Properties

Label 5766.2435
Modulus $5766$
Conductor $93$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([15,7]))
 
Copy content pari:[g,chi] = znchar(Mod(2435,5766))
 

Basic properties

Modulus: \(5766\)
Conductor: \(93\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{93}(17,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5766.p

\(\chi_{5766}(623,\cdot)\) \(\chi_{5766}(2039,\cdot)\) \(\chi_{5766}(2435,\cdot)\) \(\chi_{5766}(3959,\cdot)\) \(\chi_{5766}(3989,\cdot)\) \(\chi_{5766}(4073,\cdot)\) \(\chi_{5766}(5219,\cdot)\) \(\chi_{5766}(5531,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: \(\Q(\zeta_{93})^+\)

Values on generators

\((3845,3847)\) → \((-1,e\left(\frac{7}{30}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(35\)
\( \chi_{ 5766 }(2435, a) \) \(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{8}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5766 }(2435,a) \;\) at \(\;a = \) e.g. 2