Defining parameters
Level: | \( N \) | = | \( 5766 = 2 \cdot 3 \cdot 31^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 16 \) | ||
Sturm bound: | \(3690240\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(5766))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 928080 | 230159 | 697921 |
Cusp forms | 917041 | 230159 | 686882 |
Eisenstein series | 11039 | 0 | 11039 |
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(5766))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(5766))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(5766)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(93))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(186))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(961))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1922))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2883))\)\(^{\oplus 2}\)