Properties

Label 5766.2.a.bl.1.8
Level $5766$
Weight $2$
Character 5766.1
Self dual yes
Analytic conductor $46.042$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5766,2,Mod(1,5766)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5766.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 5766 = 2 \cdot 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5766.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,-8,8,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.0417418055\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{32})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 20x^{4} - 16x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(1.96157\) of defining polynomial
Character \(\chi\) \(=\) 5766.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +4.37578 q^{5} +1.00000 q^{6} +0.258666 q^{7} -1.00000 q^{8} +1.00000 q^{9} -4.37578 q^{10} +1.21030 q^{11} -1.00000 q^{12} -4.93957 q^{13} -0.258666 q^{14} -4.37578 q^{15} +1.00000 q^{16} -0.541977 q^{17} -1.00000 q^{18} -2.22835 q^{19} +4.37578 q^{20} -0.258666 q^{21} -1.21030 q^{22} -6.97425 q^{23} +1.00000 q^{24} +14.1475 q^{25} +4.93957 q^{26} -1.00000 q^{27} +0.258666 q^{28} -3.41636 q^{29} +4.37578 q^{30} -1.00000 q^{32} -1.21030 q^{33} +0.541977 q^{34} +1.13187 q^{35} +1.00000 q^{36} -9.23446 q^{37} +2.22835 q^{38} +4.93957 q^{39} -4.37578 q^{40} -5.63202 q^{41} +0.258666 q^{42} +11.8771 q^{43} +1.21030 q^{44} +4.37578 q^{45} +6.97425 q^{46} +8.87634 q^{47} -1.00000 q^{48} -6.93309 q^{49} -14.1475 q^{50} +0.541977 q^{51} -4.93957 q^{52} -1.40786 q^{53} +1.00000 q^{54} +5.29599 q^{55} -0.258666 q^{56} +2.22835 q^{57} +3.41636 q^{58} -7.55810 q^{59} -4.37578 q^{60} +3.10514 q^{61} +0.258666 q^{63} +1.00000 q^{64} -21.6145 q^{65} +1.21030 q^{66} -7.93402 q^{67} -0.541977 q^{68} +6.97425 q^{69} -1.13187 q^{70} -16.2386 q^{71} -1.00000 q^{72} -9.94628 q^{73} +9.23446 q^{74} -14.1475 q^{75} -2.22835 q^{76} +0.313063 q^{77} -4.93957 q^{78} +3.96376 q^{79} +4.37578 q^{80} +1.00000 q^{81} +5.63202 q^{82} +6.64345 q^{83} -0.258666 q^{84} -2.37158 q^{85} -11.8771 q^{86} +3.41636 q^{87} -1.21030 q^{88} -13.5478 q^{89} -4.37578 q^{90} -1.27770 q^{91} -6.97425 q^{92} -8.87634 q^{94} -9.75079 q^{95} +1.00000 q^{96} +6.77418 q^{97} +6.93309 q^{98} +1.21030 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 8 q^{3} + 8 q^{4} + 8 q^{5} + 8 q^{6} - 8 q^{8} + 8 q^{9} - 8 q^{10} - 8 q^{11} - 8 q^{12} - 8 q^{13} - 8 q^{15} + 8 q^{16} + 8 q^{17} - 8 q^{18} - 8 q^{19} + 8 q^{20} + 8 q^{22} + 8 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 4.37578 1.95691 0.978455 0.206460i \(-0.0661943\pi\)
0.978455 + 0.206460i \(0.0661943\pi\)
\(6\) 1.00000 0.408248
\(7\) 0.258666 0.0977666 0.0488833 0.998804i \(-0.484434\pi\)
0.0488833 + 0.998804i \(0.484434\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −4.37578 −1.38374
\(11\) 1.21030 0.364918 0.182459 0.983213i \(-0.441594\pi\)
0.182459 + 0.983213i \(0.441594\pi\)
\(12\) −1.00000 −0.288675
\(13\) −4.93957 −1.36999 −0.684995 0.728548i \(-0.740196\pi\)
−0.684995 + 0.728548i \(0.740196\pi\)
\(14\) −0.258666 −0.0691314
\(15\) −4.37578 −1.12982
\(16\) 1.00000 0.250000
\(17\) −0.541977 −0.131449 −0.0657244 0.997838i \(-0.520936\pi\)
−0.0657244 + 0.997838i \(0.520936\pi\)
\(18\) −1.00000 −0.235702
\(19\) −2.22835 −0.511219 −0.255609 0.966780i \(-0.582276\pi\)
−0.255609 + 0.966780i \(0.582276\pi\)
\(20\) 4.37578 0.978455
\(21\) −0.258666 −0.0564456
\(22\) −1.21030 −0.258036
\(23\) −6.97425 −1.45423 −0.727116 0.686514i \(-0.759140\pi\)
−0.727116 + 0.686514i \(0.759140\pi\)
\(24\) 1.00000 0.204124
\(25\) 14.1475 2.82950
\(26\) 4.93957 0.968729
\(27\) −1.00000 −0.192450
\(28\) 0.258666 0.0488833
\(29\) −3.41636 −0.634402 −0.317201 0.948358i \(-0.602743\pi\)
−0.317201 + 0.948358i \(0.602743\pi\)
\(30\) 4.37578 0.798905
\(31\) 0 0
\(32\) −1.00000 −0.176777
\(33\) −1.21030 −0.210686
\(34\) 0.541977 0.0929483
\(35\) 1.13187 0.191320
\(36\) 1.00000 0.166667
\(37\) −9.23446 −1.51814 −0.759068 0.651012i \(-0.774345\pi\)
−0.759068 + 0.651012i \(0.774345\pi\)
\(38\) 2.22835 0.361486
\(39\) 4.93957 0.790964
\(40\) −4.37578 −0.691872
\(41\) −5.63202 −0.879574 −0.439787 0.898102i \(-0.644946\pi\)
−0.439787 + 0.898102i \(0.644946\pi\)
\(42\) 0.258666 0.0399130
\(43\) 11.8771 1.81124 0.905620 0.424090i \(-0.139406\pi\)
0.905620 + 0.424090i \(0.139406\pi\)
\(44\) 1.21030 0.182459
\(45\) 4.37578 0.652303
\(46\) 6.97425 1.02830
\(47\) 8.87634 1.29475 0.647374 0.762173i \(-0.275867\pi\)
0.647374 + 0.762173i \(0.275867\pi\)
\(48\) −1.00000 −0.144338
\(49\) −6.93309 −0.990442
\(50\) −14.1475 −2.00076
\(51\) 0.541977 0.0758920
\(52\) −4.93957 −0.684995
\(53\) −1.40786 −0.193384 −0.0966921 0.995314i \(-0.530826\pi\)
−0.0966921 + 0.995314i \(0.530826\pi\)
\(54\) 1.00000 0.136083
\(55\) 5.29599 0.714112
\(56\) −0.258666 −0.0345657
\(57\) 2.22835 0.295152
\(58\) 3.41636 0.448590
\(59\) −7.55810 −0.983980 −0.491990 0.870601i \(-0.663730\pi\)
−0.491990 + 0.870601i \(0.663730\pi\)
\(60\) −4.37578 −0.564911
\(61\) 3.10514 0.397572 0.198786 0.980043i \(-0.436300\pi\)
0.198786 + 0.980043i \(0.436300\pi\)
