Properties

Label 2-5766-1.1-c1-0-129
Degree $2$
Conductor $5766$
Sign $-1$
Analytic cond. $46.0417$
Root an. cond. $6.78540$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 4.37·5-s + 6-s + 0.258·7-s − 8-s + 9-s − 4.37·10-s + 1.21·11-s − 12-s − 4.93·13-s − 0.258·14-s − 4.37·15-s + 16-s − 0.541·17-s − 18-s − 2.22·19-s + 4.37·20-s − 0.258·21-s − 1.21·22-s − 6.97·23-s + 24-s + 14.1·25-s + 4.93·26-s − 27-s + 0.258·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 0.5·4-s + 1.95·5-s + 0.408·6-s + 0.0977·7-s − 0.353·8-s + 0.333·9-s − 1.38·10-s + 0.364·11-s − 0.288·12-s − 1.36·13-s − 0.0691·14-s − 1.12·15-s + 0.250·16-s − 0.131·17-s − 0.235·18-s − 0.511·19-s + 0.978·20-s − 0.0564·21-s − 0.258·22-s − 1.45·23-s + 0.204·24-s + 2.82·25-s + 0.968·26-s − 0.192·27-s + 0.0488·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5766 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5766\)    =    \(2 \cdot 3 \cdot 31^{2}\)
Sign: $-1$
Analytic conductor: \(46.0417\)
Root analytic conductor: \(6.78540\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5766,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
31 \( 1 \)
good5 \( 1 - 4.37T + 5T^{2} \)
7 \( 1 - 0.258T + 7T^{2} \)
11 \( 1 - 1.21T + 11T^{2} \)
13 \( 1 + 4.93T + 13T^{2} \)
17 \( 1 + 0.541T + 17T^{2} \)
19 \( 1 + 2.22T + 19T^{2} \)
23 \( 1 + 6.97T + 23T^{2} \)
29 \( 1 + 3.41T + 29T^{2} \)
37 \( 1 + 9.23T + 37T^{2} \)
41 \( 1 + 5.63T + 41T^{2} \)
43 \( 1 - 11.8T + 43T^{2} \)
47 \( 1 - 8.87T + 47T^{2} \)
53 \( 1 + 1.40T + 53T^{2} \)
59 \( 1 + 7.55T + 59T^{2} \)
61 \( 1 - 3.10T + 61T^{2} \)
67 \( 1 + 7.93T + 67T^{2} \)
71 \( 1 + 16.2T + 71T^{2} \)
73 \( 1 + 9.94T + 73T^{2} \)
79 \( 1 - 3.96T + 79T^{2} \)
83 \( 1 - 6.64T + 83T^{2} \)
89 \( 1 + 13.5T + 89T^{2} \)
97 \( 1 - 6.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.64224045904847884862717583969, −6.99152946850990005092739657439, −6.28668999198671319525898999658, −5.76883001271487600622359166688, −5.14051141129518301422276343510, −4.24055793176720096002031442134, −2.82181133072345515089299881646, −2.04240992955785183721527701930, −1.48431846871649353012192641622, 0, 1.48431846871649353012192641622, 2.04240992955785183721527701930, 2.82181133072345515089299881646, 4.24055793176720096002031442134, 5.14051141129518301422276343510, 5.76883001271487600622359166688, 6.28668999198671319525898999658, 6.99152946850990005092739657439, 7.64224045904847884862717583969

Graph of the $Z$-function along the critical line