Properties

Label 5766.v
Modulus $5766$
Conductor $961$
Order $155$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(310)) M = H._module chi = DirichletCharacter(H, M([0,266])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(97,5766)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5766\)
Conductor: \(961\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(155\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 961.l
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{155})$
Fixed field: Number field defined by a degree 155 polynomial (not computed)

First 31 of 120 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(35\)
\(\chi_{5766}(97,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{31}\right)\) \(e\left(\frac{94}{155}\right)\) \(e\left(\frac{24}{155}\right)\) \(e\left(\frac{13}{155}\right)\) \(e\left(\frac{126}{155}\right)\) \(e\left(\frac{97}{155}\right)\) \(e\left(\frac{101}{155}\right)\) \(e\left(\frac{3}{31}\right)\) \(e\left(\frac{132}{155}\right)\) \(e\left(\frac{24}{155}\right)\)
\(\chi_{5766}(109,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{31}\right)\) \(e\left(\frac{138}{155}\right)\) \(e\left(\frac{88}{155}\right)\) \(e\left(\frac{151}{155}\right)\) \(e\left(\frac{152}{155}\right)\) \(e\left(\frac{149}{155}\right)\) \(e\left(\frac{112}{155}\right)\) \(e\left(\frac{11}{31}\right)\) \(e\left(\frac{19}{155}\right)\) \(e\left(\frac{88}{155}\right)\)
\(\chi_{5766}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{31}\right)\) \(e\left(\frac{32}{155}\right)\) \(e\left(\frac{117}{155}\right)\) \(e\left(\frac{44}{155}\right)\) \(e\left(\frac{33}{155}\right)\) \(e\left(\frac{66}{155}\right)\) \(e\left(\frac{8}{155}\right)\) \(e\left(\frac{3}{31}\right)\) \(e\left(\frac{101}{155}\right)\) \(e\left(\frac{117}{155}\right)\)
\(\chi_{5766}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{31}\right)\) \(e\left(\frac{26}{155}\right)\) \(e\left(\frac{66}{155}\right)\) \(e\left(\frac{152}{155}\right)\) \(e\left(\frac{114}{155}\right)\) \(e\left(\frac{73}{155}\right)\) \(e\left(\frac{84}{155}\right)\) \(e\left(\frac{16}{31}\right)\) \(e\left(\frac{53}{155}\right)\) \(e\left(\frac{66}{155}\right)\)
\(\chi_{5766}(283,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{31}\right)\) \(e\left(\frac{129}{155}\right)\) \(e\left(\frac{89}{155}\right)\) \(e\left(\frac{3}{155}\right)\) \(e\left(\frac{41}{155}\right)\) \(e\left(\frac{82}{155}\right)\) \(e\left(\frac{71}{155}\right)\) \(e\left(\frac{15}{31}\right)\) \(e\left(\frac{102}{155}\right)\) \(e\left(\frac{89}{155}\right)\)
\(\chi_{5766}(295,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{31}\right)\) \(e\left(\frac{108}{155}\right)\) \(e\left(\frac{143}{155}\right)\) \(e\left(\frac{71}{155}\right)\) \(e\left(\frac{92}{155}\right)\) \(e\left(\frac{29}{155}\right)\) \(e\left(\frac{27}{155}\right)\) \(e\left(\frac{14}{31}\right)\) \(e\left(\frac{89}{155}\right)\) \(e\left(\frac{143}{155}\right)\)
