\) 0 0
\(243\) 20.8372 1.33671
\(244\) 0 0
\(245\) −24.0619 −1.53726
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 17.2707 1.09449
\(250\) 0 0
\(251\) −11.2491 −0.710039 −0.355020 0.934859i \(-0.615526\pi\)
−0.355020 + 0.934859i \(0.615526\pi\)
\(252\) 0 0
\(253\) 9.62807 0.605312
\(254\) 0 0
\(255\) 30.6806 1.92130
\(256\) 0 0
\(257\) 20.4744 1.27716 0.638580 0.769556i \(-0.279522\pi\)
0.638580 + 0.769556i \(0.279522\pi\)
\(258\) 0 0
\(259\) −27.2186 −1.69128
\(260\) 0 0
\(261\) 0.555918 0.0344105
\(262\) 0 0
\(263\) −27.8919 −1.71989 −0.859946 0.510386i \(-0.829503\pi\)
−0.859946 + 0.510386i \(0.829503\pi\)
\(264\) 0 0
\(265\) −14.8308 −0.911049
\(266\) 0 0
\(267\) 12.8158 0.784314
\(268\) 0 0
\(269\) 5.23607 0.319249 0.159625 0.987178i \(-0.448972\pi\)
0.159625 + 0.987178i \(0.448972\pi\)
\(270\) 0 0
\(271\) 5.39188 0.327533 0.163767 0.986499i \(-0.447636\pi\)
0.163767 + 0.986499i \(0.447636\pi\)
\(272\) 0 0
\(273\) −29.0027 −1.75532
\(274\) 0 0
\(275\) 2.62566 0.158333
\(276\) 0 0
\(277\) 25.4903 1.53156 0.765781 0.643102i \(-0.222353\pi\)
0.765781 + 0.643102i \(0.222353\pi\)
\(278\) 0 0
\(279\) 6.20510 0.371490
\(280\) 0 0
\(281\) 18.4077 1.09811 0.549056 0.835786i \(-0.314988\pi\)
0.549056 + 0.835786i \(0.314988\pi\)
\(282\) 0 0
\(283\) 19.7747 1.17549 0.587743 0.809047i \(-0.300017\pi\)
0.587743 + 0.809047i \(0.300017\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.26562 0.428876
\(288\) 0 0
\(289\) 13.7401 0.808239
\(290\) 0 0
\(291\) −42.1466 −2.47068
\(292\) 0 0
\(293\) 1.69621 0.0990936 0.0495468 0.998772i \(-0.484222\pi\)
0.0495468 + 0.998772i \(0.484222\pi\)
\(294\) 0 0
\(295\) 23.9943 1.39700
\(296\) 0 0
\(297\) 5.34371 0.310073
\(298\) 0 0
\(299\) 5.30051 0.306537
\(300\) 0 0
\(301\) −6.85493 −0.395112
\(302\) 0 0
\(303\) 23.9037 1.37323
\(304\) 0 0
\(305\) −23.4166 −1.34083
\(306\) 0 0
\(307\) 22.6157 1.29075 0.645373 0.763868i \(-0.276702\pi\)
0.645373 + 0.763868i \(0.276702\pi\)
\(308\) 0 0
\(309\) 11.1705 0.635466
\(310\) 0 0
\(311\) 1.29863 0.0736384 0.0368192 0.999322i \(-0.488277\pi\)
0.0368192 + 0.999322i \(0.488277\pi\)
\(312\) 0 0
\(313\) −8.08418 −0.456945 −0.228473 0.973550i \(-0.573373\pi\)
−0.228473 + 0.973550i \(0.573373\pi\)
\(314\) 0 0
\(315\) −25.1052 −1.41452
\(316\) 0 0
\(317\) 7.14759 0.401449 0.200724 0.979648i \(-0.435670\pi\)
0.200724 + 0.979648i \(0.435670\pi\)
\(318\) 0 0
\(319\) 1.15719 0.0647901
\(320\) 0 0
\(321\) 21.3640 1.19242
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 1.44550 0.0801818
\(326\) 0 0
\(327\) 19.0006 1.05073
\(328\) 0 0
\(329\) −28.4868 −1.57053
\(330\) 0 0
\(331\) −27.2644 −1.49858 −0.749292 0.662239i \(-0.769606\pi\)
−0.749292 + 0.662239i \(0.769606\pi\)
\(332\) 0 0
\(333\) −16.8880 −0.925459
\(334\) 0 0
\(335\) 20.9669 1.14554
\(336\) 0 0
\(337\) 24.4792 1.33347 0.666733 0.745297i \(-0.267692\pi\)
0.666733 + 0.745297i \(0.267692\pi\)
\(338\) 0 0
\(339\) −9.93224 −0.539445
