Properties

Label 5766.p
Modulus $5766$
Conductor $93$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(623,5766)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5766\)
Conductor: \(93\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 93.p
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: \(\Q(\zeta_{93})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(35\)
\(\chi_{5766}(623,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{10}\right)\)
\(\chi_{5766}(2039,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{5766}(2435,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{5766}(3959,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\)
\(\chi_{5766}(3989,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{5766}(4073,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{5766}(5219,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{10}\right)\)
\(\chi_{5766}(5531,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{10}\right)\)