\(\chi_{5766}(343,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{31}\right)\) \(e\left(\frac{102}{155}\right)\) \(e\left(\frac{92}{155}\right)\) \(e\left(\frac{24}{155}\right)\) \(e\left(\frac{18}{155}\right)\) \(e\left(\frac{36}{155}\right)\) \(e\left(\frac{103}{155}\right)\) \(e\left(\frac{27}{31}\right)\) \(e\left(\frac{41}{155}\right)\) \(e\left(\frac{92}{155}\right)\)
\(\chi_{5766}(349,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{31}\right)\) \(e\left(\frac{121}{155}\right)\) \(e\left(\frac{21}{155}\right)\) \(e\left(\frac{147}{155}\right)\) \(e\left(\frac{149}{155}\right)\) \(e\left(\frac{143}{155}\right)\) \(e\left(\frac{69}{155}\right)\) \(e\left(\frac{22}{31}\right)\) \(e\left(\frac{38}{155}\right)\) \(e\left(\frac{21}{155}\right)\)
\(\chi_{5766}(469,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{31}\right)\) \(e\left(\frac{9}{155}\right)\) \(e\left(\frac{154}{155}\right)\) \(e\left(\frac{148}{155}\right)\) \(e\left(\frac{111}{155}\right)\) \(e\left(\frac{67}{155}\right)\) \(e\left(\frac{41}{155}\right)\) \(e\left(\frac{27}{31}\right)\) \(e\left(\frac{72}{155}\right)\) \(e\left(\frac{154}{155}\right)\)
\(\chi_{5766}(481,\cdot)\) \(1\) \(1\) \(e\left(\frac{24}{31}\right)\) \(e\left(\frac{78}{155}\right)\) \(e\left(\frac{43}{155}\right)\) \(e\left(\frac{146}{155}\right)\) \(e\left(\frac{32}{155}\right)\) \(e\left(\frac{64}{155}\right)\) \(e\left(\frac{97}{155}\right)\) \(e\left(\frac{17}{31}\right)\) \(e\left(\frac{4}{155}\right)\) \(e\left(\frac{43}{155}\right)\)
\(\chi_{5766}(529,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{31}\right)\) \(e\left(\frac{17}{155}\right)\) \(e\left(\frac{67}{155}\right)\) \(e\left(\frac{4}{155}\right)\) \(e\left(\frac{3}{155}\right)\) \(e\left(\frac{6}{155}\right)\) \(e\left(\frac{43}{155}\right)\) \(e\left(\frac{20}{31}\right)\) \(e\left(\frac{136}{155}\right)\) \(e\left(\frac{67}{155}\right)\)
\(\chi_{5766}(535,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{31}\right)\) \(e\left(\frac{61}{155}\right)\) \(e\left(\frac{131}{155}\right)\) \(e\left(\frac{142}{155}\right)\) \(e\left(\frac{29}{155}\right)\) \(e\left(\frac{58}{155}\right)\) \(e\left(\frac{54}{155}\right)\) \(e\left(\frac{28}{31}\right)\) \(e\left(\frac{23}{155}\right)\) \(e\left(\frac{131}{155}\right)\)
\(\chi_{5766}(655,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{31}\right)\) \(e\left(\frac{44}{155}\right)\) \(e\left(\frac{64}{155}\right)\) \(e\left(\frac{138}{155}\right)\) \(e\left(\frac{26}{155}\right)\) \(e\left(\frac{52}{155}\right)\) \(e\left(\frac{11}{155}\right)\) \(e\left(\frac{8}{31}\right)\) \(e\left(\frac{42}{155}\right)\) \(e\left(\frac{64}{155}\right)\)
\(\chi_{5766}(667,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{31}\right)\) \(e\left(\frac{48}{155}\right)\) \(e\left(\frac{98}{155}\right)\) \(e\left(\frac{66}{155}\right)\) \(e\left(\frac{127}{155}\right)\) \(e\left(\frac{99}{155}\right)\) \(e\left(\frac{12}{155}\right)\) \(e\left(\frac{20}{31}\right)\) \(e\left(\frac{74}{155}\right)\) \(e\left(\frac{98}{155}\right)\)
\(\chi_{5766}(715,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{31}\right)\) \(e\left(\frac{87}{155}\right)\) \(e\left(\frac{42}{155}\right)\) \(e\left(\frac{139}{155}\right)\) \(e\left(\frac{143}{155}\right)\) \(e\left(\frac{131}{155}\right)\) \(e\left(\frac{138}{155}\right)\) \(e\left(\frac{13}{31}\right)\) \(e\left(\frac{76}{155}\right)\) \(e\left(\frac{42}{155}\right)\)