\(62\) 0 0
\(63\) 0.258666 0.0325889
\(64\) 1.00000 0.125000
\(65\) −21.6145 −2.68095
\(66\) 1.21030 0.148977
\(67\) −7.93402 −0.969294 −0.484647 0.874710i \(-0.661052\pi\)
−0.484647 + 0.874710i \(0.661052\pi\)
\(68\) −0.541977 −0.0657244
\(69\) 6.97425 0.839602
\(70\) −1.13187 −0.135284
\(71\) −16.2386 −1.92717 −0.963585 0.267403i \(-0.913835\pi\)
−0.963585 + 0.267403i \(0.913835\pi\)
\(72\) −1.00000 −0.117851
\(73\) −9.94628 −1.16412 −0.582062 0.813144i \(-0.697754\pi\)
−0.582062 + 0.813144i \(0.697754\pi\)
\(74\) 9.23446 1.07348
\(75\) −14.1475 −1.63361
\(76\) −2.22835 −0.255609
\(77\) 0.313063 0.0356768
\(78\) −4.93957 −0.559296
\(79\) 3.96376 0.445957 0.222979 0.974823i \(-0.428422\pi\)
0.222979 + 0.974823i \(0.428422\pi\)
\(80\) 4.37578 0.489228
\(81\) 1.00000 0.111111
\(82\) 5.63202 0.621953
\(83\) 6.64345 0.729213 0.364607 0.931162i \(-0.381203\pi\)
0.364607 + 0.931162i \(0.381203\pi\)
\(84\) −0.258666 −0.0282228
\(85\) −2.37158 −0.257233
\(86\) −11.8771 −1.28074
\(87\) 3.41636 0.366272
\(88\) −1.21030 −0.129018
\(89\) −13.5478 −1.43607 −0.718033 0.696009i \(-0.754957\pi\)
−0.718033 + 0.696009i \(0.754957\pi\)
\(90\) −4.37578 −0.461248
\(91\) −1.27770 −0.133939
\(92\) −6.97425 −0.727116
\(93\) 0 0
\(94\) −8.87634 −0.915524
\(95\) −9.75079 −1.00041
\(96\) 1.00000 0.102062
\(97\) 6.77418 0.687813 0.343907 0.939004i \(-0.388250\pi\)
0.343907 + 0.939004i \(0.388250\pi\)
\(98\) 6.93309 0.700348
\(99\) 1.21030 0.121639
\(100\) 14.1475 1.41475
\(101\) −13.3009 −1.32349 −0.661743 0.749731i \(-0.730183\pi\)
−0.661743 + 0.749731i \(0.730183\pi\)
\(102\) −0.541977 −0.0536637
\(103\) 6.23054 0.613913 0.306957 0.951724i \(-0.400689\pi\)
0.306957 + 0.951724i \(0.400689\pi\)
\(104\) 4.93957 0.484364
\(105\) −1.13187 −0.110459
\(106\) 1.40786 0.136743
\(107\) 11.2449 1.08708 0.543541 0.839383i \(-0.317083\pi\)
0.543541 + 0.839383i \(0.317083\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −12.3292 −1.18092 −0.590461 0.807066i \(-0.701054\pi\)
−0.590461 + 0.807066i \(0.701054\pi\)
\(110\) −5.29599 −0.504953
\(111\) 9.23446 0.876496
\(112\) 0.258666 0.0244416
\(113\) −10.5583 −0.993239 −0.496620 0.867968i \(-0.665426\pi\)
−0.496620 + 0.867968i \(0.665426\pi\)
\(114\) −2.22835 −0.208704
\(115\) −30.5178 −2.84580
\(116\) −3.41636 −0.317201
\(117\) −4.93957 −0.456663
\(118\) 7.55810 0.695779
\(119\) −0.140191 −0.0128513
\(120\) 4.37578 0.399453
\(121\) −9.53518 −0.866835
\(122\) −3.10514 −0.281126
\(123\) 5.63202 0.507822
\(124\) 0 0
\(125\) 40.0274 3.58016
\(126\) −0.258666 −0.0230438
\(127\) −4.31499 −0.382893 −0.191447 0.981503i \(-0.561318\pi\)
−0.191447 + 0.981503i \(0.561318\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −11.8771 −1.04572
\(130\) 21.6145 1.89572
\(131\) 3.11621 0.272264 0.136132 0.990691i \(-0.456533\pi\)
0.136132 + 0.990691i \(0.456533\pi\)
\(132\) −1.21030 −0.105343
\(133\) −0.576399 −0.0499801
\(134\) 7.93402 0.685395
\(135\) −4.37578 −0.376608
\(136\) 0.541977 0.0464742
\(137\) 3.19152 0.272670 0.136335 0.990663i \(-0.456468\pi\)
0.136335 + 0.990663i \(0.456468\pi\)
\(138\) −6.97425 −0.593688
\(139\) −21.7020 −1.84074 −0.920368 0.391054i \(-0.872111\pi\)
−0.920368 + 0.391054i \(0.872111\pi\)
\(140\) 1.13187 0.0956602
\(141\) −8.87634 −0.747523
\(142\) 16.2386 1.36271
\(143\) −5.97834 −0.499934
\(144\) 1.00000 0.0833333
\(145\) −14.9493 −1.24147
\(146\) 9.94628 0.823160
\(147\) 6.93309 0.571832
\(148\) −9.23446 −0.759068
\(149\) −5.90850 −0.484043 −0.242022 0.970271i \(-0.577811\pi\)
−0.242022 + 0.970271i \(0.577811\pi\)
\(150\) 14.1475 1.15514
\(151\) 13.9599 1.13604 0.568019 0.823015i \(-0.307710\pi\)
0.568019 + 0.823015i \(0.307710\pi\)
\(152\) 2.22835 0.180743
\(153\) −0.541977 −0.0438163
\(154\) −0.313063 −0.0252273
\(155\) 0 0
\(156\) 4.93957 0.395482
\(157\) −5.27600 −0.421071 −0.210535 0.977586i \(-0.567521\pi\)
−0.210535 + 0.977586i \(0.567521\pi\)
\(158\) −3.96376 −0.315339
\(159\) 1.40786 0.111650
\(160\) −4.37578 −0.345936
\(161\) −1.80400 −0.142175
\(162\) −1.00000 −0.0785674
\(163\) 8.82811 0.691471 0.345736 0.938332i \(-0.387629\pi\)
0.345736 + 0.938332i \(0.387629\pi\)
\(164\) −5.63202 −0.439787
\(165\) −5.29599 −0.412293
\(166\) −6.64345 −0.515632
\(167\) 7.28761 0.563933 0.281966 0.959424i \(-0.409013\pi\)
0.281966 + 0.959424i \(0.409013\pi\)
\(168\) 0.258666 0.0199565
\(169\) 11.3993 0.876871
\(170\) 2.37158 0.181892
\(171\) −2.22835 −0.170406
\(172\) 11.8771 0.905620
\(173\) 8.02040 0.609780 0.304890 0.952388i \(-0.401380\pi\)
0.304890 + 0.952388i \(0.401380\pi\)
\(174\) −3.41636 −0.258994
\(175\) 3.65947 0.276630
\(176\) 1.21030 0.0912295
\(177\) 7.55810 0.568101
\(178\) 13.5478 1.01545
\(179\) 20.5972 1.53951 0.769755 0.638340i \(-0.220379\pi\)
0.769755 + 0.638340i \(0.220379\pi\)
\(180\) 4.37578 0.326152
\(181\) −7.13983 −0.530699 −0.265350 0.964152i \(-0.585487\pi\)
−0.265350 + 0.964152i \(0.585487\pi\)
\(182\) 1.27770 0.0947093
\(183\) −3.10514 −0.229538
\(184\) 6.97425 0.514149
\(185\) −40.4080 −2.97085
\(186\) 0 0
\(187\) −0.655953 −0.0479680
\(188\) 8.87634 0.647374
\(189\) −0.258666 −0.0188152
\(190\) 9.75079 0.707396
