Properties

Label 5766.2.a.bg.1.3
Level $5766$
Weight $2$
Character 5766.1
Self dual yes
Analytic conductor $46.042$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5766,2,Mod(1,5766)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5766, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5766.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 5766 = 2 \cdot 3 \cdot 31^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5766.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,4,4,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(46.0417418055\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{15})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 4x^{2} + 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(1.82709\) of defining polynomial
Character \(\chi\) \(=\) 5766.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -0.720227 q^{5} +1.00000 q^{6} -1.66174 q^{7} +1.00000 q^{8} +1.00000 q^{9} -0.720227 q^{10} -1.40898 q^{11} +1.00000 q^{12} -2.78339 q^{13} -1.66174 q^{14} -0.720227 q^{15} +1.00000 q^{16} -0.425671 q^{17} +1.00000 q^{18} -2.30678 q^{19} -0.720227 q^{20} -1.66174 q^{21} -1.40898 q^{22} +5.86889 q^{23} +1.00000 q^{24} -4.48127 q^{25} -2.78339 q^{26} +1.00000 q^{27} -1.66174 q^{28} +0.243625 q^{29} -0.720227 q^{30} +1.00000 q^{32} -1.40898 q^{33} -0.425671 q^{34} +1.19683 q^{35} +1.00000 q^{36} -2.76958 q^{37} -2.30678 q^{38} -2.78339 q^{39} -0.720227 q^{40} +5.05560 q^{41} -1.66174 q^{42} +2.84029 q^{43} -1.40898 q^{44} -0.720227 q^{45} +5.86889 q^{46} -6.89025 q^{47} +1.00000 q^{48} -4.23862 q^{49} -4.48127 q^{50} -0.425671 q^{51} -2.78339 q^{52} -4.79659 q^{53} +1.00000 q^{54} +1.01478 q^{55} -1.66174 q^{56} -2.30678 q^{57} +0.243625 q^{58} -12.0770 q^{59} -0.720227 q^{60} -2.61994 q^{61} -1.66174 q^{63} +1.00000 q^{64} +2.00467 q^{65} -1.40898 q^{66} -5.24927 q^{67} -0.425671 q^{68} +5.86889 q^{69} +1.19683 q^{70} +10.7739 q^{71} +1.00000 q^{72} -5.93960 q^{73} -2.76958 q^{74} -4.48127 q^{75} -2.30678 q^{76} +2.34135 q^{77} -2.78339 q^{78} -13.3939 q^{79} -0.720227 q^{80} +1.00000 q^{81} +5.05560 q^{82} -5.99342 q^{83} -1.66174 q^{84} +0.306580 q^{85} +2.84029 q^{86} +0.243625 q^{87} -1.40898 q^{88} +0.595693 q^{89} -0.720227 q^{90} +4.62526 q^{91} +5.86889 q^{92} -6.89025 q^{94} +1.66141 q^{95} +1.00000 q^{96} +5.23416 q^{97} -4.23862 q^{98} -1.40898 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{4} - 3 q^{5} + 4 q^{6} - 11 q^{7} + 4 q^{8} + 4 q^{9} - 3 q^{10} - 3 q^{11} + 4 q^{12} + 4 q^{13} - 11 q^{14} - 3 q^{15} + 4 q^{16} - 15 q^{17} + 4 q^{18} - 2 q^{19} - 3 q^{20}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −0.720227 −0.322095 −0.161048 0.986947i \(-0.551487\pi\)
−0.161048 + 0.986947i \(0.551487\pi\)