\(340\) 0 0
\(341\) 12.9164 0.699463
\(342\) 0 0
\(343\) 13.5898 0.733780
\(344\) 0 0
\(345\) 9.92651 0.534425
\(346\) 0 0
\(347\) −22.8285 −1.22550 −0.612750 0.790277i \(-0.709937\pi\)
−0.612750 + 0.790277i \(0.709937\pi\)
\(348\) 0 0
\(349\) 2.58715 0.138487 0.0692435 0.997600i \(-0.477941\pi\)
0.0692435 + 0.997600i \(0.477941\pi\)
\(350\) 0 0
\(351\) 2.94186 0.157025
\(352\) 0 0
\(353\) −10.9610 −0.583394 −0.291697 0.956511i \(-0.594220\pi\)
−0.291697 + 0.956511i \(0.594220\pi\)
\(354\) 0 0
\(355\) −25.1710 −1.33594
\(356\) 0 0
\(357\) −54.4199 −2.88021
\(358\) 0 0
\(359\) −23.5184 −1.24126 −0.620628 0.784105i \(-0.713122\pi\)
−0.620628 + 0.784105i \(0.713122\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −42.0598 −2.20756
\(364\) 0 0
\(365\) −29.2163 −1.52925
\(366\) 0 0
\(367\) −8.01699 −0.418484 −0.209242 0.977864i \(-0.567100\pi\)
−0.209242 + 0.977864i \(0.567100\pi\)
\(368\) 0 0
\(369\) 4.50803 0.234678
\(370\) 0 0
\(371\) 26.3062 1.36575
\(372\) 0 0
\(373\) 16.9610 0.878209 0.439104 0.898436i \(-0.355296\pi\)
0.439104 + 0.898436i \(0.355296\pi\)
\(374\) 0 0
\(375\) −24.9612 −1.28899
\(376\) 0 0
\(377\) 0.637063 0.0328104
\(378\) 0 0
\(379\) 22.6828 1.16513 0.582567 0.812782i \(-0.302048\pi\)
0.582567 + 0.812782i \(0.302048\pi\)
\(380\) 0 0
\(381\) 12.5314 0.642002
\(382\) 0 0
\(383\) −12.3594 −0.631536 −0.315768 0.948837i \(-0.602262\pi\)
−0.315768 + 0.948837i \(0.602262\pi\)
\(384\) 0 0
\(385\) −52.2585 −2.66334
\(386\) 0 0
\(387\) −4.25321 −0.216203
\(388\) 0 0
\(389\) −19.3892 −0.983073 −0.491536 0.870857i \(-0.663565\pi\)
−0.491536 + 0.870857i \(0.663565\pi\)
\(390\) 0 0
\(391\) 9.94574 0.502978
\(392\) 0 0
\(393\) 5.82867 0.294017
\(394\) 0 0
\(395\) −13.1273 −0.660508
\(396\) 0 0
\(397\) 5.50592 0.276334 0.138167 0.990409i \(-0.455879\pi\)
0.138167 + 0.990409i \(0.455879\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.04316 0.351719 0.175859 0.984415i \(-0.443730\pi\)
0.175859 + 0.984415i \(0.443730\pi\)
\(402\) 0 0
\(403\) 7.11083 0.354216
\(404\) 0 0
\(405\) 23.6327 1.17432
\(406\) 0 0
\(407\) −35.1538 −1.74251
\(408\) 0 0
\(409\) −38.1564 −1.88671 −0.943356 0.331782i \(-0.892350\pi\)
−0.943356 + 0.331782i \(0.892350\pi\)
\(410\) 0 0
\(411\) −2.69256 −0.132814
\(412\) 0 0
\(413\) −42.5600 −2.09424
\(414\) 0 0
\(415\) 17.1319 0.840974
\(416\) 0 0
\(417\) −39.6117 −1.93979
\(418\) 0 0
\(419\) 8.28410 0.404705 0.202352 0.979313i \(-0.435141\pi\)
0.202352 + 0.979313i \(0.435141\pi\)
\(420\) 0 0
\(421\) 0.0790672 0.00385350 0.00192675 0.999998i \(-0.499387\pi\)
0.00192675 + 0.999998i \(0.499387\pi\)
\(422\) 0 0
\(423\) −17.6749 −0.859383
\(424\) 0 0
\(425\) 2.71229 0.131565
\(426\) 0 0
\(427\) 41.5352 2.01003
\(428\) 0 0
\(429\) −37.4581 −1.80849
\(430\) 0 0
\(431\) −0.887413 −0.0427452 −0.0213726 0.999772i \(-0.506804\pi\)
−0.0213726 + 0.999772i \(0.506804\pi\)
\(432\) 0 0
\(433\) −14.5212 −0.697845 −0.348922 0.937152i \(-0.613452\pi\)