\(191\) −13.4609 −0.973999 −0.487000 0.873402i \(-0.661909\pi\)
−0.487000 + 0.873402i \(0.661909\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −11.2960 −0.813107 −0.406553 0.913627i \(-0.633270\pi\)
−0.406553 + 0.913627i \(0.633270\pi\)
\(194\) −6.77418 −0.486358
\(195\) 21.6145 1.54785
\(196\) −6.93309 −0.495221
\(197\) −9.94310 −0.708417 −0.354208 0.935167i \(-0.615250\pi\)
−0.354208 + 0.935167i \(0.615250\pi\)
\(198\) −1.21030 −0.0860120
\(199\) 11.4488 0.811585 0.405793 0.913965i \(-0.366996\pi\)
0.405793 + 0.913965i \(0.366996\pi\)
\(200\) −14.1475 −1.00038
\(201\) 7.93402 0.559622
\(202\) 13.3009 0.935845
\(203\) −0.883696 −0.0620233
\(204\) 0.541977 0.0379460
\(205\) −24.6445 −1.72125
\(206\) −6.23054 −0.434102
\(207\) −6.97425 −0.484744
\(208\) −4.93957 −0.342497
\(209\) −2.69697 −0.186553
\(210\) 1.13187 0.0781062
\(211\) 8.64021 0.594817 0.297408 0.954750i \(-0.403878\pi\)
0.297408 + 0.954750i \(0.403878\pi\)
\(212\) −1.40786 −0.0966921
\(213\) 16.2386 1.11265
\(214\) −11.2449 −0.768683
\(215\) 51.9716 3.54443
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) 12.3292 0.835039
\(219\) 9.94628 0.672108
\(220\) 5.29599 0.357056
\(221\) 2.67713 0.180083
\(222\) −9.23446 −0.619776
\(223\) −10.2037 −0.683291 −0.341645 0.939829i \(-0.610984\pi\)
−0.341645 + 0.939829i \(0.610984\pi\)
\(224\) −0.258666 −0.0172829
\(225\) 14.1475 0.943166
\(226\) 10.5583 0.702326
\(227\) 20.2391 1.34332 0.671659 0.740860i \(-0.265582\pi\)
0.671659 + 0.740860i \(0.265582\pi\)
\(228\) 2.22835 0.147576
\(229\) −8.76358 −0.579114 −0.289557 0.957161i \(-0.593508\pi\)
−0.289557 + 0.957161i \(0.593508\pi\)
\(230\) 30.5178 2.01229
\(231\) −0.313063 −0.0205980
\(232\) 3.41636 0.224295
\(233\) 28.4266 1.86229 0.931144 0.364651i \(-0.118812\pi\)
0.931144 + 0.364651i \(0.118812\pi\)
\(234\) 4.93957 0.322910
\(235\) 38.8409 2.53370
\(236\) −7.55810 −0.491990
\(237\) −3.96376 −0.257474
\(238\) 0.140191 0.00908724
\(239\) −6.02792 −0.389914 −0.194957 0.980812i \(-0.562457\pi\)
−0.194957 + 0.980812i \(0.562457\pi\)
\(240\) −4.37578 −0.282456
\(241\) 12.6739 0.816397 0.408198 0.912893i \(-0.366157\pi\)
0.408198 + 0.912893i \(0.366157\pi\)
\(242\) 9.53518 0.612945
\(243\) −1.00000 −0.0641500
\(244\) 3.10514 0.198786
\(245\) −30.3377 −1.93821
\(246\) −5.63202 −0.359085
\(247\) 11.0071 0.700365
\(248\) 0 0
\(249\) −6.64345 −0.421011
\(250\) −40.0274 −2.53156
\(251\) −21.3335 −1.34656 −0.673278 0.739390i \(-0.735114\pi\)
−0.673278 + 0.739390i \(0.735114\pi\)
\(252\) 0.258666 0.0162944
\(253\) −8.44091 −0.530676
\(254\) 4.31499 0.270746
\(255\) 2.37158 0.148514
\(256\) 1.00000 0.0625000
\(257\) 18.7501 1.16960 0.584799 0.811178i \(-0.301174\pi\)
0.584799 + 0.811178i \(0.301174\pi\)
\(258\) 11.8771 0.739436
\(259\) −2.38864 −0.148423
\(260\) −21.6145 −1.34047
\(261\) −3.41636 −0.211467
\(262\) −3.11621 −0.192520
\(263\) 10.1879 0.628214 0.314107 0.949388i \(-0.398295\pi\)
0.314107 + 0.949388i \(0.398295\pi\)
\(264\) 1.21030 0.0744886
\(265\) −6.16048 −0.378435
\(266\) 0.576399 0.0353413
\(267\) 13.5478 0.829113
\(268\) −7.93402 −0.484647
\(269\) −14.0860 −0.858840 −0.429420 0.903105i \(-0.641282\pi\)
−0.429420 + 0.903105i \(0.641282\pi\)
\(270\) 4.37578 0.266302
\(271\) 6.79515 0.412776 0.206388 0.978470i \(-0.433829\pi\)
0.206388 + 0.978470i \(0.433829\pi\)
\(272\) −0.541977 −0.0328622
\(273\) 1.27770 0.0773298
\(274\) −3.19152 −0.192807
\(275\) 17.1226 1.03253
\(276\) 6.97425 0.419801
\(277\) 29.7523 1.78764 0.893820 0.448425i \(-0.148015\pi\)
0.893820 + 0.448425i \(0.148015\pi\)
\(278\) 21.7020 1.30160
\(279\) 0 0
\(280\) −1.13187 −0.0676420
\(281\) 16.0309 0.956321 0.478161 0.878272i \(-0.341304\pi\)
0.478161 + 0.878272i \(0.341304\pi\)
\(282\) 8.87634 0.528578
\(283\) −20.0057 −1.18922 −0.594608 0.804016i \(-0.702693\pi\)
−0.594608 + 0.804016i \(0.702693\pi\)
\(284\) −16.2386 −0.963585
\(285\) 9.75079 0.577587
\(286\) 5.97834 0.353507
\(287\) −1.45681 −0.0859930
\(288\) −1.00000 −0.0589256
\(289\) −16.7063 −0.982721
\(290\) 14.9493 0.877851
\(291\) −6.77418 −0.397109
\(292\) −9.94628 −0.582062
\(293\) −2.09882 −0.122614 −0.0613072 0.998119i \(-0.519527\pi\)
−0.0613072 + 0.998119i \(0.519527\pi\)
\(294\) −6.93309 −0.404346
\(295\) −33.0726 −1.92556
\(296\) 9.23446 0.536742
\(297\) −1.21030 −0.0702285
\(298\) 5.90850 0.342270
\(299\) 34.4498 1.99228
\(300\) −14.1475 −0.816806
\(301\) 3.07220 0.177079
\(302\) −13.9599 −0.803300
\(303\) 13.3009 0.764114
\(304\) −2.22835 −0.127805
\(305\) 13.5874 0.778013
\(306\) 0.541977 0.0309828
\(307\) −16.7444 −0.955653 −0.477827 0.878454i \(-0.658575\pi\)
−0.477827 + 0.878454i \(0.658575\pi\)
\(308\) 0.313063 0.0178384
\(309\) −6.23054 −0.354443
\(310\) 0 0
\(311\) 12.1126 0.686843 0.343422 0.939181i \(-0.388414\pi\)
0.343422 + 0.939181i \(0.388414\pi\)
\(312\) −4.93957 −0.279648
\(313\) 16.7775 0.948319 0.474160 0.880439i \(-0.342752\pi\)
0.474160 + 0.880439i \(0.342752\pi\)
\(314\) 5.27600 0.297742
\(315\) 1.13187 0.0637735
\(316\) 3.96376 0.222979
\(317\) 5.52147 0.310117 0.155058 0.987905i \(-0.450443\pi\)
0.155058 + 0.987905i \(0.450443\pi\)