\(6\) 1.00000 0.408248
\(7\) −1.66174 −0.628078 −0.314039 0.949410i \(-0.601682\pi\)
−0.314039 + 0.949410i \(0.601682\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −0.720227 −0.227756
\(11\) −1.40898 −0.424823 −0.212411 0.977180i \(-0.568132\pi\)
−0.212411 + 0.977180i \(0.568132\pi\)
\(12\) 1.00000 0.288675
\(13\) −2.78339 −0.771972 −0.385986 0.922505i \(-0.626139\pi\)
−0.385986 + 0.922505i \(0.626139\pi\)
\(14\) −1.66174 −0.444118
\(15\) −0.720227 −0.185962
\(16\) 1.00000 0.250000
\(17\) −0.425671 −0.103240 −0.0516202 0.998667i \(-0.516439\pi\)
−0.0516202 + 0.998667i \(0.516439\pi\)
\(18\) 1.00000 0.235702
\(19\) −2.30678 −0.529213 −0.264606 0.964357i \(-0.585242\pi\)
−0.264606 + 0.964357i \(0.585242\pi\)
\(20\) −0.720227 −0.161048
\(21\) −1.66174 −0.362621
\(22\) −1.40898 −0.300395
\(23\) 5.86889 1.22375 0.611874 0.790956i \(-0.290416\pi\)
0.611874 + 0.790956i \(0.290416\pi\)
\(24\) 1.00000 0.204124
\(25\) −4.48127 −0.896255
\(26\) −2.78339 −0.545867
\(27\) 1.00000 0.192450
\(28\) −1.66174 −0.314039
\(29\) 0.243625 0.0452400 0.0226200 0.999744i \(-0.492799\pi\)
0.0226200 + 0.999744i \(0.492799\pi\)
\(30\) −0.720227 −0.131495
\(31\) 0 0
\(32\) 1.00000 0.176777
\(33\) −1.40898 −0.245271
\(34\) −0.425671 −0.0730019
\(35\) 1.19683 0.202301
\(36\) 1.00000 0.166667
\(37\) −2.76958 −0.455316 −0.227658 0.973741i \(-0.573107\pi\)
−0.227658 + 0.973741i \(0.573107\pi\)
\(38\) −2.30678 −0.374210
\(39\) −2.78339 −0.445698
\(40\) −0.720227 −0.113878
\(41\) 5.05560 0.789552 0.394776 0.918777i \(-0.370822\pi\)
0.394776 + 0.918777i \(0.370822\pi\)
\(42\) −1.66174 −0.256412
\(43\) 2.84029 0.433141 0.216570 0.976267i \(-0.430513\pi\)
0.216570 + 0.976267i \(0.430513\pi\)
\(44\) −1.40898 −0.212411
\(45\) −0.720227 −0.107365
\(46\) 5.86889 0.865320
\(47\) −6.89025 −1.00505 −0.502523 0.864564i \(-0.667595\pi\)
−0.502523 + 0.864564i \(0.667595\pi\)
\(48\) 1.00000 0.144338
\(49\) −4.23862 −0.605518
\(50\) −4.48127 −0.633748
\(51\) −0.425671 −0.0596058
\(52\) −2.78339 −0.385986
\(53\) −4.79659 −0.658862 −0.329431 0.944180i \(-0.606857\pi\)
−0.329431 + 0.944180i \(0.606857\pi\)
\(54\) 1.00000 0.136083
\(55\) 1.01478 0.136833
\(56\) −1.66174 −0.222059
\(57\) −2.30678 −0.305541
\(58\) 0.243625 0.0319895
\(59\) −12.0770 −1.57229 −0.786144 0.618044i \(-0.787925\pi\)
−0.786144 + 0.618044i \(0.787925\pi\)
\(60\) −0.720227 −0.0929809
\(61\) −2.61994 −0.335449 −0.167725 0.985834i \(-0.553642\pi\)
−0.167725 + 0.985834i \(0.553642\pi\)
\(62\) 0 0
\(63\) −1.66174 −0.209359
\(64\) 1.00000 0.125000
\(65\) 2.00467 0.248649
\(66\) −1.40898 −0.173433
\(67\) −5.24927 −0.641301 −0.320650 0.947198i \(-0.603901\pi\)
−0.320650 + 0.947198i \(0.603901\pi\)
\(68\) −0.425671 −0.0516202
