Properties

Label 5766.2
Level 5766
Weight 2
Dimension 230159
Nonzero newspaces 16
Sturm bound 3690240

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 5766 = 2 \cdot 3 \cdot 31^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(3690240\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(5766))\).

Total New Old
Modular forms 928080 230159 697921
Cusp forms 917041 230159 686882
Eisenstein series 11039 0 11039

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(5766))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
5766.2.a \(\chi_{5766}(1, \cdot)\) 5766.2.a.a 1 1
5766.2.a.b 1
5766.2.a.c 1
5766.2.a.d 1
5766.2.a.e 1
5766.2.a.f 1
5766.2.a.g 1
5766.2.a.h 1
5766.2.a.i 1
5766.2.a.j 2
5766.2.a.k 2
5766.2.a.l 2
5766.2.a.m 2
5766.2.a.n 2
5766.2.a.o 2
5766.2.a.p 2
5766.2.a.q 2
5766.2.a.r 2
5766.2.a.s 2
5766.2.a.t 2
5766.2.a.u 2
5766.2.a.v 2
5766.2.a.w 4
5766.2.a.x 4
5766.2.a.y 4
5766.2.a.z 4
5766.2.a.ba 4
5766.2.a.bb 4
5766.2.a.bc 4
5766.2.a.bd 4
5766.2.a.be 4
5766.2.a.bf 4
5766.2.a.bg 4
5766.2.a.bh 4
5766.2.a.bi 4
5766.2.a.bj 4
5766.2.a.bk 8
5766.2.a.bl 8
5766.2.a.bm 8
5766.2.a.bn 8
5766.2.a.bo 8
5766.2.a.bp 8
5766.2.a.bq 8
5766.2.a.br 8
5766.2.c \(\chi_{5766}(5765, \cdot)\) n/a 308 1
5766.2.e \(\chi_{5766}(439, \cdot)\) n/a 308 2
5766.2.f \(\chi_{5766}(3271, \cdot)\) n/a 624 4
5766.2.h \(\chi_{5766}(3323, \cdot)\) n/a 620 2
5766.2.j \(\chi_{5766}(587, \cdot)\) n/a 1232 4
5766.2.m \(\chi_{5766}(235, \cdot)\) n/a 1232 8
5766.2.p \(\chi_{5766}(623, \cdot)\) n/a 2480 8
5766.2.q \(\chi_{5766}(187, \cdot)\) n/a 4920 30
5766.2.s \(\chi_{5766}(185, \cdot)\) n/a 9960 30
5766.2.u \(\chi_{5766}(25, \cdot)\) n/a 9960 60
5766.2.v \(\chi_{5766}(97, \cdot)\) n/a 19680 120
5766.2.x \(\chi_{5766}(119, \cdot)\) n/a 19800 60
5766.2.bb \(\chi_{5766}(23, \cdot)\) n/a 39840 120
5766.2.bc \(\chi_{5766}(7, \cdot)\) n/a 39840 240
5766.2.bd \(\chi_{5766}(11, \cdot)\) n/a 79200 240

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(5766))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(5766)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(93))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(186))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(961))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1922))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2883))\)\(^{\oplus 2}\)