\(318\) −1.40786 −0.0789488
\(319\) −4.13481 −0.231505
\(320\) 4.37578 0.244614
\(321\) −11.2449 −0.627627
\(322\) 1.80400 0.100533
\(323\) 1.20772 0.0671991
\(324\) 1.00000 0.0555556
\(325\) −69.8825 −3.87638
\(326\) −8.82811 −0.488944
\(327\) 12.3292 0.681806
\(328\) 5.63202 0.310976
\(329\) 2.29601 0.126583
\(330\) 5.29599 0.291535
\(331\) −4.56512 −0.250922 −0.125461 0.992099i \(-0.540041\pi\)
−0.125461 + 0.992099i \(0.540041\pi\)
\(332\) 6.64345 0.364607
\(333\) −9.23446 −0.506045
\(334\) −7.28761 −0.398761
\(335\) −34.7175 −1.89682
\(336\) −0.258666 −0.0141114
\(337\) 4.53915 0.247263 0.123632 0.992328i \(-0.460546\pi\)
0.123632 + 0.992328i \(0.460546\pi\)
\(338\) −11.3993 −0.620042
\(339\) 10.5583 0.573447
\(340\) −2.37158 −0.128617
\(341\) 0 0
\(342\) 2.22835 0.120495
\(343\) −3.60402 −0.194599
\(344\) −11.8771 −0.640370
\(345\) 30.5178 1.64302
\(346\) −8.02040 −0.431179
\(347\) 8.07440 0.433457 0.216728 0.976232i \(-0.430461\pi\)
0.216728 + 0.976232i \(0.430461\pi\)
\(348\) 3.41636 0.183136
\(349\) −34.4190 −1.84241 −0.921204 0.389081i \(-0.872793\pi\)
−0.921204 + 0.389081i \(0.872793\pi\)
\(350\) −3.65947 −0.195607
\(351\) 4.93957 0.263655
\(352\) −1.21030 −0.0645090
\(353\) 14.0492 0.747763 0.373882 0.927476i \(-0.378027\pi\)
0.373882 + 0.927476i \(0.378027\pi\)
\(354\) −7.55810 −0.401708
\(355\) −71.0567 −3.77130
\(356\) −13.5478 −0.718033
\(357\) 0.140191 0.00741970
\(358\) −20.5972 −1.08860
\(359\) −7.81882 −0.412662 −0.206331 0.978482i \(-0.566152\pi\)
−0.206331 + 0.978482i \(0.566152\pi\)
\(360\) −4.37578 −0.230624
\(361\) −14.0344 −0.738655
\(362\) 7.13983 0.375261
\(363\) 9.53518 0.500467
\(364\) −1.27770 −0.0669696
\(365\) −43.5228 −2.27809
\(366\) 3.10514 0.162308
\(367\) 6.51066 0.339854 0.169927 0.985457i \(-0.445647\pi\)
0.169927 + 0.985457i \(0.445647\pi\)
\(368\) −6.97425 −0.363558
\(369\) −5.63202 −0.293191
\(370\) 40.4080 2.10071
\(371\) −0.364165 −0.0189065
\(372\) 0 0
\(373\) 14.2068 0.735603 0.367801 0.929904i \(-0.380111\pi\)
0.367801 + 0.929904i \(0.380111\pi\)
\(374\) 0.655953 0.0339185
\(375\) −40.0274 −2.06701
\(376\) −8.87634 −0.457762
\(377\) 16.8753 0.869124
\(378\) 0.258666 0.0133043
\(379\) −26.7742 −1.37530 −0.687648 0.726044i \(-0.741357\pi\)
−0.687648 + 0.726044i \(0.741357\pi\)
\(380\) −9.75079 −0.500205
\(381\) 4.31499 0.221064
\(382\) 13.4609 0.688722
\(383\) −7.95941 −0.406707 −0.203354 0.979105i \(-0.565184\pi\)
−0.203354 + 0.979105i \(0.565184\pi\)
\(384\) 1.00000 0.0510310
\(385\) 1.36989 0.0698163
\(386\) 11.2960 0.574953
\(387\) 11.8771 0.603747
\(388\) 6.77418 0.343907
\(389\) 6.71406 0.340416 0.170208 0.985408i \(-0.445556\pi\)
0.170208 + 0.985408i \(0.445556\pi\)
\(390\) −21.6145 −1.09449
\(391\) 3.77989 0.191157
\(392\) 6.93309 0.350174
\(393\) −3.11621 −0.157192
\(394\) 9.94310 0.500926
\(395\) 17.3445 0.872698
\(396\) 1.21030 0.0608197
\(397\) −13.2791 −0.666459 −0.333229 0.942846i \(-0.608138\pi\)
−0.333229 + 0.942846i \(0.608138\pi\)
\(398\) −11.4488 −0.573877
\(399\) 0.576399 0.0288560
\(400\) 14.1475 0.707374
\(401\) −29.1276 −1.45456 −0.727281 0.686340i \(-0.759216\pi\)
−0.727281 + 0.686340i \(0.759216\pi\)
\(402\) −7.93402 −0.395713
\(403\) 0 0
\(404\) −13.3009 −0.661743
\(405\) 4.37578 0.217434
\(406\) 0.883696 0.0438571
\(407\) −11.1764 −0.553995
\(408\) −0.541977 −0.0268319
\(409\) −1.70322 −0.0842188 −0.0421094 0.999113i \(-0.513408\pi\)
−0.0421094 + 0.999113i \(0.513408\pi\)
\(410\) 24.6445 1.21711
\(411\) −3.19152 −0.157426
\(412\) 6.23054 0.306957
\(413\) −1.95502 −0.0962004
\(414\) 6.97425 0.342766
\(415\) 29.0703 1.42700
\(416\) 4.93957 0.242182
\(417\) 21.7020 1.06275
\(418\) 2.69697 0.131913
\(419\) 11.2484 0.549521 0.274761 0.961513i \(-0.411401\pi\)
0.274761 + 0.961513i \(0.411401\pi\)
\(420\) −1.13187 −0.0552294
\(421\) −3.69820 −0.180239 −0.0901197 0.995931i \(-0.528725\pi\)
−0.0901197 + 0.995931i \(0.528725\pi\)
\(422\) −8.64021 −0.420599
\(423\) 8.87634 0.431582
\(424\) 1.40786 0.0683716
\(425\) −7.66762 −0.371934
\(426\) −16.2386 −0.786764
\(427\) 0.803194 0.0388693
\(428\) 11.2449 0.543541
\(429\) 5.97834 0.288637
\(430\) −51.9716 −2.50629
\(431\) −6.68202 −0.321862 −0.160931 0.986966i \(-0.551450\pi\)
−0.160931 + 0.986966i \(0.551450\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 7.36940 0.354151 0.177075 0.984197i \(-0.443336\pi\)
0.177075 + 0.984197i \(0.443336\pi\)
\(434\) 0 0
\(435\) 14.9493 0.716762
\(436\) −12.3292 −0.590461
\(437\) 15.5411 0.743431
\(438\) −9.94628 −0.475252
\(439\) −8.67078 −0.413834 −0.206917 0.978359i \(-0.566343\pi\)
−0.206917 + 0.978359i \(0.566343\pi\)
\(440\) −5.29599 −0.252477
\(441\) −6.93309 −0.330147
\(442\) −2.67713 −0.127338
\(443\) 6.83273 0.324633 0.162316 0.986739i \(-0.448104\pi\)
0.162316 + 0.986739i \(0.448104\pi\)
\(444\) 9.23446 0.438248
\(445\) −59.2823 −2.81025
\(446\) 10.2037 0.483160
\(447\) 5.90850 0.279463
\(448\) 0.258666 0.0122208
\(449\) 7.22758 0.341090 0.170545 0.985350i \(-0.445447\pi\)
0.170545 + 0.985350i \(0.445447\pi\)
\(450\) −14.1475 −0.666919
\(451\) −6.81642 −0.320973
\(452\) −10.5583 −0.496620
\(453\) −13.9599 −0.655892