\(69\) 5.86889 0.706531
\(70\) 1.19683 0.143048
\(71\) 10.7739 1.27863 0.639314 0.768945i \(-0.279218\pi\)
0.639314 + 0.768945i \(0.279218\pi\)
\(72\) 1.00000 0.117851
\(73\) −5.93960 −0.695178 −0.347589 0.937647i \(-0.613000\pi\)
−0.347589 + 0.937647i \(0.613000\pi\)
\(74\) −2.76958 −0.321957
\(75\) −4.48127 −0.517453
\(76\) −2.30678 −0.264606
\(77\) 2.34135 0.266822
\(78\) −2.78339 −0.315156
\(79\) −13.3939 −1.50693 −0.753464 0.657490i \(-0.771618\pi\)
−0.753464 + 0.657490i \(0.771618\pi\)
\(80\) −0.720227 −0.0805239
\(81\) 1.00000 0.111111
\(82\) 5.05560 0.558298
\(83\) −5.99342 −0.657863 −0.328932 0.944354i \(-0.606689\pi\)
−0.328932 + 0.944354i \(0.606689\pi\)
\(84\) −1.66174 −0.181311
\(85\) 0.306580 0.0332532
\(86\) 2.84029 0.306277
\(87\) 0.243625 0.0261193
\(88\) −1.40898 −0.150197
\(89\) 0.595693 0.0631434 0.0315717 0.999501i \(-0.489949\pi\)
0.0315717 + 0.999501i \(0.489949\pi\)
\(90\) −0.720227 −0.0759186
\(91\) 4.62526 0.484859
\(92\) 5.86889 0.611874
\(93\) 0 0
\(94\) −6.89025 −0.710675
\(95\) 1.66141 0.170457
\(96\) 1.00000 0.102062
\(97\) 5.23416 0.531448 0.265724 0.964049i \(-0.414389\pi\)
0.265724 + 0.964049i \(0.414389\pi\)
\(98\) −4.23862 −0.428166
\(99\) −1.40898 −0.141608
\(100\) −4.48127 −0.448127
\(101\) −9.92173 −0.987249 −0.493624 0.869675i \(-0.664328\pi\)
−0.493624 + 0.869675i \(0.664328\pi\)
\(102\) −0.425671 −0.0421477
\(103\) −18.3111 −1.80425 −0.902124 0.431476i \(-0.857993\pi\)
−0.902124 + 0.431476i \(0.857993\pi\)
\(104\) −2.78339 −0.272933
\(105\) 1.19683 0.116799
\(106\) −4.79659 −0.465886
\(107\) −4.47193 −0.432318 −0.216159 0.976358i \(-0.569353\pi\)
−0.216159 + 0.976358i \(0.569353\pi\)
\(108\) 1.00000 0.0962250
\(109\) −9.84187 −0.942681 −0.471340 0.881951i \(-0.656230\pi\)
−0.471340 + 0.881951i \(0.656230\pi\)
\(110\) 1.01478 0.0967558
\(111\) −2.76958 −0.262877
\(112\) −1.66174 −0.157020
\(113\) −10.9786 −1.03278 −0.516392 0.856353i \(-0.672725\pi\)
−0.516392 + 0.856353i \(0.672725\pi\)
\(114\) −2.30678 −0.216050
\(115\) −4.22693 −0.394163
\(116\) 0.243625 0.0226200
\(117\) −2.78339 −0.257324
\(118\) −12.0770 −1.11177
\(119\) 0.707354 0.0648430
\(120\) −0.720227 −0.0657474
\(121\) −9.01478 −0.819526
\(122\) −2.61994 −0.237199
\(123\) 5.05560 0.455848
\(124\) 0 0
\(125\) 6.82867 0.610775
\(126\) −1.66174 −0.148039
\(127\) 16.3333 1.44934 0.724671 0.689095i \(-0.241992\pi\)
0.724671 + 0.689095i \(0.241992\pi\)
\(128\) 1.00000 0.0883883
\(129\) 2.84029 0.250074
\(130\) 2.00467 0.175821
\(131\) 7.12185 0.622239 0.311120 0.950371i \(-0.399296\pi\)
0.311120 + 0.950371i \(0.399296\pi\)
\(132\) −1.40898 −0.122636
\(133\) 3.83327 0.332387
\(134\) −5.24927 −0.453468
\(135\) −0.720227 −0.0619873
\(136\) −0.425671 −0.0365010