−0.348922 + 0.937152i \(0.613452\pi\)
\(434\) 0 0
\(435\) 1.19306 0.0572027
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 11.6694 0.556950 0.278475 0.960443i \(-0.410171\pi\)
0.278475 + 0.960443i \(0.410171\pi\)
\(440\) 0 0
\(441\) 26.4812 1.26101
\(442\) 0 0
\(443\) −10.9049 −0.518109 −0.259055 0.965863i \(-0.583411\pi\)
−0.259055 + 0.965863i \(0.583411\pi\)
\(444\) 0 0
\(445\) 12.7128 0.602646
\(446\) 0 0
\(447\) −15.2160 −0.719691
\(448\) 0 0
\(449\) −2.81252 −0.132731 −0.0663655 0.997795i \(-0.521140\pi\)
−0.0663655 + 0.997795i \(0.521140\pi\)
\(450\) 0 0
\(451\) 9.38381 0.441867
\(452\) 0 0
\(453\) −21.6290 −1.01622
\(454\) 0 0
\(455\) −28.7697 −1.34874
\(456\) 0 0
\(457\) 4.19534 0.196250 0.0981248 0.995174i \(-0.468716\pi\)
0.0981248 + 0.995174i \(0.468716\pi\)
\(458\) 0 0
\(459\) 5.52002 0.257652
\(460\) 0 0
\(461\) −32.3784 −1.50801 −0.754006 0.656867i \(-0.771881\pi\)
−0.754006 + 0.656867i \(0.771881\pi\)
\(462\) 0 0
\(463\) 22.0392 1.02425 0.512124 0.858911i \(-0.328859\pi\)
0.512124 + 0.858911i \(0.328859\pi\)
\(464\) 0 0
\(465\) 13.3168 0.617551
\(466\) 0 0
\(467\) 15.3581 0.710688 0.355344 0.934736i \(-0.384364\pi\)
0.355344 + 0.934736i \(0.384364\pi\)
\(468\) 0 0
\(469\) −37.1901 −1.71728
\(470\) 0 0
\(471\) −42.8514 −1.97449
\(472\) 0 0
\(473\) −8.85340 −0.407080
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 16.3220 0.747331
\(478\) 0 0
\(479\) 20.2977 0.927427 0.463714 0.885985i \(-0.346517\pi\)
0.463714 + 0.885985i \(0.346517\pi\)
\(480\) 0 0
\(481\) −19.3531 −0.882426
\(482\) 0 0
\(483\) −17.6072 −0.801155
\(484\) 0 0
\(485\) −41.8080 −1.89841
\(486\) 0 0
\(487\) 29.8902 1.35445 0.677227 0.735774i \(-0.263182\pi\)
0.677227 + 0.735774i \(0.263182\pi\)
\(488\) 0 0
\(489\) 18.3072 0.827880
\(490\) 0 0
\(491\) 7.48271 0.337690 0.168845 0.985643i \(-0.445996\pi\)
0.168845 + 0.985643i \(0.445996\pi\)
\(492\) 0 0
\(493\) 1.19537 0.0538367
\(494\) 0 0
\(495\) −32.4243 −1.45736
\(496\) 0 0
\(497\) 44.6471 2.00270
\(498\) 0 0
\(499\) −9.96687 −0.446178 −0.223089 0.974798i \(-0.571614\pi\)
−0.223089 + 0.974798i \(0.571614\pi\)
\(500\) 0 0
\(501\) −11.1147 −0.496568
\(502\) 0 0
\(503\) −7.42061 −0.330869 −0.165434 0.986221i \(-0.552903\pi\)
−0.165434 + 0.986221i \(0.552903\pi\)
\(504\) 0 0
\(505\) 23.7117 1.05516
\(506\) 0 0
\(507\) 10.0827 0.447790
\(508\) 0 0
\(509\) 41.7515 1.85060 0.925301 0.379232i \(-0.123812\pi\)
0.925301 + 0.379232i \(0.123812\pi\)
\(510\) 0 0
\(511\) 51.8226 2.29250
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 11.0807 0.488276
\(516\) 0 0
\(517\) −36.7917 −1.61810
\(518\) 0 0
\(519\) 50.8472 2.23195
\(520\) 0 0
\(521\) 33.2868 1.45832 0.729160 0.684343i \(-0.239911\pi\)
0.729160 + 0.684343i \(0.239911\pi\)
\(522\) 0 0
\(523\) −30.5185 −1.33448 −0.667239 0.744843i \(-0.732524\pi\)
−0.667239 + 0.744843i \(0.732524\pi\)
\(524\) 0 0
\(525\) −4.80164 −0.209561
\(526\) 0 0
\(527\) 13.3426 0.581211
