Properties

Label 5766.2.a.x
Level $5766$
Weight $2$
Character orbit 5766.a
Self dual yes
Analytic conductor $46.042$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5766,2,Mod(1,5766)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5766.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5766 = 2 \cdot 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5766.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,-4,4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.0417418055\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + (\beta_{3} + 2 \beta_{2}) q^{5} + q^{6} + (\beta_{3} + \beta_{2} + 2) q^{7} - q^{8} + q^{9} + ( - \beta_{3} - 2 \beta_{2}) q^{10} + (\beta_{2} - 2 \beta_1 - 2) q^{11}+ \cdots + (\beta_{2} - 2 \beta_1 - 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{4} + 4 q^{6} + 7 q^{7} - 4 q^{8} + 4 q^{9} - 9 q^{11} - 4 q^{12} - 4 q^{13} - 7 q^{14} + 4 q^{16} - 6 q^{17} - 4 q^{18} + 4 q^{19} - 7 q^{21} + 9 q^{22} - 24 q^{23} + 4 q^{24}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{15} + \zeta_{15}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.209057
1.33826
−1.95630
1.82709
−1.00000 −1.00000 1.00000 −3.29456 1.00000 0.661739 −1.00000 1.00000 3.29456
1.2 −1.00000 −1.00000 1.00000 −2.03615 1.00000 0.172909 −1.00000 1.00000 2.03615
1.3 −1.00000 −1.00000 1.00000 2.03615 1.00000 2.20906 −1.00000 1.00000 −2.03615
1.4 −1.00000 −1.00000 1.00000 3.29456 1.00000 3.95630 −1.00000 1.00000 −3.29456
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5766.2.a.x 4
31.b odd 2 1 5766.2.a.ba 4
31.h odd 30 2 186.2.m.d 8
93.p even 30 2 558.2.ba.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
186.2.m.d 8 31.h odd 30 2
558.2.ba.b 8 93.p even 30 2
5766.2.a.x 4 1.a even 1 1 trivial
5766.2.a.ba 4 31.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5766))\):

\( T_{5}^{4} - 15T_{5}^{2} + 45 \) Copy content Toggle raw display
\( T_{7}^{4} - 7T_{7}^{3} + 14T_{7}^{2} - 8T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{4} + 9T_{11}^{3} + 6T_{11}^{2} - 126T_{11} - 279 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 15T^{2} + 45 \) Copy content Toggle raw display
$7$ \( T^{4} - 7 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + 9 T^{3} + \cdots - 279 \) Copy content Toggle raw display
$13$ \( (T^{2} + 2 T - 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 6 T^{3} + \cdots - 144 \) Copy content Toggle raw display
$19$ \( (T^{2} - 2 T - 4)^{2} \) Copy content Toggle raw display
$23$ \( (T + 6)^{4} \) Copy content Toggle raw display
$29$ \( T^{4} + 15 T^{3} + \cdots + 45 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$41$ \( T^{4} + 12 T^{3} + \cdots + 4176 \) Copy content Toggle raw display
$43$ \( T^{4} + 4 T^{3} + \cdots - 464 \) Copy content Toggle raw display
$47$ \( T^{4} - 120 T^{2} + \cdots + 720 \) Copy content Toggle raw display
$53$ \( T^{4} - 3 T^{3} + \cdots + 3501 \) Copy content Toggle raw display
$59$ \( T^{4} - 3 T^{3} + \cdots + 801 \) Copy content Toggle raw display
$61$ \( T^{4} - 14 T^{3} + \cdots - 1424 \) Copy content Toggle raw display
$67$ \( T^{4} + 2 T^{3} + \cdots + 976 \) Copy content Toggle raw display
$71$ \( T^{4} - 30 T^{3} + \cdots - 3600 \) Copy content Toggle raw display
$73$ \( T^{4} - 26 T^{3} + \cdots + 181 \) Copy content Toggle raw display
$79$ \( T^{4} + 10 T^{3} + \cdots - 11225 \) Copy content Toggle raw display
$83$ \( T^{4} + 6 T^{3} + \cdots - 1629 \) Copy content Toggle raw display
$89$ \( T^{4} - 6 T^{3} + \cdots - 144 \) Copy content Toggle raw display
$97$ \( T^{4} - 4 T^{3} + \cdots + 7801 \) Copy content Toggle raw display
show more
show less