\(\chi_{5766}(721,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{31}\right)\) \(e\left(\frac{1}{155}\right)\) \(e\left(\frac{86}{155}\right)\) \(e\left(\frac{137}{155}\right)\) \(e\left(\frac{64}{155}\right)\) \(e\left(\frac{128}{155}\right)\) \(e\left(\frac{39}{155}\right)\) \(e\left(\frac{3}{31}\right)\) \(e\left(\frac{8}{155}\right)\) \(e\left(\frac{86}{155}\right)\)
\(\chi_{5766}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{31}\right)\) \(e\left(\frac{79}{155}\right)\) \(e\left(\frac{129}{155}\right)\) \(e\left(\frac{128}{155}\right)\) \(e\left(\frac{96}{155}\right)\) \(e\left(\frac{37}{155}\right)\) \(e\left(\frac{136}{155}\right)\) \(e\left(\frac{20}{31}\right)\) \(e\left(\frac{12}{155}\right)\) \(e\left(\frac{129}{155}\right)\)
\(\chi_{5766}(853,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{31}\right)\) \(e\left(\frac{18}{155}\right)\) \(e\left(\frac{153}{155}\right)\) \(e\left(\frac{141}{155}\right)\) \(e\left(\frac{67}{155}\right)\) \(e\left(\frac{134}{155}\right)\) \(e\left(\frac{82}{155}\right)\) \(e\left(\frac{23}{31}\right)\) \(e\left(\frac{144}{155}\right)\) \(e\left(\frac{153}{155}\right)\)
\(\chi_{5766}(901,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{31}\right)\) \(e\left(\frac{2}{155}\right)\) \(e\left(\frac{17}{155}\right)\) \(e\left(\frac{119}{155}\right)\) \(e\left(\frac{128}{155}\right)\) \(e\left(\frac{101}{155}\right)\) \(e\left(\frac{78}{155}\right)\) \(e\left(\frac{6}{31}\right)\) \(e\left(\frac{16}{155}\right)\) \(e\left(\frac{17}{155}\right)\)
\(\chi_{5766}(907,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{31}\right)\) \(e\left(\frac{96}{155}\right)\) \(e\left(\frac{41}{155}\right)\) \(e\left(\frac{132}{155}\right)\) \(e\left(\frac{99}{155}\right)\) \(e\left(\frac{43}{155}\right)\) \(e\left(\frac{24}{155}\right)\) \(e\left(\frac{9}{31}\right)\) \(e\left(\frac{148}{155}\right)\) \(e\left(\frac{41}{155}\right)\)
\(\chi_{5766}(1027,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{31}\right)\) \(e\left(\frac{114}{155}\right)\) \(e\left(\frac{39}{155}\right)\) \(e\left(\frac{118}{155}\right)\) \(e\left(\frac{11}{155}\right)\) \(e\left(\frac{22}{155}\right)\) \(e\left(\frac{106}{155}\right)\) \(e\left(\frac{1}{31}\right)\) \(e\left(\frac{137}{155}\right)\) \(e\left(\frac{39}{155}\right)\)
\(\chi_{5766}(1039,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{31}\right)\) \(e\left(\frac{143}{155}\right)\) \(e\left(\frac{53}{155}\right)\) \(e\left(\frac{61}{155}\right)\) \(e\left(\frac{7}{155}\right)\) \(e\left(\frac{14}{155}\right)\) \(e\left(\frac{152}{155}\right)\) \(e\left(\frac{26}{31}\right)\) \(e\left(\frac{59}{155}\right)\) \(e\left(\frac{53}{155}\right)\)
\(\chi_{5766}(1087,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{31}\right)\) \(e\left(\frac{72}{155}\right)\) \(e\left(\frac{147}{155}\right)\) \(e\left(\frac{99}{155}\right)\) \(e\left(\frac{113}{155}\right)\) \(e\left(\frac{71}{155}\right)\) \(e\left(\frac{18}{155}\right)\) \(e\left(\frac{30}{31}\right)\) \(e\left(\frac{111}{155}\right)\) \(e\left(\frac{147}{155}\right)\)