\(528\) 0 0
\(529\) −19.7821 −0.860092
\(530\) 0 0
\(531\) −26.4068 −1.14596
\(532\) 0 0
\(533\) 5.16604 0.223766
\(534\) 0 0
\(535\) 21.1923 0.916225
\(536\) 0 0
\(537\) 26.3007 1.13496
\(538\) 0 0
\(539\) 55.1227 2.37430
\(540\) 0 0
\(541\) 2.49043 0.107072 0.0535360 0.998566i \(-0.482951\pi\)
0.0535360 + 0.998566i \(0.482951\pi\)
\(542\) 0 0
\(543\) −46.2444 −1.98454
\(544\) 0 0
\(545\) 18.8479 0.807356
\(546\) 0 0
\(547\) 14.1882 0.606644 0.303322 0.952888i \(-0.401904\pi\)
0.303322 + 0.952888i \(0.401904\pi\)
\(548\) 0 0
\(549\) 25.7709 1.09988
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 23.2847 0.990164
\(554\) 0 0
\(555\) −36.2435 −1.53845
\(556\) 0 0
\(557\) 6.40556 0.271412 0.135706 0.990749i \(-0.456670\pi\)
0.135706 + 0.990749i \(0.456670\pi\)
\(558\) 0 0
\(559\) −4.87404 −0.206150
\(560\) 0 0
\(561\) −70.2853 −2.96745
\(562\) 0 0
\(563\) 28.3494 1.19479 0.597393 0.801949i \(-0.296203\pi\)
0.597393 + 0.801949i \(0.296203\pi\)
\(564\) 0 0
\(565\) −9.85244 −0.414495
\(566\) 0 0
\(567\) −41.9185 −1.76041
\(568\) 0 0
\(569\) 16.4200 0.688362 0.344181 0.938903i \(-0.388157\pi\)
0.344181 + 0.938903i \(0.388157\pi\)
\(570\) 0 0
\(571\) −36.9283 −1.54540 −0.772701 0.634771i \(-0.781095\pi\)
−0.772701 + 0.634771i \(0.781095\pi\)
\(572\) 0 0
\(573\) 33.0700 1.38152
\(574\) 0 0
\(575\) 0.877544 0.0365961
\(576\) 0 0
\(577\) 41.1638 1.71367 0.856835 0.515591i \(-0.172428\pi\)
0.856835 + 0.515591i \(0.172428\pi\)
\(578\) 0 0
\(579\) −0.308857 −0.0128356
\(580\) 0 0
\(581\) −30.3878 −1.26070
\(582\) 0 0
\(583\) 33.9754 1.40712
\(584\) 0 0
\(585\) −17.8505 −0.738026
\(586\) 0 0
\(587\) 7.31112 0.301762 0.150881 0.988552i \(-0.451789\pi\)
0.150881 + 0.988552i \(0.451789\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 28.5897 1.17602
\(592\) 0 0
\(593\) 0.185394 0.00761323 0.00380662 0.999993i \(-0.498788\pi\)
0.00380662 + 0.999993i \(0.498788\pi\)
\(594\) 0 0
\(595\) −53.9827 −2.21307
\(596\) 0 0
\(597\) −27.6037 −1.12974
\(598\) 0 0
\(599\) −23.3882 −0.955617 −0.477809 0.878464i \(-0.658569\pi\)
−0.477809 + 0.878464i \(0.658569\pi\)
\(600\) 0 0
\(601\) −26.6578 −1.08739 −0.543697 0.839282i \(-0.682976\pi\)
−0.543697 + 0.839282i \(0.682976\pi\)
\(602\) 0 0
\(603\) −23.0750 −0.939687
\(604\) 0 0
\(605\) −41.7219 −1.69623
\(606\) 0 0
\(607\) −20.2286 −0.821052 −0.410526 0.911849i \(-0.634655\pi\)
−0.410526 + 0.911849i \(0.634655\pi\)
\(608\) 0 0
\(609\) −2.11619 −0.0857523
\(610\) 0 0
\(611\) −20.2548 −0.819422
\(612\) 0 0
\(613\) 24.2426 0.979151 0.489576 0.871961i \(-0.337152\pi\)
0.489576 + 0.871961i \(0.337152\pi\)
\(614\) 0 0
\(615\) 9.67468 0.390121
\(616\) 0 0
\(617\) −22.1691 −0.892493 −0.446246 0.894910i \(-0.647239\pi\)
−0.446246 + 0.894910i \(0.647239\pi\)
\(618\) 0 0
\(619\) 10.6658 0.428697 0.214348 0.976757i \(-0.431237\pi\)
0.214348 + 0.976757i \(0.431237\pi\)
\(620\) 0 0
\(621\) 1.78596 0.0716683
\(622\) 0 0
\(623\) −22.5495 −0.903425
