Properties

Label 2-186-31.18-c1-0-5
Degree $2$
Conductor $186$
Sign $0.395 + 0.918i$
Analytic cond. $1.48521$
Root an. cond. $1.21869$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.809 − 0.587i)2-s + (0.913 − 0.406i)3-s + (0.309 − 0.951i)4-s + (−1.64 − 2.85i)5-s + (0.5 − 0.866i)6-s + (2.64 + 2.94i)7-s + (−0.309 − 0.951i)8-s + (0.669 − 0.743i)9-s + (−3.00 − 1.34i)10-s + (−4.22 + 0.897i)11-s + (−0.104 − 0.994i)12-s + (0.129 − 1.22i)13-s + (3.86 + 0.822i)14-s + (−2.66 − 1.93i)15-s + (−0.809 − 0.587i)16-s + (5.03 + 1.07i)17-s + ⋯
L(s)  = 1  + (0.572 − 0.415i)2-s + (0.527 − 0.234i)3-s + (0.154 − 0.475i)4-s + (−0.736 − 1.27i)5-s + (0.204 − 0.353i)6-s + (1.00 + 1.11i)7-s + (−0.109 − 0.336i)8-s + (0.223 − 0.247i)9-s + (−0.951 − 0.423i)10-s + (−1.27 + 0.270i)11-s + (−0.0301 − 0.287i)12-s + (0.0358 − 0.340i)13-s + (1.03 + 0.219i)14-s + (−0.688 − 0.500i)15-s + (−0.202 − 0.146i)16-s + (1.22 + 0.259i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.395 + 0.918i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 186 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.395 + 0.918i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(186\)    =    \(2 \cdot 3 \cdot 31\)
Sign: $0.395 + 0.918i$
Analytic conductor: \(1.48521\)
Root analytic conductor: \(1.21869\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{186} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 186,\ (\ :1/2),\ 0.395 + 0.918i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.42794 - 0.940154i\)
\(L(\frac12)\) \(\approx\) \(1.42794 - 0.940154i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.809 + 0.587i)T \)
3 \( 1 + (-0.913 + 0.406i)T \)
31 \( 1 + (1.50 - 5.36i)T \)
good5 \( 1 + (1.64 + 2.85i)T + (-2.5 + 4.33i)T^{2} \)
7 \( 1 + (-2.64 - 2.94i)T + (-0.731 + 6.96i)T^{2} \)
11 \( 1 + (4.22 - 0.897i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (-0.129 + 1.22i)T + (-12.7 - 2.70i)T^{2} \)
17 \( 1 + (-5.03 - 1.07i)T + (15.5 + 6.91i)T^{2} \)
19 \( 1 + (-0.129 - 1.22i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (-1.85 - 5.70i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (0.901 - 0.655i)T + (8.96 - 27.5i)T^{2} \)
37 \( 1 + (-0.511 + 0.885i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (11.3 + 5.04i)T + (27.4 + 30.4i)T^{2} \)
43 \( 1 + (0.194 + 1.84i)T + (-42.0 + 8.94i)T^{2} \)
47 \( 1 + (-1.11 - 0.809i)T + (14.5 + 44.6i)T^{2} \)
53 \( 1 + (4.58 - 5.09i)T + (-5.54 - 52.7i)T^{2} \)
59 \( 1 + (-7.30 + 3.25i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + 11.0T + 61T^{2} \)
67 \( 1 + (3.99 + 6.91i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-10.3 + 11.4i)T + (-7.42 - 70.6i)T^{2} \)
73 \( 1 + (-13.8 + 2.95i)T + (66.6 - 29.6i)T^{2} \)
79 \( 1 + (12.8 + 2.73i)T + (72.1 + 32.1i)T^{2} \)
83 \( 1 + (-5.14 - 2.29i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 + (0.0194 - 0.0598i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (-5.76 + 17.7i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.33502758046538924864707757324, −11.91729750489578248402866923046, −10.62017935486438530195983277676, −9.261857471925296163794387729913, −8.271960160147146231666970923944, −7.66894489027552043447345249257, −5.44985043108868720833883150188, −4.96725668000211701759342568051, −3.35255711526274979952868604394, −1.69326271673494629585947511231, 2.80773708483590754187880986360, 3.91646254240753951493073559698, 5.07043253583315232658703546779, 6.80135647085235763840408351627, 7.67114132026161837512171103897, 8.187229959300663309778135666309, 10.11698446045317957988627293208, 10.87913214506653841079917217497, 11.63119139795000705500751385477, 13.10010347930045309697063767837

Graph of the $Z$-function along the critical line