\(137\) −14.4967 −1.23853 −0.619267 0.785181i \(-0.712570\pi\)
−0.619267 + 0.785181i \(0.712570\pi\)
\(138\) 5.86889 0.499593
\(139\) 20.5545 1.74341 0.871707 0.490028i \(-0.163013\pi\)
0.871707 + 0.490028i \(0.163013\pi\)
\(140\) 1.19683 0.101151
\(141\) −6.89025 −0.580264
\(142\) 10.7739 0.904127
\(143\) 3.92173 0.327951
\(144\) 1.00000 0.0833333
\(145\) −0.175465 −0.0145716
\(146\) −5.93960 −0.491565
\(147\) −4.23862 −0.349596
\(148\) −2.76958 −0.227658
\(149\) −20.4312 −1.67379 −0.836894 0.547365i \(-0.815631\pi\)
−0.836894 + 0.547365i \(0.815631\pi\)
\(150\) −4.48127 −0.365894
\(151\) 1.05029 0.0854710 0.0427355 0.999086i \(-0.486393\pi\)
0.0427355 + 0.999086i \(0.486393\pi\)
\(152\) −2.30678 −0.187105
\(153\) −0.425671 −0.0344134
\(154\) 2.34135 0.188672
\(155\) 0 0
\(156\) −2.78339 −0.222849
\(157\) 14.5822 1.16378 0.581892 0.813266i \(-0.302313\pi\)
0.581892 + 0.813266i \(0.302313\pi\)
\(158\) −13.3939 −1.06556
\(159\) −4.79659 −0.380394
\(160\) −0.720227 −0.0569390
\(161\) −9.75255 −0.768609
\(162\) 1.00000 0.0785674
\(163\) 4.88932 0.382961 0.191480 0.981496i \(-0.438671\pi\)
0.191480 + 0.981496i \(0.438671\pi\)
\(164\) 5.05560 0.394776
\(165\) 1.01478 0.0790008
\(166\) −5.99342 −0.465180
\(167\) 12.4920 0.966659 0.483330 0.875438i \(-0.339427\pi\)
0.483330 + 0.875438i \(0.339427\pi\)
\(168\) −1.66174 −0.128206
\(169\) −5.25276 −0.404059
\(170\) 0.306580 0.0235136
\(171\) −2.30678 −0.176404
\(172\) 2.84029 0.216570
\(173\) −5.08708 −0.386763 −0.193382 0.981124i \(-0.561946\pi\)
−0.193382 + 0.981124i \(0.561946\pi\)
\(174\) 0.243625 0.0184692
\(175\) 7.44670 0.562918
\(176\) −1.40898 −0.106206
\(177\) −12.0770 −0.907760
\(178\) 0.595693 0.0446491
\(179\) 14.1982 1.06122 0.530612 0.847615i \(-0.321962\pi\)
0.530612 + 0.847615i \(0.321962\pi\)
\(180\) −0.720227 −0.0536826
\(181\) 16.8223 1.25039 0.625196 0.780468i \(-0.285019\pi\)
0.625196 + 0.780468i \(0.285019\pi\)
\(182\) 4.62526 0.342847
\(183\) −2.61994 −0.193672
\(184\) 5.86889 0.432660
\(185\) 1.99473 0.146655
\(186\) 0 0
\(187\) 0.599760 0.0438588
\(188\) −6.89025 −0.502523
\(189\) −1.66174 −0.120874
\(190\) 1.66141 0.120531
\(191\) −24.4881 −1.77190 −0.885948 0.463784i \(-0.846491\pi\)
−0.885948 + 0.463784i \(0.846491\pi\)
\(192\) 1.00000 0.0721688
\(193\) 11.9999 0.863770 0.431885 0.901929i \(-0.357849\pi\)
0.431885 + 0.901929i \(0.357849\pi\)
\(194\) 5.23416 0.375791
\(195\) 2.00467 0.143557
\(196\) −4.23862 −0.302759
\(197\) 13.4024 0.954881 0.477441 0.878664i \(-0.341565\pi\)
0.477441 + 0.878664i \(0.341565\pi\)
\(198\) −1.40898 −0.100132
\(199\) −1.04337 −0.0739629 −0.0369814 0.999316i \(-0.511774\pi\)
−0.0369814 + 0.999316i \(0.511774\pi\)
\(200\) −4.48127 −0.316874
\(201\) −5.24927 −0.370255