\(624\) 0 0
\(625\) −27.2067 −1.08827
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −36.3137 −1.44792
\(630\) 0 0
\(631\) 39.0376 1.55406 0.777031 0.629463i \(-0.216725\pi\)
0.777031 + 0.629463i \(0.216725\pi\)
\(632\) 0 0
\(633\) −3.89147 −0.154672
\(634\) 0 0
\(635\) 12.4307 0.493298
\(636\) 0 0
\(637\) 30.3465 1.20237
\(638\) 0 0
\(639\) 27.7017 1.09586
\(640\) 0 0
\(641\) −15.8845 −0.627401 −0.313701 0.949522i \(-0.601569\pi\)
−0.313701 + 0.949522i \(0.601569\pi\)
\(642\) 0 0
\(643\) −26.3254 −1.03817 −0.519086 0.854722i \(-0.673727\pi\)
−0.519086 + 0.854722i \(0.673727\pi\)
\(644\) 0 0
\(645\) −9.12783 −0.359408
\(646\) 0 0
\(647\) 27.2044 1.06952 0.534758 0.845005i \(-0.320403\pi\)
0.534758 + 0.845005i \(0.320403\pi\)
\(648\) 0 0
\(649\) −54.9678 −2.15767
\(650\) 0 0
\(651\) −23.6207 −0.925768
\(652\) 0 0
\(653\) 30.4067 1.18990 0.594952 0.803761i \(-0.297171\pi\)
0.594952 + 0.803761i \(0.297171\pi\)
\(654\) 0 0
\(655\) 5.78184 0.225915
\(656\) 0 0
\(657\) 32.1539 1.25444
\(658\) 0 0
\(659\) −15.1628 −0.590659 −0.295330 0.955395i \(-0.595429\pi\)
−0.295330 + 0.955395i \(0.595429\pi\)
\(660\) 0 0
\(661\) 9.40611 0.365855 0.182928 0.983126i \(-0.441443\pi\)
0.182928 + 0.983126i \(0.441443\pi\)
\(662\) 0 0
\(663\) −38.6939 −1.50275
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0.386753 0.0149751
\(668\) 0 0
\(669\) −43.5911 −1.68533
\(670\) 0 0
\(671\) 53.6443 2.07091
\(672\) 0 0
\(673\) −41.6071 −1.60383 −0.801917 0.597435i \(-0.796186\pi\)
−0.801917 + 0.597435i \(0.796186\pi\)
\(674\) 0 0
\(675\) 0.487048 0.0187465
\(676\) 0 0
\(677\) 32.9902 1.26792 0.633959 0.773367i \(-0.281429\pi\)
0.633959 + 0.773367i \(0.281429\pi\)
\(678\) 0 0
\(679\) 74.1572 2.84589
\(680\) 0 0
\(681\) 7.47686 0.286514
\(682\) 0 0
\(683\) 42.6980 1.63379 0.816896 0.576785i \(-0.195693\pi\)
0.816896 + 0.576785i \(0.195693\pi\)
\(684\) 0 0
\(685\) −2.67093 −0.102051
\(686\) 0 0
\(687\) 30.3216 1.15684
\(688\) 0 0
\(689\) 18.7044 0.712581
\(690\) 0 0
\(691\) −34.6814 −1.31934 −0.659671 0.751555i \(-0.729304\pi\)
−0.659671 + 0.751555i \(0.729304\pi\)
\(692\) 0 0
\(693\) 57.5128 2.18473
\(694\) 0 0
\(695\) −39.2934 −1.49049
\(696\) 0 0
\(697\) 9.69342 0.367164
\(698\) 0 0
\(699\) −13.6583 −0.516603
\(700\) 0 0
\(701\) −12.8129 −0.483936 −0.241968 0.970284i \(-0.577793\pi\)
−0.241968 + 0.970284i \(0.577793\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) −37.9321 −1.42861
\(706\) 0 0
\(707\) −42.0587 −1.58178
\(708\) 0 0
\(709\) −28.8302 −1.08274 −0.541370 0.840784i \(-0.682094\pi\)
−0.541370 + 0.840784i \(0.682094\pi\)
\(710\) 0 0
\(711\) 14.4472 0.541812
\(712\) 0 0
\(713\) 4.31690 0.161669
\(714\) 0 0
\(715\) −37.1571 −1.38960
\(716\) 0 0
\(717\) 30.8289 1.15133
\(718\) 0 0
\(719\) −2.29122 −0.0854480 −0.0427240 0.999087i \(-0.513604\pi\)
−0.0427240 + 0.999087i \(0.513604\pi\)
\(720\) 0 0
\(721\) −19.6545 −0.731972
\(722\) 0 0
\(723\) 25.6283 0.953126
\(724\) 0 0
