Properties

Label 186.2.m.d
Level $186$
Weight $2$
Character orbit 186.m
Analytic conductor $1.485$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [186,2,Mod(7,186)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(186, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([0, 28])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("186.7"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 186 = 2 \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 186.m (of order \(15\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,1,-2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.48521747760\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{15}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{15}^{6} q^{2} + \zeta_{15}^{4} q^{3} + ( - \zeta_{15}^{7} - \zeta_{15}^{2}) q^{4} + ( - 3 \zeta_{15}^{7} + \zeta_{15}^{5} + \cdots + 1) q^{5} + (\zeta_{15}^{5} + 1) q^{6} + (\zeta_{15}^{7} + \zeta_{15}^{6} + \cdots + 1) q^{7} + \cdots + ( - 2 \zeta_{15}^{7} + \cdots - 3 \zeta_{15}^{2}) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + q^{3} - 2 q^{4} + 4 q^{6} + 8 q^{7} + 2 q^{8} + q^{9} + 6 q^{11} + q^{12} - 4 q^{13} + 7 q^{14} - 2 q^{16} + 24 q^{17} - q^{18} - 4 q^{19} - 15 q^{20} + 3 q^{21} + 9 q^{22} - 12 q^{23}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/186\mathbb{Z}\right)^\times\).

\(n\) \(125\) \(127\)
\(\chi(n)\) \(1\) \(-1 + \zeta_{15} - \zeta_{15}^{3} + \zeta_{15}^{4} - \zeta_{15}^{5} + \zeta_{15}^{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
0.669131 0.743145i
−0.104528 + 0.994522i
−0.104528 0.994522i
0.913545 0.406737i
0.913545 + 0.406737i
0.669131 + 0.743145i
−0.978148 + 0.207912i
−0.978148 0.207912i
−0.309017 0.951057i −0.978148 + 0.207912i −0.809017 + 0.587785i −1.01807 + 1.76336i 0.500000 + 0.866025i 2.01807 + 0.898504i 0.809017 + 0.587785i 0.913545 0.406737i 1.99165 + 0.423339i
19.1 0.809017 + 0.587785i 0.913545 + 0.406737i 0.309017 + 0.951057i −1.64728 + 2.85317i 0.500000 + 0.866025i 2.64728 2.94010i −0.309017 + 0.951057i 0.669131 + 0.743145i −3.00973 + 1.34002i
49.1 0.809017 0.587785i 0.913545 0.406737i 0.309017 0.951057i −1.64728 2.85317i 0.500000 0.866025i 2.64728 + 2.94010i −0.309017 0.951057i 0.669131 0.743145i −3.00973 1.34002i
103.1 0.809017 + 0.587785i −0.104528 0.994522i 0.309017 + 0.951057i 1.64728 + 2.85317i 0.500000 0.866025i −0.647278 0.137583i −0.309017 + 0.951057i −0.978148 + 0.207912i −0.344375 + 3.27651i
121.1 0.809017 0.587785i −0.104528 + 0.994522i 0.309017 0.951057i 1.64728 2.85317i 0.500000 + 0.866025i −0.647278 + 0.137583i −0.309017 0.951057i −0.978148 0.207912i −0.344375 3.27651i
133.1 −0.309017 + 0.951057i −0.978148 0.207912i −0.809017 0.587785i −1.01807 1.76336i 0.500000 0.866025i 2.01807 0.898504i 0.809017 0.587785i 0.913545 + 0.406737i 1.99165 0.423339i
169.1 −0.309017 + 0.951057i 0.669131 0.743145i −0.809017 0.587785i 1.01807 1.76336i 0.500000 + 0.866025i −0.0180739 + 0.171962i 0.809017 0.587785i −0.104528 0.994522i 1.36245 + 1.51315i
175.1 −0.309017 0.951057i 0.669131 + 0.743145i −0.809017 + 0.587785i 1.01807 + 1.76336i 0.500000 0.866025i −0.0180739 0.171962i 0.809017 + 0.587785i −0.104528 + 0.994522i 1.36245 1.51315i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.g even 15 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 186.2.m.d 8
3.b odd 2 1 558.2.ba.b 8
31.g even 15 1 inner 186.2.m.d 8
31.g even 15 1 5766.2.a.ba 4
31.h odd 30 1 5766.2.a.x 4
93.o odd 30 1 558.2.ba.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
186.2.m.d 8 1.a even 1 1 trivial
186.2.m.d 8 31.g even 15 1 inner
558.2.ba.b 8 3.b odd 2 1
558.2.ba.b 8 93.o odd 30 1
5766.2.a.x 4 31.h odd 30 1
5766.2.a.ba 4 31.g even 15 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{8} + 15T_{5}^{6} + 180T_{5}^{4} + 675T_{5}^{2} + 2025 \) acting on \(S_{2}^{\mathrm{new}}(186, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} - T^{7} + T^{5} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{8} + 15 T^{6} + \cdots + 2025 \) Copy content Toggle raw display
$7$ \( T^{8} - 8 T^{7} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{8} - 6 T^{7} + \cdots + 77841 \) Copy content Toggle raw display
$13$ \( T^{8} + 4 T^{7} + \cdots + 256 \) Copy content Toggle raw display
$17$ \( T^{8} - 24 T^{7} + \cdots + 20736 \) Copy content Toggle raw display
$19$ \( T^{8} + 4 T^{7} + \cdots + 256 \) Copy content Toggle raw display
$23$ \( (T^{4} + 6 T^{3} + \cdots + 1296)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 15 T^{7} + \cdots + 2025 \) Copy content Toggle raw display
$31$ \( T^{8} + 29 T^{7} + \cdots + 923521 \) Copy content Toggle raw display
$37$ \( T^{8} - 8 T^{7} + \cdots + 256 \) Copy content Toggle raw display
$41$ \( T^{8} + 48 T^{7} + \cdots + 17438976 \) Copy content Toggle raw display
$43$ \( T^{8} + 24 T^{7} + \cdots + 215296 \) Copy content Toggle raw display
$47$ \( T^{8} - 30 T^{7} + \cdots + 518400 \) Copy content Toggle raw display
$53$ \( T^{8} - 33 T^{7} + \cdots + 12257001 \) Copy content Toggle raw display
$59$ \( T^{8} + 3 T^{7} + \cdots + 641601 \) Copy content Toggle raw display
$61$ \( (T^{4} + 14 T^{3} + \cdots - 1424)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} - 2 T^{7} + \cdots + 952576 \) Copy content Toggle raw display
$71$ \( T^{8} - 30 T^{7} + \cdots + 12960000 \) Copy content Toggle raw display
$73$ \( T^{8} - 26 T^{7} + \cdots + 32761 \) Copy content Toggle raw display
$79$ \( T^{8} + 110 T^{6} + \cdots + 126000625 \) Copy content Toggle raw display
$83$ \( T^{8} - 39 T^{7} + \cdots + 2653641 \) Copy content Toggle raw display
$89$ \( T^{8} - 48 T^{7} + \cdots + 20736 \) Copy content Toggle raw display
$97$ \( T^{8} - 18 T^{7} + \cdots + 60855601 \) Copy content Toggle raw display
show more
show less