\(202\) −9.92173 −0.698090
\(203\) −0.404841 −0.0284143
\(204\) −0.425671 −0.0298029
\(205\) −3.64118 −0.254311
\(206\) −18.3111 −1.27580
\(207\) 5.86889 0.407916
\(208\) −2.78339 −0.192993
\(209\) 3.25021 0.224821
\(210\) 1.19683 0.0825891
\(211\) −16.4020 −1.12916 −0.564581 0.825378i \(-0.690962\pi\)
−0.564581 + 0.825378i \(0.690962\pi\)
\(212\) −4.79659 −0.329431
\(213\) 10.7739 0.738217
\(214\) −4.47193 −0.305695
\(215\) −2.04566 −0.139513
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) −9.84187 −0.666576
\(219\) −5.93960 −0.401361
\(220\) 1.01478 0.0684167
\(221\) 1.18481 0.0796987
\(222\) −2.76958 −0.185882
\(223\) −21.8525 −1.46335 −0.731675 0.681654i \(-0.761261\pi\)
−0.731675 + 0.681654i \(0.761261\pi\)
\(224\) −1.66174 −0.111030
\(225\) −4.48127 −0.298752
\(226\) −10.9786 −0.730288
\(227\) 11.5429 0.766126 0.383063 0.923722i \(-0.374869\pi\)
0.383063 + 0.923722i \(0.374869\pi\)
\(228\) −2.30678 −0.152770
\(229\) 20.8613 1.37856 0.689278 0.724497i \(-0.257928\pi\)
0.689278 + 0.724497i \(0.257928\pi\)
\(230\) −4.22693 −0.278716
\(231\) 2.34135 0.154050
\(232\) 0.243625 0.0159948
\(233\) −27.4079 −1.79555 −0.897776 0.440452i \(-0.854818\pi\)
−0.897776 + 0.440452i \(0.854818\pi\)
\(234\) −2.78339 −0.181956
\(235\) 4.96255 0.323721
\(236\) −12.0770 −0.786144
\(237\) −13.3939 −0.870025
\(238\) 0.707354 0.0458509
\(239\) 4.70353 0.304246 0.152123 0.988362i \(-0.451389\pi\)
0.152123 + 0.988362i \(0.451389\pi\)
\(240\) −0.720227 −0.0464905
\(241\) 11.3375 0.730315 0.365157 0.930946i \(-0.381015\pi\)
0.365157 + 0.930946i \(0.381015\pi\)
\(242\) −9.01478 −0.579492
\(243\) 1.00000 0.0641500
\(244\) −2.61994 −0.167725
\(245\) 3.05277 0.195034
\(246\) 5.05560 0.322333
\(247\) 6.42067 0.408537
\(248\) 0 0
\(249\) −5.99342 −0.379818
\(250\) 6.82867 0.431883
\(251\) 1.01072 0.0637959 0.0318979 0.999491i \(-0.489845\pi\)
0.0318979 + 0.999491i \(0.489845\pi\)
\(252\) −1.66174 −0.104680
\(253\) −8.26913 −0.519875
\(254\) 16.3333 1.02484
\(255\) 0.306580 0.0191988
\(256\) 1.00000 0.0625000
\(257\) 30.6255 1.91037 0.955183 0.296015i \(-0.0956578\pi\)
0.955183 + 0.296015i \(0.0956578\pi\)
\(258\) 2.84029 0.176829
\(259\) 4.60232 0.285974
\(260\) 2.00467 0.124324
\(261\) 0.243625 0.0150800
\(262\) 7.12185 0.439989
\(263\) −5.84536 −0.360441 −0.180220 0.983626i \(-0.557681\pi\)
−0.180220 + 0.983626i \(0.557681\pi\)
\(264\) −1.40898 −0.0867165
\(265\) 3.45463 0.212217
\(266\) 3.83327 0.235033
\(267\) 0.595693 0.0364558
\(268\) −5.24927 −0.320650
\(269\) 0.455772 0.0277889 0.0138945 0.999903i \(-0.495577\pi\)
0.0138945 + 0.999903i \(0.495577\pi\)
\(270\) −0.720227 −0.0438316
\(271\) −2.57551 −0.156451 −0.0782255 0.996936i \(-0.524925\pi\)