\(725\) 0.105471 0.00391710
\(726\) 0 0
\(727\) −39.1971 −1.45374 −0.726870 0.686775i \(-0.759026\pi\)
−0.726870 + 0.686775i \(0.759026\pi\)
\(728\) 0 0
\(729\) −18.9543 −0.702010
\(730\) 0 0
\(731\) −9.14551 −0.338259
\(732\) 0 0
\(733\) −17.5243 −0.647275 −0.323638 0.946181i \(-0.604906\pi\)
−0.323638 + 0.946181i \(0.604906\pi\)
\(734\) 0 0
\(735\) 56.8313 2.09626
\(736\) 0 0
\(737\) −48.0325 −1.76930
\(738\) 0 0
\(739\) 33.6463 1.23770 0.618850 0.785509i \(-0.287599\pi\)
0.618850 + 0.785509i \(0.287599\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.26736 −0.229927 −0.114964 0.993370i \(-0.536675\pi\)
−0.114964 + 0.993370i \(0.536675\pi\)
\(744\) 0 0
\(745\) −15.0937 −0.552992
\(746\) 0 0
\(747\) −18.8544 −0.689848
\(748\) 0 0
\(749\) −37.5900 −1.37351
\(750\) 0 0
\(751\) 3.50442 0.127878 0.0639391 0.997954i \(-0.479634\pi\)
0.0639391 + 0.997954i \(0.479634\pi\)
\(752\) 0 0
\(753\) 26.5691 0.968232
\(754\) 0 0
\(755\) −21.4553 −0.780837
\(756\) 0 0
\(757\) 18.1851 0.660948 0.330474 0.943815i \(-0.392791\pi\)
0.330474 + 0.943815i \(0.392791\pi\)
\(758\) 0 0
\(759\) −22.7403 −0.825422
\(760\) 0 0
\(761\) −30.9777 −1.12294 −0.561469 0.827497i \(-0.689764\pi\)
−0.561469 + 0.827497i \(0.689764\pi\)
\(762\) 0 0
\(763\) −33.4316 −1.21030
\(764\) 0 0
\(765\) −33.4941 −1.21098
\(766\) 0 0
\(767\) −30.2612 −1.09267
\(768\) 0 0
\(769\) 44.0854 1.58976 0.794880 0.606767i \(-0.207534\pi\)
0.794880 + 0.606767i \(0.207534\pi\)
\(770\) 0 0
\(771\) −48.3581 −1.74157
\(772\) 0 0
\(773\) −7.31289 −0.263027 −0.131513 0.991314i \(-0.541984\pi\)
−0.131513 + 0.991314i \(0.541984\pi\)
\(774\) 0 0
\(775\) 1.17726 0.0422883
\(776\) 0 0
\(777\) 64.2870 2.30628
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 57.6634 2.06336
\(782\) 0 0
\(783\) 0.214653 0.00767108
\(784\) 0 0
\(785\) −42.5072 −1.51715
\(786\) 0 0
\(787\) 38.8126 1.38352 0.691760 0.722128i \(-0.256836\pi\)
0.691760 + 0.722128i \(0.256836\pi\)
\(788\) 0 0
\(789\) 65.8774 2.34530
\(790\) 0 0
\(791\) 17.4758 0.621368
\(792\) 0 0
\(793\) 29.5326 1.04873
\(794\) 0 0
\(795\) 35.0286 1.24233
\(796\) 0 0
\(797\) 29.8075 1.05583 0.527917 0.849296i \(-0.322973\pi\)
0.527917 + 0.849296i \(0.322973\pi\)
\(798\) 0 0
\(799\) −38.0056 −1.34454
\(800\) 0 0
\(801\) −13.9910 −0.494349
\(802\) 0 0
\(803\) 66.9308 2.36194
\(804\) 0 0
\(805\) −17.4657 −0.615586
\(806\) 0 0
\(807\) −12.3670 −0.435338
\(808\) 0 0
\(809\) −33.8617 −1.19051 −0.595257 0.803536i \(-0.702950\pi\)
−0.595257 + 0.803536i \(0.702950\pi\)
\(810\) 0 0
\(811\) −3.32445 −0.116737 −0.0583686 0.998295i \(-0.518590\pi\)
−0.0583686 + 0.998295i \(0.518590\pi\)
\(812\) 0 0
\(813\) −12.7350 −0.446635
\(814\) 0 0
\(815\) 18.1601 0.636121
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 31.6623 1.10637
\(820\) 0 0
\(821\) 55.2790 1.92925 0.964624 0.263628i \(-0.0849191\pi\)
0.964624 + 0.263628i \(0.0849191\pi\)
\(822\) 0 0
\(823\) −38.2602 −1.33367 −0.666833 0.745207i \(-0.732351\pi\)
