Properties

Label 5766.f
Modulus $5766$
Conductor $31$
Order $5$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([0,2])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(3271,5766)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5766\)
Conductor: \(31\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(5\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 31.d
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 5.5.923521.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(35\)
\(\chi_{5766}(3271,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\)
\(\chi_{5766}(3511,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\)
\(\chi_{5766}(4375,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{5766}(5179,\cdot)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{5}\right)\)