−0.0782255 + 0.996936i \(0.524925\pi\)
\(272\) −0.425671 −0.0258101
\(273\) 4.62526 0.279934
\(274\) −14.4967 −0.875775
\(275\) 6.31401 0.380749
\(276\) 5.86889 0.353265
\(277\) 23.4233 1.40737 0.703685 0.710512i \(-0.251537\pi\)
0.703685 + 0.710512i \(0.251537\pi\)
\(278\) 20.5545 1.23278
\(279\) 0 0
\(280\) 1.19683 0.0715242
\(281\) 29.3381 1.75017 0.875083 0.483973i \(-0.160807\pi\)
0.875083 + 0.483973i \(0.160807\pi\)
\(282\) −6.89025 −0.410308
\(283\) −10.8881 −0.647232 −0.323616 0.946188i \(-0.604899\pi\)
−0.323616 + 0.946188i \(0.604899\pi\)
\(284\) 10.7739 0.639314
\(285\) 1.66141 0.0984133
\(286\) 3.92173 0.231897
\(287\) −8.40109 −0.495901
\(288\) 1.00000 0.0589256
\(289\) −16.8188 −0.989341
\(290\) −0.175465 −0.0103037
\(291\) 5.23416 0.306832
\(292\) −5.93960 −0.347589
\(293\) 11.0321 0.644501 0.322251 0.946654i \(-0.395561\pi\)
0.322251 + 0.946654i \(0.395561\pi\)
\(294\) −4.23862 −0.247202
\(295\) 8.69816 0.506426
\(296\) −2.76958 −0.160979
\(297\) −1.40898 −0.0817571
\(298\) −20.4312 −1.18355
\(299\) −16.3354 −0.944699
\(300\) −4.48127 −0.258726
\(301\) −4.71983 −0.272046
\(302\) 1.05029 0.0604371
\(303\) −9.92173 −0.569988
\(304\) −2.30678 −0.132303
\(305\) 1.88696 0.108047
\(306\) −0.425671 −0.0243340
\(307\) −7.53042 −0.429784 −0.214892 0.976638i \(-0.568940\pi\)
−0.214892 + 0.976638i \(0.568940\pi\)
\(308\) 2.34135 0.133411
\(309\) −18.3111 −1.04168
\(310\) 0 0
\(311\) −13.9560 −0.791370 −0.395685 0.918386i \(-0.629493\pi\)
−0.395685 + 0.918386i \(0.629493\pi\)
\(312\) −2.78339 −0.157578
\(313\) 25.0900 1.41817 0.709087 0.705121i \(-0.249108\pi\)
0.709087 + 0.705121i \(0.249108\pi\)
\(314\) 14.5822 0.822919
\(315\) 1.19683 0.0674337
\(316\) −13.3939 −0.753464
\(317\) −13.7846 −0.774218 −0.387109 0.922034i \(-0.626526\pi\)
−0.387109 + 0.922034i \(0.626526\pi\)
\(318\) −4.79659 −0.268979
\(319\) −0.343262 −0.0192190
\(320\) −0.720227 −0.0402619
\(321\) −4.47193 −0.249599
\(322\) −9.75255 −0.543489
\(323\) 0.981931 0.0546361
\(324\) 1.00000 0.0555556
\(325\) 12.4731 0.691884
\(326\) 4.88932 0.270794
\(327\) −9.84187 −0.544257
\(328\) 5.05560 0.279149
\(329\) 11.4498 0.631248
\(330\) 1.01478 0.0558620
\(331\) 0.362785 0.0199405 0.00997024 0.999950i \(-0.496826\pi\)
0.00997024 + 0.999950i \(0.496826\pi\)
\(332\) −5.99342 −0.328932
\(333\) −2.76958 −0.151772
\(334\) 12.4920 0.683531
\(335\) 3.78067 0.206560
\(336\) −1.66174 −0.0906553
\(337\) −13.4133 −0.730670 −0.365335 0.930876i \(-0.619046\pi\)
−0.365335 + 0.930876i \(0.619046\pi\)
\(338\) −5.25276 −0.285713
\(339\) −10.9786 −0.596278
\(340\) 0.306580 0.0166266
\(341\) 0 0
\(342\) −2.30678 −0.124737
\(343\) 18.6757 1.00839
\(344\) 2.84029 0.153138
\(345\) −4.22693 −0.227570
\(346\) −5.08708 −0.273483