\(454\) −20.2391 −0.949870
\(455\) −5.59093 −0.262107
\(456\) −2.22835 −0.104352
\(457\) 2.39566 0.112064 0.0560322 0.998429i \(-0.482155\pi\)
0.0560322 + 0.998429i \(0.482155\pi\)
\(458\) 8.76358 0.409495
\(459\) 0.541977 0.0252973
\(460\) −30.5178 −1.42290
\(461\) 4.86262 0.226475 0.113237 0.993568i \(-0.463878\pi\)
0.113237 + 0.993568i \(0.463878\pi\)
\(462\) 0.313063 0.0145650
\(463\) −38.6724 −1.79726 −0.898630 0.438708i \(-0.855436\pi\)
−0.898630 + 0.438708i \(0.855436\pi\)
\(464\) −3.41636 −0.158601
\(465\) 0 0
\(466\) −28.4266 −1.31684
\(467\) 40.4656 1.87253 0.936263 0.351299i \(-0.114260\pi\)
0.936263 + 0.351299i \(0.114260\pi\)
\(468\) −4.93957 −0.228332
\(469\) −2.05226 −0.0947646
\(470\) −38.8409 −1.79160
\(471\) 5.27600 0.243105
\(472\) 7.55810 0.347890
\(473\) 14.3748 0.660954
\(474\) 3.96376 0.182061
\(475\) −31.5256 −1.44649
\(476\) −0.140191 −0.00642565
\(477\) −1.40786 −0.0644614
\(478\) 6.02792 0.275711
\(479\) −28.2118 −1.28903 −0.644515 0.764592i \(-0.722941\pi\)
−0.644515 + 0.764592i \(0.722941\pi\)
\(480\) 4.37578 0.199726
\(481\) 45.6142 2.07983
\(482\) −12.6739 −0.577280
\(483\) 1.80400 0.0820850
\(484\) −9.53518 −0.433417
\(485\) 29.6423 1.34599
\(486\) 1.00000 0.0453609
\(487\) −24.0583 −1.09018 −0.545092 0.838376i \(-0.683505\pi\)
−0.545092 + 0.838376i \(0.683505\pi\)
\(488\) −3.10514 −0.140563
\(489\) −8.82811 −0.399221
\(490\) 30.3377 1.37052
\(491\) 25.8649 1.16727 0.583634 0.812017i \(-0.301630\pi\)
0.583634 + 0.812017i \(0.301630\pi\)
\(492\) 5.63202 0.253911
\(493\) 1.85159 0.0833914
\(494\) −11.0071 −0.495233
\(495\) 5.29599 0.238037
\(496\) 0 0
\(497\) −4.20038 −0.188413
\(498\) 6.64345 0.297700
\(499\) −8.44013 −0.377832 −0.188916 0.981993i \(-0.560497\pi\)
−0.188916 + 0.981993i \(0.560497\pi\)
\(500\) 40.0274 1.79008
\(501\) −7.28761 −0.325587
\(502\) 21.3335 0.952159
\(503\) 19.2560 0.858583 0.429291 0.903166i \(-0.358763\pi\)
0.429291 + 0.903166i \(0.358763\pi\)
\(504\) −0.258666 −0.0115219
\(505\) −58.2017 −2.58994
\(506\) 8.44091 0.375244
\(507\) −11.3993 −0.506262
\(508\) −4.31499 −0.191447
\(509\) −15.4601 −0.685258 −0.342629 0.939471i \(-0.611317\pi\)
−0.342629 + 0.939471i \(0.611317\pi\)
\(510\) −2.37158 −0.105015
\(511\) −2.57277 −0.113812
\(512\) −1.00000 −0.0441942
\(513\) 2.22835 0.0983841
\(514\) −18.7501 −0.827030
\(515\) 27.2635 1.20137
\(516\) −11.8771 −0.522860
\(517\) 10.7430 0.472477
\(518\) 2.38864 0.104951
\(519\) −8.02040 −0.352056
\(520\) 21.6145 0.947858
\(521\) 23.2076 1.01674 0.508371 0.861138i \(-0.330248\pi\)
0.508371 + 0.861138i \(0.330248\pi\)
\(522\) 3.41636 0.149530
\(523\) −5.65617 −0.247327 −0.123664 0.992324i \(-0.539464\pi\)
−0.123664 + 0.992324i \(0.539464\pi\)
\(524\) 3.11621 0.136132
\(525\) −3.65947 −0.159713
\(526\) −10.1879 −0.444215
\(527\) 0 0
\(528\) −1.21030 −0.0526714
\(529\) 25.6402 1.11479
\(530\) 6.16048 0.267594
\(531\) −7.55810 −0.327993
\(532\) −0.576399 −0.0249901
\(533\) 27.8198 1.20501
\(534\) −13.5478 −0.586272
\(535\) 49.2051 2.12732
\(536\) 7.93402 0.342697
\(537\) −20.5972 −0.888836
\(538\) 14.0860 0.607292
\(539\) −8.39109 −0.361430
\(540\) −4.37578 −0.188304
\(541\) 13.9142 0.598219 0.299109 0.954219i \(-0.403310\pi\)
0.299109 + 0.954219i \(0.403310\pi\)
\(542\) −6.79515 −0.291877
\(543\) 7.13983 0.306399
\(544\) 0.541977 0.0232371
\(545\) −53.9499 −2.31096
\(546\) −1.27770 −0.0546804
\(547\) 14.3350 0.612918 0.306459 0.951884i \(-0.400856\pi\)
0.306459 + 0.951884i \(0.400856\pi\)
\(548\) 3.19152 0.136335
\(549\) 3.10514 0.132524
\(550\) −17.1226 −0.730112
\(551\) 7.61285 0.324318
\(552\) −6.97425 −0.296844
\(553\) 1.02529 0.0435997
\(554\) −29.7523 −1.26405
\(555\) 40.4080 1.71522
\(556\) −21.7020 −0.920368
\(557\) −24.1589 −1.02364 −0.511822 0.859091i \(-0.671029\pi\)
−0.511822 + 0.859091i \(0.671029\pi\)
\(558\) 0 0
\(559\) −58.6677 −2.48138
\(560\) 1.13187 0.0478301
\(561\) 0.655953 0.0276944
\(562\) −16.0309 −0.676221
\(563\) −8.70162 −0.366730 −0.183365 0.983045i \(-0.558699\pi\)
−0.183365 + 0.983045i \(0.558699\pi\)
\(564\) −8.87634 −0.373761
\(565\) −46.2007 −1.94368
\(566\) 20.0057 0.840902
\(567\) 0.258666 0.0108630
\(568\) 16.2386 0.681357
\(569\) −2.18128 −0.0914439 −0.0457219 0.998954i \(-0.514559\pi\)
−0.0457219 + 0.998954i \(0.514559\pi\)
\(570\) −9.75079 −0.408415
\(571\) 15.6185 0.653613 0.326806 0.945091i \(-0.394027\pi\)
0.326806 + 0.945091i \(0.394027\pi\)
\(572\) −5.97834 −0.249967
\(573\) 13.4609 0.562339
\(574\) 1.45681 0.0608062
\(575\) −98.6682 −4.11475
\(576\) 1.00000 0.0416667
\(577\) −33.1763 −1.38115 −0.690573 0.723263i \(-0.742642\pi\)
−0.690573 + 0.723263i \(0.742642\pi\)
\(578\) 16.7063 0.694889
\(579\) 11.2960 0.469448
\(580\) −14.9493 −0.620734
\(581\) 1.71843 0.0712927
\(582\) 6.77418 0.280799
\(583\) −1.70393 −0.0705694
\(584\) 9.94628 0.411580
\(585\) −21.6145 −0.893649
\(586\) 2.09882 0.0867015
\(587\) −16.7603 −0.691771 −0.345886 0.938277i \(-0.612421\pi\)
−0.345886 + 0.938277i \(0.612421\pi\)
\(588\) 6.93309 0.285916
\(589\) 0 0
\(590\) 33.0726 1.36158
\(591\) 9.94310 0.409005
\(592\) −9.23446 −0.379534