−0.666833 + 0.745207i \(0.732351\pi\)
\(824\) 0 0
\(825\) −6.20149 −0.215908
\(826\) 0 0
\(827\) −0.615969 −0.0214194 −0.0107097 0.999943i \(-0.503409\pi\)
−0.0107097 + 0.999943i \(0.503409\pi\)
\(828\) 0 0
\(829\) −0.302667 −0.0105121 −0.00525604 0.999986i \(-0.501673\pi\)
−0.00525604 + 0.999986i \(0.501673\pi\)
\(830\) 0 0
\(831\) −60.2049 −2.08848
\(832\) 0 0
\(833\) 56.9414 1.97290
\(834\) 0 0
\(835\) −11.0254 −0.381550
\(836\) 0 0
\(837\) 2.39594 0.0828157
\(838\) 0 0
\(839\) −19.3281 −0.667279 −0.333640 0.942701i \(-0.608277\pi\)
−0.333640 + 0.942701i \(0.608277\pi\)
\(840\) 0 0
\(841\) −28.9535 −0.998397
\(842\) 0 0
\(843\) −43.4767 −1.49742
\(844\) 0 0
\(845\) 10.0017 0.344070
\(846\) 0 0
\(847\) 74.0043 2.54282
\(848\) 0 0
\(849\) −46.7055 −1.60293
\(850\) 0 0
\(851\) −11.7490 −0.402752
\(852\) 0 0
\(853\) 14.1179 0.483386 0.241693 0.970353i \(-0.422297\pi\)
0.241693 + 0.970353i \(0.422297\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17.4528 0.596175 0.298088 0.954539i \(-0.403651\pi\)
0.298088 + 0.954539i \(0.403651\pi\)
\(858\) 0 0
\(859\) 3.11876 0.106411 0.0532054 0.998584i \(-0.483056\pi\)
0.0532054 + 0.998584i \(0.483056\pi\)
\(860\) 0 0
\(861\) −17.1605 −0.584828
\(862\) 0 0
\(863\) 53.2436 1.81243 0.906217 0.422812i \(-0.138957\pi\)
0.906217 + 0.422812i \(0.138957\pi\)
\(864\) 0 0
\(865\) 50.4387 1.71497
\(866\) 0 0
\(867\) −32.4523 −1.10214
\(868\) 0 0
\(869\) 30.0730 1.02016
\(870\) 0 0
\(871\) −26.4432 −0.895992
\(872\) 0 0
\(873\) 46.0116 1.55726
\(874\) 0 0
\(875\) 43.9194 1.48475
\(876\) 0 0
\(877\) −28.7134 −0.969582 −0.484791 0.874630i \(-0.661104\pi\)
−0.484791 + 0.874630i \(0.661104\pi\)
\(878\) 0 0
\(879\) −4.00624 −0.135127
\(880\) 0 0
\(881\) 6.65371 0.224169 0.112085 0.993699i \(-0.464247\pi\)
0.112085 + 0.993699i \(0.464247\pi\)
\(882\) 0 0
\(883\) −13.1273 −0.441770 −0.220885 0.975300i \(-0.570895\pi\)
−0.220885 + 0.975300i \(0.570895\pi\)
\(884\) 0 0
\(885\) −56.6716 −1.90499
\(886\) 0 0
\(887\) −10.5914 −0.355625 −0.177812 0.984064i \(-0.556902\pi\)
−0.177812 + 0.984064i \(0.556902\pi\)
\(888\) 0 0
\(889\) −22.0490 −0.739501
\(890\) 0 0
\(891\) −54.1393 −1.81374
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 26.0894 0.872072
\(896\) 0 0
\(897\) −12.5192 −0.418003
\(898\) 0 0
\(899\) 0.518844 0.0173044
\(900\) 0 0
\(901\) 35.0964 1.16923
\(902\) 0 0
\(903\) 16.1905 0.538787
\(904\) 0 0
\(905\) −45.8729 −1.52487
\(906\) 0 0
\(907\) 37.0777 1.23114 0.615572 0.788081i \(-0.288925\pi\)
0.615572 + 0.788081i \(0.288925\pi\)
\(908\) 0 0
\(909\) −26.0958 −0.865542
\(910\) 0 0
\(911\) 29.8600 0.989307 0.494653 0.869090i \(-0.335295\pi\)
0.494653 + 0.869090i \(0.335295\pi\)
\(912\) 0 0
\(913\) −39.2470 −1.29889
\(914\) 0 0
\(915\) 55.3071 1.82840
\(916\) 0 0
\(917\) −10.2556 −0.338669
\(918\) 0 0
\(919\) −29.2234 −0.963991 −0.481996 0.876174i \(-0.660088\pi\)
−0.481996 + 0.876174i \(0.660088\pi\)
