Properties

Label 2-5766-1.1-c1-0-35
Degree $2$
Conductor $5766$
Sign $1$
Analytic cond. $46.0417$
Root an. cond. $6.78540$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 2.03·5-s + 6-s + 2.20·7-s − 8-s + 9-s − 2.03·10-s + 3.73·11-s − 12-s − 3.23·13-s − 2.20·14-s − 2.03·15-s + 16-s − 2.81·17-s − 18-s + 3.23·19-s + 2.03·20-s − 2.20·21-s − 3.73·22-s − 6·23-s + 24-s − 0.854·25-s + 3.23·26-s − 27-s + 2.20·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 0.910·5-s + 0.408·6-s + 0.834·7-s − 0.353·8-s + 0.333·9-s − 0.643·10-s + 1.12·11-s − 0.288·12-s − 0.897·13-s − 0.590·14-s − 0.525·15-s + 0.250·16-s − 0.683·17-s − 0.235·18-s + 0.742·19-s + 0.455·20-s − 0.482·21-s − 0.797·22-s − 1.25·23-s + 0.204·24-s − 0.170·25-s + 0.634·26-s − 0.192·27-s + 0.417·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5766\)    =    \(2 \cdot 3 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(46.0417\)
Root analytic conductor: \(6.78540\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5766,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.546278981\)
\(L(\frac12)\) \(\approx\) \(1.546278981\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
31 \( 1 \)
good5 \( 1 - 2.03T + 5T^{2} \)
7 \( 1 - 2.20T + 7T^{2} \)
11 \( 1 - 3.73T + 11T^{2} \)
13 \( 1 + 3.23T + 13T^{2} \)
17 \( 1 + 2.81T + 17T^{2} \)
19 \( 1 - 3.23T + 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 + 1.68T + 29T^{2} \)
37 \( 1 - 9.56T + 37T^{2} \)
41 \( 1 - 4.84T + 41T^{2} \)
43 \( 1 + 4.21T + 43T^{2} \)
47 \( 1 - 5.44T + 47T^{2} \)
53 \( 1 + 11.3T + 53T^{2} \)
59 \( 1 - 4.79T + 59T^{2} \)
61 \( 1 - 5.39T + 61T^{2} \)
67 \( 1 + 6.17T + 67T^{2} \)
71 \( 1 - 11.5T + 71T^{2} \)
73 \( 1 - 9.45T + 73T^{2} \)
79 \( 1 - 17.2T + 79T^{2} \)
83 \( 1 - 10.4T + 83T^{2} \)
89 \( 1 - 12.3T + 89T^{2} \)
97 \( 1 - 4.67T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.958323163987396814509238232154, −7.57725416443098873275184052754, −6.53073574059064235848944339184, −6.20192373151946964163057537415, −5.32588994785760937885349188431, −4.62870136818759010548435717067, −3.71716038854975201067991670818, −2.31564181477066832563656501084, −1.80717145070546964653971624203, −0.77347619178617593049162002645, 0.77347619178617593049162002645, 1.80717145070546964653971624203, 2.31564181477066832563656501084, 3.71716038854975201067991670818, 4.62870136818759010548435717067, 5.32588994785760937885349188431, 6.20192373151946964163057537415, 6.53073574059064235848944339184, 7.57725416443098873275184052754, 7.958323163987396814509238232154

Graph of the $Z$-function along the critical line