\(593\) 14.6352 0.600997 0.300499 0.953782i \(-0.402847\pi\)
0.300499 + 0.953782i \(0.402847\pi\)
\(594\) 1.21030 0.0496591
\(595\) −0.613446 −0.0251488
\(596\) −5.90850 −0.242022
\(597\) −11.4488 −0.468569
\(598\) −34.4498 −1.40876
\(599\) −26.9900 −1.10278 −0.551391 0.834247i \(-0.685903\pi\)
−0.551391 + 0.834247i \(0.685903\pi\)
\(600\) 14.1475 0.577569
\(601\) 28.5835 1.16595 0.582973 0.812492i \(-0.301889\pi\)
0.582973 + 0.812492i \(0.301889\pi\)
\(602\) −3.07220 −0.125214
\(603\) −7.93402 −0.323098
\(604\) 13.9599 0.568019
\(605\) −41.7239 −1.69632
\(606\) −13.3009 −0.540311
\(607\) 0.594883 0.0241456 0.0120728 0.999927i \(-0.496157\pi\)
0.0120728 + 0.999927i \(0.496157\pi\)
\(608\) 2.22835 0.0903716
\(609\) 0.883696 0.0358092
\(610\) −13.5874 −0.550138
\(611\) −43.8453 −1.77379
\(612\) −0.541977 −0.0219081
\(613\) −8.50798 −0.343634 −0.171817 0.985129i \(-0.554964\pi\)
−0.171817 + 0.985129i \(0.554964\pi\)
\(614\) 16.7444 0.675749
\(615\) 24.6445 0.993763
\(616\) −0.313063 −0.0126136
\(617\) −8.64747 −0.348134 −0.174067 0.984734i \(-0.555691\pi\)
−0.174067 + 0.984734i \(0.555691\pi\)
\(618\) 6.23054 0.250629
\(619\) −11.2620 −0.452658 −0.226329 0.974051i \(-0.572672\pi\)
−0.226329 + 0.974051i \(0.572672\pi\)
\(620\) 0 0
\(621\) 6.97425 0.279867
\(622\) −12.1126 −0.485671
\(623\) −3.50436 −0.140399
\(624\) 4.93957 0.197741
\(625\) 104.414 4.17656
\(626\) −16.7775 −0.670563
\(627\) 2.69697 0.107706
\(628\) −5.27600 −0.210535
\(629\) 5.00487 0.199557
\(630\) −1.13187 −0.0450947
\(631\) −8.50675 −0.338648 −0.169324 0.985560i \(-0.554158\pi\)
−0.169324 + 0.985560i \(0.554158\pi\)
\(632\) −3.96376 −0.157670
\(633\) −8.64021 −0.343417
\(634\) −5.52147 −0.219286
\(635\) −18.8815 −0.749288
\(636\) 1.40786 0.0558252
\(637\) 34.2465 1.35689
\(638\) 4.13481 0.163699
\(639\) −16.2386 −0.642390
\(640\) −4.37578 −0.172968
\(641\) −6.47546 −0.255765 −0.127883 0.991789i \(-0.540818\pi\)
−0.127883 + 0.991789i \(0.540818\pi\)
\(642\) 11.2449 0.443799
\(643\) −45.6762 −1.80129 −0.900646 0.434553i \(-0.856906\pi\)
−0.900646 + 0.434553i \(0.856906\pi\)
\(644\) −1.80400 −0.0710877
\(645\) −51.9716 −2.04638
\(646\) −1.20772 −0.0475169
\(647\) 18.5488 0.729227 0.364613 0.931159i \(-0.381201\pi\)
0.364613 + 0.931159i \(0.381201\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −9.14754 −0.359072
\(650\) 69.8825 2.74102
\(651\) 0 0
\(652\) 8.82811 0.345736
\(653\) −11.7721 −0.460676 −0.230338 0.973111i \(-0.573983\pi\)
−0.230338 + 0.973111i \(0.573983\pi\)
\(654\) −12.3292 −0.482110
\(655\) 13.6359 0.532797
\(656\) −5.63202 −0.219894
\(657\) −9.94628 −0.388041
\(658\) −2.29601 −0.0895077
\(659\) 5.36549 0.209010 0.104505 0.994524i \(-0.466674\pi\)
0.104505 + 0.994524i \(0.466674\pi\)
\(660\) −5.29599 −0.206146
\(661\) 23.9847 0.932895 0.466447 0.884549i \(-0.345534\pi\)
0.466447 + 0.884549i \(0.345534\pi\)
\(662\) 4.56512 0.177428
\(663\) −2.67713 −0.103971
\(664\) −6.64345 −0.257816
\(665\) −2.52220 −0.0978066
\(666\) 9.23446 0.357828
\(667\) 23.8266 0.922568
\(668\) 7.28761 0.281966
\(669\) 10.2037 0.394498
\(670\) 34.7175 1.34126
\(671\) 3.75814 0.145081
\(672\) 0.258666 0.00997826
\(673\) −45.4554 −1.75218 −0.876088 0.482151i \(-0.839856\pi\)
−0.876088 + 0.482151i \(0.839856\pi\)
\(674\) −4.53915 −0.174842
\(675\) −14.1475 −0.544537
\(676\) 11.3993 0.438436
\(677\) −38.9486 −1.49692 −0.748458 0.663182i \(-0.769206\pi\)
−0.748458 + 0.663182i \(0.769206\pi\)
\(678\) −10.5583 −0.405488
\(679\) 1.75225 0.0672452
\(680\) 2.37158 0.0909458
\(681\) −20.2391 −0.775565
\(682\) 0 0
\(683\) −23.7142 −0.907397 −0.453699 0.891155i \(-0.649896\pi\)
−0.453699 + 0.891155i \(0.649896\pi\)
\(684\) −2.22835 −0.0852032
\(685\) 13.9654 0.533591
\(686\) 3.60402 0.137602
\(687\) 8.76358 0.334352
\(688\) 11.8771 0.452810
\(689\) 6.95421 0.264934
\(690\) −30.5178 −1.16179
\(691\) 15.1535 0.576468 0.288234 0.957560i \(-0.406932\pi\)
0.288234 + 0.957560i \(0.406932\pi\)
\(692\) 8.02040 0.304890
\(693\) 0.313063 0.0118923
\(694\) −8.07440 −0.306500
\(695\) −94.9631 −3.60215
\(696\) −3.41636 −0.129497
\(697\) 3.05243 0.115619
\(698\) 34.4190 1.30278
\(699\) −28.4266 −1.07519
\(700\) 3.65947 0.138315
\(701\) 24.7191 0.933629 0.466815 0.884355i \(-0.345402\pi\)
0.466815 + 0.884355i \(0.345402\pi\)
\(702\) −4.93957 −0.186432
\(703\) 20.5776 0.776099
\(704\) 1.21030 0.0456148
\(705\) −38.8409 −1.46283
\(706\) −14.0492 −0.528748
\(707\) −3.44048 −0.129393
\(708\) 7.55810 0.284051
\(709\) −24.1011 −0.905134 −0.452567 0.891730i \(-0.649492\pi\)
−0.452567 + 0.891730i \(0.649492\pi\)
\(710\) 71.0567 2.66671
\(711\) 3.96376 0.148652
\(712\) 13.5478 0.507726
\(713\) 0 0
\(714\) −0.140191 −0.00524652
\(715\) −26.1599 −0.978326
\(716\) 20.5972 0.769755
\(717\) 6.02792 0.225117
\(718\) 7.81882 0.291796
\(719\) −24.2546 −0.904542 −0.452271 0.891881i \(-0.649386\pi\)
−0.452271 + 0.891881i \(0.649386\pi\)
\(720\) 4.37578 0.163076
\(721\) 1.61163 0.0600202
\(722\) 14.0344 0.522308
\(723\) −12.6739 −0.471347
\(724\) −7.13983 −0.265350
\(725\) −48.3329 −1.79504
\(726\) −9.53518 −0.353884
\(727\) −22.9799 −0.852277 −0.426138 0.904658i \(-0.640126\pi\)