\(920\) 0 0
\(921\) −53.4155 −1.76010
\(922\) 0 0
\(923\) 31.7452 1.04491
\(924\) 0 0
\(925\) −3.20407 −0.105349
\(926\) 0 0
\(927\) −12.1948 −0.400531
\(928\) 0 0
\(929\) 10.0629 0.330152 0.165076 0.986281i \(-0.447213\pi\)
0.165076 + 0.986281i \(0.447213\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −3.06720 −0.100416
\(934\) 0 0
\(935\) −69.7207 −2.28011
\(936\) 0 0
\(937\) −7.11210 −0.232342 −0.116171 0.993229i \(-0.537062\pi\)
−0.116171 + 0.993229i \(0.537062\pi\)
\(938\) 0 0
\(939\) 19.0939 0.623104
\(940\) 0 0
\(941\) −32.6177 −1.06331 −0.531653 0.846962i \(-0.678429\pi\)
−0.531653 + 0.846962i \(0.678429\pi\)
\(942\) 0 0
\(943\) 3.13624 0.102130
\(944\) 0 0
\(945\) −9.69372 −0.315337
\(946\) 0 0
\(947\) −2.09984 −0.0682357 −0.0341178 0.999418i \(-0.510862\pi\)
−0.0341178 + 0.999418i \(0.510862\pi\)
\(948\) 0 0
\(949\) 36.8472 1.19611
\(950\) 0 0
\(951\) −16.8817 −0.547428
\(952\) 0 0
\(953\) −16.0496 −0.519897 −0.259948 0.965623i \(-0.583706\pi\)
−0.259948 + 0.965623i \(0.583706\pi\)
\(954\) 0 0
\(955\) 32.8043 1.06152
\(956\) 0 0
\(957\) −2.73314 −0.0883498
\(958\) 0 0
\(959\) 4.73756 0.152984
\(960\) 0 0
\(961\) −25.2087 −0.813185
\(962\) 0 0
\(963\) −23.3231 −0.751577
\(964\) 0 0
\(965\) −0.306375 −0.00986257
\(966\) 0 0
\(967\) −29.8722 −0.960626 −0.480313 0.877097i \(-0.659477\pi\)
−0.480313 + 0.877097i \(0.659477\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.5209 0.626455 0.313227 0.949678i \(-0.398590\pi\)
0.313227 + 0.949678i \(0.398590\pi\)
\(972\) 0 0
\(973\) 69.6969 2.23438
\(974\) 0 0
\(975\) −3.41409 −0.109338
\(976\) 0 0
\(977\) 54.1172 1.73136 0.865681 0.500596i \(-0.166886\pi\)
0.865681 + 0.500596i \(0.166886\pi\)
\(978\) 0 0
\(979\) −29.1235 −0.930790
\(980\) 0 0
\(981\) −20.7430 −0.662272
\(982\) 0 0
\(983\) 26.1274 0.833335 0.416668 0.909059i \(-0.363198\pi\)
0.416668 + 0.909059i \(0.363198\pi\)
\(984\) 0 0
\(985\) 28.3600 0.903626
\(986\) 0 0
\(987\) 67.2822 2.14162
\(988\) 0 0
\(989\) −2.95897 −0.0940897
\(990\) 0 0
\(991\) −24.5391 −0.779509 −0.389754 0.920919i \(-0.627440\pi\)
−0.389754 + 0.920919i \(0.627440\pi\)
\(992\) 0 0
\(993\) 64.3951 2.04352
\(994\) 0 0
\(995\) −27.3819 −0.868065
\(996\) 0 0
\(997\) 11.3393 0.359118 0.179559 0.983747i \(-0.442533\pi\)
0.179559 + 0.983747i \(0.442533\pi\)
\(998\) 0 0
\(999\) −6.52087 −0.206311
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2888.2.a.x.1.3 9
4.3 odd 2 5776.2.a.ce.1.7 9
19.3 odd 18 152.2.q.c.9.3 18
19.13 odd 18 152.2.q.c.17.3 yes 18
19.18 odd 2 2888.2.a.y.1.7 9
76.3 even 18 304.2.u.f.161.1 18
76.51 even 18 304.2.u.f.17.1 18
76.75 even 2 5776.2.a.cd.1.3 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.c.9.3 18 19.3 odd 18
152.2.q.c.17.3 yes 18 19.13 odd 18
304.2.u.f.17.1 18 76.51 even 18
304.2.u.f.161.1 18 76.3 even 18
2888.2.a.x.1.3 9 1.1 even 1 trivial
2888.2.a.y.1.7 9 19.18 odd 2
5776.2.a.cd.1.3 9 76.75 even 2
5776.2.a.ce.1.7 9 4.3 odd 2