Properties

Label 5766.2.a.bl
Level $5766$
Weight $2$
Character orbit 5766.a
Self dual yes
Analytic conductor $46.042$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5766,2,Mod(1,5766)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5766.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5766 = 2 \cdot 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5766.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,-8,8,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.0417418055\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{32})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 8x^{6} + 20x^{4} - 16x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + (\beta_{4} + \beta_1 + 1) q^{5} + q^{6} + ( - \beta_{7} - \beta_{6} + \beta_{4}) q^{7} - q^{8} + q^{9} + ( - \beta_{4} - \beta_1 - 1) q^{10} + ( - \beta_{4} + \beta_{3} + \beta_1 - 1) q^{11}+ \cdots + ( - \beta_{4} + \beta_{3} + \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 8 q^{3} + 8 q^{4} + 8 q^{5} + 8 q^{6} - 8 q^{8} + 8 q^{9} - 8 q^{10} - 8 q^{11} - 8 q^{12} - 8 q^{13} - 8 q^{15} + 8 q^{16} + 8 q^{17} - 8 q^{18} - 8 q^{19} + 8 q^{20} + 8 q^{22} + 8 q^{24}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{32} + \zeta_{32}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 4\nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} - 5\nu^{3} + 5\nu \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} - 6\nu^{4} + 9\nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( \nu^{7} - 7\nu^{5} + 14\nu^{3} - 7\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 4\beta_{2} + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + 5\beta_{3} + 10\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} + 6\beta_{4} + 15\beta_{2} + 20 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( \beta_{7} + 7\beta_{5} + 21\beta_{3} + 35\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.66294
−1.11114
−1.96157
1.11114
1.66294
−0.390181
0.390181
1.96157
−1.00000 −1.00000 1.00000 −2.07715 1.00000 −0.677595 −1.00000 1.00000 2.07715
1.2 −1.00000 −1.00000 1.00000 −1.52535 1.00000 −1.59903 −1.00000 1.00000 1.52535
1.3 −1.00000 −1.00000 1.00000 0.452643 1.00000 1.03903 −1.00000 1.00000 −0.452643
1.4 −1.00000 −1.00000 1.00000 0.696927 1.00000 −4.92491 −1.00000 1.00000 −0.696927
1.5 −1.00000 −1.00000 1.00000 1.24873 1.00000 1.54469 −1.00000 1.00000 −1.24873
1.6 −1.00000 −1.00000 1.00000 2.02403 1.00000 0.218010 −1.00000 1.00000 −2.02403
1.7 −1.00000 −1.00000 1.00000 2.80439 1.00000 4.14115 −1.00000 1.00000 −2.80439
1.8 −1.00000 −1.00000 1.00000 4.37578 1.00000 0.258666 −1.00000 1.00000 −4.37578
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5766.2.a.bl 8
31.b odd 2 1 5766.2.a.bn yes 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
5766.2.a.bl 8 1.a even 1 1 trivial
5766.2.a.bn yes 8 31.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5766))\):

\( T_{5}^{8} - 8T_{5}^{7} + 12T_{5}^{6} + 40T_{5}^{5} - 110T_{5}^{4} + 8T_{5}^{3} + 164T_{5}^{2} - 136T_{5} + 31 \) Copy content Toggle raw display
\( T_{7}^{8} - 24T_{7}^{6} + 16T_{7}^{5} + 64T_{7}^{4} - 48T_{7}^{3} - 24T_{7}^{2} + 16T_{7} - 2 \) Copy content Toggle raw display
\( T_{11}^{8} + 8T_{11}^{7} + 4T_{11}^{6} - 56T_{11}^{5} - 34T_{11}^{4} + 120T_{11}^{3} + 52T_{11}^{2} - 72T_{11} - 31 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{8} \) Copy content Toggle raw display
$3$ \( (T + 1)^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 8 T^{7} + \cdots + 31 \) Copy content Toggle raw display
$7$ \( T^{8} - 24 T^{6} + \cdots - 2 \) Copy content Toggle raw display
$11$ \( T^{8} + 8 T^{7} + \cdots - 31 \) Copy content Toggle raw display
$13$ \( T^{8} + 8 T^{7} + \cdots - 257 \) Copy content Toggle raw display
$17$ \( T^{8} - 8 T^{7} + \cdots + 1697 \) Copy content Toggle raw display
$19$ \( T^{8} + 8 T^{7} + \cdots - 12479 \) Copy content Toggle raw display
$23$ \( T^{8} - 64 T^{6} + \cdots + 2878 \) Copy content Toggle raw display
$29$ \( T^{8} + 16 T^{7} + \cdots - 940162 \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} - 120 T^{6} + \cdots - 23428 \) Copy content Toggle raw display
$41$ \( T^{8} - 16 T^{7} + \cdots - 440446 \) Copy content Toggle raw display
$43$ \( T^{8} - 200 T^{6} + \cdots - 210878 \) Copy content Toggle raw display
$47$ \( T^{8} - 24 T^{7} + \cdots + 6484607 \) Copy content Toggle raw display
$53$ \( T^{8} + 16 T^{7} + \cdots + 805438 \) Copy content Toggle raw display
$59$ \( T^{8} - 16 T^{7} + \cdots + 2687752 \) Copy content Toggle raw display
$61$ \( T^{8} + 56 T^{7} + \cdots - 23279233 \) Copy content Toggle raw display
$67$ \( T^{8} + 8 T^{7} + \cdots + 115937 \) Copy content Toggle raw display
$71$ \( T^{8} - 8 T^{7} + \cdots - 5921 \) Copy content Toggle raw display
$73$ \( T^{8} + 32 T^{7} + \cdots - 458366 \) Copy content Toggle raw display
$79$ \( T^{8} - 8 T^{7} + \cdots - 14561 \) Copy content Toggle raw display
$83$ \( T^{8} - 8 T^{7} + \cdots - 1898527 \) Copy content Toggle raw display
$89$ \( T^{8} + 48 T^{7} + \cdots + 4085252 \) Copy content Toggle raw display
$97$ \( T^{8} + 8 T^{7} + \cdots + 1011169 \) Copy content Toggle raw display
show more
show less