−0.426138 + 0.904658i \(0.640126\pi\)
\(728\) 1.27770 0.0473547
\(729\) 1.00000 0.0370370
\(730\) 43.5228 1.61085
\(731\) −6.43712 −0.238085
\(732\) −3.10514 −0.114769
\(733\) −22.2689 −0.822521 −0.411260 0.911518i \(-0.634911\pi\)
−0.411260 + 0.911518i \(0.634911\pi\)
\(734\) −6.51066 −0.240313
\(735\) 30.3377 1.11902
\(736\) 6.97425 0.257074
\(737\) −9.60251 −0.353713
\(738\) 5.63202 0.207318
\(739\) −5.02347 −0.184792 −0.0923958 0.995722i \(-0.529452\pi\)
−0.0923958 + 0.995722i \(0.529452\pi\)
\(740\) −40.4080 −1.48543
\(741\) −11.0071 −0.404356
\(742\) 0.364165 0.0133689
\(743\) 34.3780 1.26121 0.630603 0.776106i \(-0.282808\pi\)
0.630603 + 0.776106i \(0.282808\pi\)
\(744\) 0 0
\(745\) −25.8543 −0.947229
\(746\) −14.2068 −0.520150
\(747\) 6.64345 0.243071
\(748\) −0.655953 −0.0239840
\(749\) 2.90866 0.106280
\(750\) 40.0274 1.46159
\(751\) −1.52046 −0.0554824 −0.0277412 0.999615i \(-0.508831\pi\)
−0.0277412 + 0.999615i \(0.508831\pi\)
\(752\) 8.87634 0.323687
\(753\) 21.3335 0.777434
\(754\) −16.8753 −0.614564
\(755\) 61.0854 2.22312
\(756\) −0.258666 −0.00940759
\(757\) 34.8458 1.26649 0.633246 0.773951i \(-0.281722\pi\)
0.633246 + 0.773951i \(0.281722\pi\)
\(758\) 26.7742 0.972482
\(759\) 8.44091 0.306386
\(760\) 9.75079 0.353698
\(761\) −16.9849 −0.615701 −0.307850 0.951435i \(-0.599610\pi\)
−0.307850 + 0.951435i \(0.599610\pi\)
\(762\) −4.31499 −0.156316
\(763\) −3.18914 −0.115455
\(764\) −13.4609 −0.487000
\(765\) −2.37158 −0.0857445
\(766\) 7.95941 0.287585
\(767\) 37.3337 1.34804
\(768\) −1.00000 −0.0360844
\(769\) 32.9565 1.18844 0.594221 0.804302i \(-0.297461\pi\)
0.594221 + 0.804302i \(0.297461\pi\)
\(770\) −1.36989 −0.0493676
\(771\) −18.7501 −0.675267
\(772\) −11.2960 −0.406553
\(773\) −22.2756 −0.801198 −0.400599 0.916253i \(-0.631198\pi\)
−0.400599 + 0.916253i \(0.631198\pi\)
\(774\) −11.8771 −0.426913
\(775\) 0 0
\(776\) −6.77418 −0.243179
\(777\) 2.38864 0.0856920
\(778\) −6.71406 −0.240711
\(779\) 12.5501 0.449655
\(780\) 21.6145 0.773923
\(781\) −19.6535 −0.703259
\(782\) −3.77989 −0.135169
\(783\) 3.41636 0.122091
\(784\) −6.93309 −0.247610
\(785\) −23.0866 −0.823998
\(786\) 3.11621 0.111151
\(787\) 22.5624 0.804264 0.402132 0.915582i \(-0.368269\pi\)
0.402132 + 0.915582i \(0.368269\pi\)
\(788\) −9.94310 −0.354208
\(789\) −10.1879 −0.362700
\(790\) −17.3445 −0.617091
\(791\) −2.73107 −0.0971056
\(792\) −1.21030 −0.0430060
\(793\) −15.3380 −0.544670
\(794\) 13.2791 0.471257
\(795\) 6.16048 0.218490
\(796\) 11.4488 0.405793
\(797\) 31.5174 1.11640 0.558201 0.829706i \(-0.311492\pi\)
0.558201 + 0.829706i \(0.311492\pi\)
\(798\) −0.576399 −0.0204043
\(799\) −4.81077 −0.170193
\(800\) −14.1475 −0.500189
\(801\) −13.5478 −0.478689
\(802\) 29.1276 1.02853
\(803\) −12.0379 −0.424810
\(804\) 7.93402 0.279811
\(805\) −7.89393 −0.278224
\(806\) 0 0
\(807\) 14.0860 0.495852
\(808\) 13.3009 0.467923
\(809\) 13.3728 0.470164 0.235082 0.971976i \(-0.424464\pi\)
0.235082 + 0.971976i \(0.424464\pi\)
\(810\) −4.37578 −0.153749
\(811\) −15.3421 −0.538734 −0.269367 0.963038i \(-0.586814\pi\)
−0.269367 + 0.963038i \(0.586814\pi\)
\(812\) −0.883696 −0.0310117
\(813\) −6.79515 −0.238316
\(814\) 11.1764 0.391734
\(815\) 38.6299 1.35315
\(816\) 0.541977 0.0189730
\(817\) −26.4663 −0.925940
\(818\) 1.70322 0.0595517
\(819\) −1.27770 −0.0446464
\(820\) −24.6445 −0.860624
\(821\) 19.5364 0.681824 0.340912 0.940095i \(-0.389264\pi\)
0.340912 + 0.940095i \(0.389264\pi\)
\(822\) 3.19152 0.111317
\(823\) 33.5864 1.17075 0.585375 0.810763i \(-0.300947\pi\)
0.585375 + 0.810763i \(0.300947\pi\)
\(824\) −6.23054 −0.217051
\(825\) −17.1226 −0.596134
\(826\) 1.95502 0.0680240
\(827\) −48.4432 −1.68453 −0.842267 0.539061i \(-0.818779\pi\)
−0.842267 + 0.539061i \(0.818779\pi\)
\(828\) −6.97425 −0.242372
\(829\) 35.4361 1.23075 0.615374 0.788236i \(-0.289005\pi\)
0.615374 + 0.788236i \(0.289005\pi\)
\(830\) −29.0703 −1.00904
\(831\) −29.7523 −1.03209
\(832\) −4.93957 −0.171249
\(833\) 3.75758 0.130192
\(834\) −21.7020 −0.751477
\(835\) 31.8890 1.10357
\(836\) −2.69697 −0.0932765
\(837\) 0 0
\(838\) −11.2484 −0.388570
\(839\) 40.0762 1.38358 0.691792 0.722097i \(-0.256822\pi\)
0.691792 + 0.722097i \(0.256822\pi\)
\(840\) 1.13187 0.0390531
\(841\) −17.3285 −0.597534
\(842\) 3.69820 0.127448
\(843\) −16.0309 −0.552132
\(844\) 8.64021 0.297408
\(845\) 49.8810 1.71596
\(846\) −8.87634 −0.305175
\(847\) −2.46643 −0.0847475
\(848\) −1.40786 −0.0483460
\(849\) 20.0057 0.686594
\(850\) 7.66762 0.262997
\(851\) 64.4034 2.20772
\(852\) 16.2386 0.556326
\(853\) −0.628280 −0.0215119 −0.0107559 0.999942i \(-0.503424\pi\)
−0.0107559 + 0.999942i \(0.503424\pi\)
\(854\) −0.803194 −0.0274847
\(855\) −9.75079 −0.333470
\(856\) −11.2449 −0.384342
\(857\) −0.474902 −0.0162223 −0.00811116 0.999967i \(-0.502582\pi\)
−0.00811116 + 0.999967i \(0.502582\pi\)
\(858\) −5.97834 −0.204097
\(859\) 43.8168 1.49501 0.747504 0.664257i \(-0.231252\pi\)
0.747504 + 0.664257i \(0.231252\pi\)
\(860\) 51.9716 1.77222
\(861\) 1.45681 0.0496481
\(862\) 6.68202 0.227591
\(863\) 8.03984 0.273679 0.136840 0.990593i \(-0.456306\pi\)