\(\chi_{5766}(1093,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{31}\right)\) \(e\left(\frac{36}{155}\right)\) \(e\left(\frac{151}{155}\right)\) \(e\left(\frac{127}{155}\right)\) \(e\left(\frac{134}{155}\right)\) \(e\left(\frac{113}{155}\right)\) \(e\left(\frac{9}{155}\right)\) \(e\left(\frac{15}{31}\right)\) \(e\left(\frac{133}{155}\right)\) \(e\left(\frac{151}{155}\right)\)
\(\chi_{5766}(1213,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{31}\right)\) \(e\left(\frac{149}{155}\right)\) \(e\left(\frac{104}{155}\right)\) \(e\left(\frac{108}{155}\right)\) \(e\left(\frac{81}{155}\right)\) \(e\left(\frac{7}{155}\right)\) \(e\left(\frac{76}{155}\right)\) \(e\left(\frac{13}{31}\right)\) \(e\left(\frac{107}{155}\right)\) \(e\left(\frac{104}{155}\right)\)
\(\chi_{5766}(1225,\cdot)\) \(1\) \(1\) \(e\left(\frac{30}{31}\right)\) \(e\left(\frac{113}{155}\right)\) \(e\left(\frac{108}{155}\right)\) \(e\left(\frac{136}{155}\right)\) \(e\left(\frac{102}{155}\right)\) \(e\left(\frac{49}{155}\right)\) \(e\left(\frac{67}{155}\right)\) \(e\left(\frac{29}{31}\right)\) \(e\left(\frac{129}{155}\right)\) \(e\left(\frac{108}{155}\right)\)
\(\chi_{5766}(1273,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{31}\right)\) \(e\left(\frac{142}{155}\right)\) \(e\left(\frac{122}{155}\right)\) \(e\left(\frac{79}{155}\right)\) \(e\left(\frac{98}{155}\right)\) \(e\left(\frac{41}{155}\right)\) \(e\left(\frac{113}{155}\right)\) \(e\left(\frac{23}{31}\right)\) \(e\left(\frac{51}{155}\right)\) \(e\left(\frac{122}{155}\right)\)
\(\chi_{5766}(1279,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{31}\right)\) \(e\left(\frac{131}{155}\right)\) \(e\left(\frac{106}{155}\right)\) \(e\left(\frac{122}{155}\right)\) \(e\left(\frac{14}{155}\right)\) \(e\left(\frac{28}{155}\right)\) \(e\left(\frac{149}{155}\right)\) \(e\left(\frac{21}{31}\right)\) \(e\left(\frac{118}{155}\right)\) \(e\left(\frac{106}{155}\right)\)
\(\chi_{5766}(1399,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{31}\right)\) \(e\left(\frac{29}{155}\right)\) \(e\left(\frac{14}{155}\right)\) \(e\left(\frac{98}{155}\right)\) \(e\left(\frac{151}{155}\right)\) \(e\left(\frac{147}{155}\right)\) \(e\left(\frac{46}{155}\right)\) \(e\left(\frac{25}{31}\right)\) \(e\left(\frac{77}{155}\right)\) \(e\left(\frac{14}{155}\right)\)
\(\chi_{5766}(1411,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{31}\right)\) \(e\left(\frac{83}{155}\right)\) \(e\left(\frac{8}{155}\right)\) \(e\left(\frac{56}{155}\right)\) \(e\left(\frac{42}{155}\right)\) \(e\left(\frac{84}{155}\right)\) \(e\left(\frac{137}{155}\right)\) \(e\left(\frac{1}{31}\right)\) \(e\left(\frac{44}{155}\right)\) \(e\left(\frac{8}{155}\right)\)
\(\chi_{5766}(1459,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{31}\right)\) \(e\left(\frac{57}{155}\right)\) \(e\left(\frac{97}{155}\right)\) \(e\left(\frac{59}{155}\right)\) \(e\left(\frac{83}{155}\right)\) \(e\left(\frac{11}{155}\right)\) \(e\left(\frac{53}{155}\right)\) \(e\left(\frac{16}{31}\right)\) \(e\left(\frac{146}{155}\right)\) \(e\left(\frac{97}{155}\right)\)