Properties

Label 5766.907
Modulus $5766$
Conductor $961$
Order $155$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(310)) M = H._module chi = DirichletCharacter(H, M([0,54]))
 
Copy content pari:[g,chi] = znchar(Mod(907,5766))
 

Basic properties

Modulus: \(5766\)
Conductor: \(961\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(155\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{961}(907,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 5766.v

\(\chi_{5766}(97,\cdot)\) \(\chi_{5766}(109,\cdot)\) \(\chi_{5766}(157,\cdot)\) \(\chi_{5766}(163,\cdot)\) \(\chi_{5766}(283,\cdot)\) \(\chi_{5766}(295,\cdot)\) \(\chi_{5766}(343,\cdot)\) \(\chi_{5766}(349,\cdot)\) \(\chi_{5766}(469,\cdot)\) \(\chi_{5766}(481,\cdot)\) \(\chi_{5766}(529,\cdot)\) \(\chi_{5766}(535,\cdot)\) \(\chi_{5766}(655,\cdot)\) \(\chi_{5766}(667,\cdot)\) \(\chi_{5766}(715,\cdot)\) \(\chi_{5766}(721,\cdot)\) \(\chi_{5766}(841,\cdot)\) \(\chi_{5766}(853,\cdot)\) \(\chi_{5766}(901,\cdot)\) \(\chi_{5766}(907,\cdot)\) \(\chi_{5766}(1027,\cdot)\) \(\chi_{5766}(1039,\cdot)\) \(\chi_{5766}(1087,\cdot)\) \(\chi_{5766}(1093,\cdot)\) \(\chi_{5766}(1213,\cdot)\) \(\chi_{5766}(1225,\cdot)\) \(\chi_{5766}(1273,\cdot)\) \(\chi_{5766}(1279,\cdot)\) \(\chi_{5766}(1399,\cdot)\) \(\chi_{5766}(1411,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{155})$
Fixed field: Number field defined by a degree 155 polynomial (not computed)

Values on generators

\((3845,3847)\) → \((1,e\left(\frac{27}{155}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(35\)
\( \chi_{ 5766 }(907, a) \) \(1\)\(1\)\(e\left(\frac{20}{31}\right)\)\(e\left(\frac{96}{155}\right)\)\(e\left(\frac{41}{155}\right)\)\(e\left(\frac{132}{155}\right)\)\(e\left(\frac{99}{155}\right)\)\(e\left(\frac{43}{155}\right)\)\(e\left(\frac{24}{155}\right)\)\(e\left(\frac{9}{31}\right)\)\(e\left(\frac{148}{155}\right)\)\(e\left(\frac{41}{155}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 5766 }(907,a) \;\) at \(\;a = \) e.g. 2