0.136840 + 0.990593i \(0.456306\pi\)
\(864\) 1.00000 0.0340207
\(865\) 35.0955 1.19328
\(866\) −7.36940 −0.250422
\(867\) 16.7063 0.567374
\(868\) 0 0
\(869\) 4.79732 0.162738
\(870\) −14.9493 −0.506827
\(871\) 39.1906 1.32792
\(872\) 12.3292 0.417519
\(873\) 6.77418 0.229271
\(874\) −15.5411 −0.525685
\(875\) 10.3537 0.350020
\(876\) 9.94628 0.336054
\(877\) −19.1409 −0.646343 −0.323171 0.946340i \(-0.604749\pi\)
−0.323171 + 0.946340i \(0.604749\pi\)
\(878\) 8.67078 0.292625
\(879\) 2.09882 0.0707915
\(880\) 5.29599 0.178528
\(881\) 11.5400 0.388794 0.194397 0.980923i \(-0.437725\pi\)
0.194397 + 0.980923i \(0.437725\pi\)
\(882\) 6.93309 0.233449
\(883\) 45.9535 1.54646 0.773230 0.634126i \(-0.218640\pi\)
0.773230 + 0.634126i \(0.218640\pi\)
\(884\) 2.67713 0.0900417
\(885\) 33.0726 1.11172
\(886\) −6.83273 −0.229550
\(887\) 37.4044 1.25592 0.627958 0.778247i \(-0.283891\pi\)
0.627958 + 0.778247i \(0.283891\pi\)
\(888\) −9.23446 −0.309888
\(889\) −1.11614 −0.0374342
\(890\) 59.2823 1.98715
\(891\) 1.21030 0.0405464
\(892\) −10.2037 −0.341645
\(893\) −19.7796 −0.661899
\(894\) −5.90850 −0.197610
\(895\) 90.1290 3.01268
\(896\) −0.258666 −0.00864143
\(897\) −34.4498 −1.15025
\(898\) −7.22758 −0.241187
\(899\) 0 0
\(900\) 14.1475 0.471583
\(901\) 0.763027 0.0254201
\(902\) 6.81642 0.226962
\(903\) −3.07220 −0.102236
\(904\) 10.5583 0.351163
\(905\) −31.2424 −1.03853
\(906\) 13.9599 0.463786
\(907\) −35.7629 −1.18749 −0.593744 0.804654i \(-0.702351\pi\)
−0.593744 + 0.804654i \(0.702351\pi\)
\(908\) 20.2391 0.671659
\(909\) −13.3009 −0.441162
\(910\) 5.59093 0.185338
\(911\) 18.2085 0.603274 0.301637 0.953423i \(-0.402467\pi\)
0.301637 + 0.953423i \(0.402467\pi\)
\(912\) 2.22835 0.0737881
\(913\) 8.04054 0.266103
\(914\) −2.39566 −0.0792414
\(915\) −13.5874 −0.449186
\(916\) −8.76358 −0.289557
\(917\) 0.806057 0.0266183
\(918\) −0.541977 −0.0178879
\(919\) −49.5236 −1.63363 −0.816817 0.576897i \(-0.804264\pi\)
−0.816817 + 0.576897i \(0.804264\pi\)
\(920\) 30.5178 1.00614
\(921\) 16.7444 0.551747
\(922\) −4.86262 −0.160142
\(923\) 80.2118 2.64020
\(924\) −0.313063 −0.0102990
\(925\) −130.644 −4.29556
\(926\) 38.6724 1.27085
\(927\) 6.23054 0.204638
\(928\) 3.41636 0.112148
\(929\) 40.6031 1.33214 0.666072 0.745887i \(-0.267974\pi\)
0.666072 + 0.745887i \(0.267974\pi\)
\(930\) 0 0
\(931\) 15.4494 0.506333
\(932\) 28.4266 0.931144
\(933\) −12.1126 −0.396549
\(934\) −40.4656 −1.32408
\(935\) −2.87031 −0.0938691
\(936\) 4.93957 0.161455
\(937\) −36.2959 −1.18574 −0.592868 0.805299i \(-0.702005\pi\)
−0.592868 + 0.805299i \(0.702005\pi\)
\(938\) 2.05226 0.0670087
\(939\) −16.7775 −0.547512
\(940\) 38.8409 1.26685
\(941\) −10.6162 −0.346078 −0.173039 0.984915i \(-0.555359\pi\)
−0.173039 + 0.984915i \(0.555359\pi\)
\(942\) −5.27600 −0.171901
\(943\) 39.2792 1.27911
\(944\) −7.55810 −0.245995
\(945\) −1.13187 −0.0368196
\(946\) −14.3748 −0.467365
\(947\) 44.4937 1.44585 0.722926 0.690926i \(-0.242797\pi\)
0.722926 + 0.690926i \(0.242797\pi\)
\(948\) −3.96376 −0.128737
\(949\) 49.1303 1.59484
\(950\) 31.5256 1.02282
\(951\) −5.52147 −0.179046
\(952\) 0.140191 0.00454362
\(953\) −22.0111 −0.713008 −0.356504 0.934294i \(-0.616031\pi\)
−0.356504 + 0.934294i \(0.616031\pi\)
\(954\) 1.40786 0.0455811
\(955\) −58.9022 −1.90603
\(956\) −6.02792 −0.194957
\(957\) 4.13481 0.133659
\(958\) 28.2118 0.911482
\(959\) 0.825539 0.0266580
\(960\) −4.37578 −0.141228
\(961\) 0 0
\(962\) −45.6142 −1.47066
\(963\) 11.2449 0.362361
\(964\) 12.6739 0.408198
\(965\) −49.4290 −1.59118
\(966\) −1.80400 −0.0580428
\(967\) −27.9802 −0.899782 −0.449891 0.893083i \(-0.648537\pi\)
−0.449891 + 0.893083i \(0.648537\pi\)
\(968\) 9.53518 0.306472
\(969\) −1.20772 −0.0387974
\(970\) −29.6423 −0.951758
\(971\) 27.3040 0.876226 0.438113 0.898920i \(-0.355647\pi\)
0.438113 + 0.898920i \(0.355647\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −5.61356 −0.179962
\(974\) 24.0583 0.770877
\(975\) 69.8825 2.23803
\(976\) 3.10514 0.0993930
\(977\) −16.1251 −0.515886 −0.257943 0.966160i \(-0.583045\pi\)
−0.257943 + 0.966160i \(0.583045\pi\)
\(978\) 8.82811 0.282292
\(979\) −16.3969 −0.524047
\(980\) −30.3377 −0.969103
\(981\) −12.3292 −0.393641
\(982\) −25.8649 −0.825383
\(983\) −12.6626 −0.403874 −0.201937 0.979398i \(-0.564724\pi\)
−0.201937 + 0.979398i \(0.564724\pi\)
\(984\) −5.63202 −0.179542
\(985\) −43.5089 −1.38631
\(986\) −1.85159 −0.0589666
\(987\) −2.29601 −0.0730827
\(988\) 11.0071 0.350182
\(989\) −82.8339 −2.63396
\(990\) −5.29599 −0.168318
\(991\) −5.20999 −0.165501 −0.0827504 0.996570i \(-0.526370\pi\)
−0.0827504 + 0.996570i \(0.526370\pi\)
\(992\) 0 0
\(993\) 4.56512 0.144870
\(994\) 4.20038 0.133228
\(995\) 50.0976 1.58820
\(996\) −6.64345 −0.210506
\(997\) −36.6500 −1.16072 −0.580358 0.814361i \(-0.697088\pi\)
−0.580358 + 0.814361i \(0.697088\pi\)
\(998\) 8.44013 0.267168
\(999\) 9.23446 0.292165
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5766.2.a.bl.1.8 8
31.30 odd 2 5766.2.a.bn.1.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5766.2.a.bl.1.8 8 1.1 even 1 trivial
5766.2.a.bn.1.8 yes 8 31.30 odd 2