\(347\) −35.3404 −1.89717 −0.948585 0.316523i \(-0.897485\pi\)
−0.948585 + 0.316523i \(0.897485\pi\)
\(348\) 0.243625 0.0130597
\(349\) 31.0104 1.65995 0.829974 0.557802i \(-0.188355\pi\)
0.829974 + 0.557802i \(0.188355\pi\)
\(350\) 7.44670 0.398043
\(351\) −2.78339 −0.148566
\(352\) −1.40898 −0.0750987
\(353\) 24.3174 1.29428 0.647142 0.762370i \(-0.275964\pi\)
0.647142 + 0.762370i \(0.275964\pi\)
\(354\) −12.0770 −0.641884
\(355\) −7.75967 −0.411841
\(356\) 0.595693 0.0315717
\(357\) 0.707354 0.0374371
\(358\) 14.1982 0.750399
\(359\) −19.4298 −1.02547 −0.512733 0.858548i \(-0.671367\pi\)
−0.512733 + 0.858548i \(0.671367\pi\)
\(360\) −0.720227 −0.0379593
\(361\) −13.6787 −0.719934
\(362\) 16.8223 0.884160
\(363\) −9.01478 −0.473153
\(364\) 4.62526 0.242430
\(365\) 4.27786 0.223914
\(366\) −2.61994 −0.136947
\(367\) 19.2691 1.00584 0.502920 0.864333i \(-0.332259\pi\)
0.502920 + 0.864333i \(0.332259\pi\)
\(368\) 5.86889 0.305937
\(369\) 5.05560 0.263184
\(370\) 1.99473 0.103701
\(371\) 7.97068 0.413817
\(372\) 0 0
\(373\) −4.38573 −0.227084 −0.113542 0.993533i \(-0.536220\pi\)
−0.113542 + 0.993533i \(0.536220\pi\)
\(374\) 0.599760 0.0310129
\(375\) 6.82867 0.352631
\(376\) −6.89025 −0.355338
\(377\) −0.678102 −0.0349240
\(378\) −1.66174 −0.0854706
\(379\) 12.8066 0.657830 0.328915 0.944360i \(-0.393317\pi\)
0.328915 + 0.944360i \(0.393317\pi\)
\(380\) 1.66141 0.0852285
\(381\) 16.3333 0.836778
\(382\) −24.4881 −1.25292
\(383\) −28.1219 −1.43696 −0.718480 0.695548i \(-0.755162\pi\)
−0.718480 + 0.695548i \(0.755162\pi\)
\(384\) 1.00000 0.0510310
\(385\) −1.68631 −0.0859421
\(386\) 11.9999 0.610777
\(387\) 2.84029 0.144380
\(388\) 5.23416 0.265724
\(389\) 2.34679 0.118987 0.0594936 0.998229i \(-0.481051\pi\)
0.0594936 + 0.998229i \(0.481051\pi\)
\(390\) 2.00467 0.101510
\(391\) −2.49821 −0.126340
\(392\) −4.23862 −0.214083
\(393\) 7.12185 0.359250
\(394\) 13.4024 0.675203
\(395\) 9.64662 0.485374
\(396\) −1.40898 −0.0708038
\(397\) 22.5740 1.13295 0.566477 0.824077i \(-0.308306\pi\)
0.566477 + 0.824077i \(0.308306\pi\)
\(398\) −1.04337 −0.0522996
\(399\) 3.83327 0.191904
\(400\) −4.48127 −0.224064
\(401\) −21.0980 −1.05358 −0.526791 0.849995i \(-0.676605\pi\)
−0.526791 + 0.849995i \(0.676605\pi\)
\(402\) −5.24927 −0.261810
\(403\) 0 0
\(404\) −9.92173 −0.493624
\(405\) −0.720227 −0.0357884
\(406\) −0.404841 −0.0200919
\(407\) 3.90227 0.193428
\(408\) −0.425671 −0.0210738
\(409\) −21.4312 −1.05970 −0.529852 0.848090i \(-0.677753\pi\)
−0.529852 + 0.848090i \(0.677753\pi\)
\(410\) −3.64118 −0.179825
\(411\) −14.4967 −0.715067
\(412\) −18.3111 −0.902124
\(413\) 20.0688 0.987519
\(414\) 5.86889 0.288440
\(415\) 4.31662 0.211895
\(416\) −2.78339 −0.136467
\(417\) 20.5545 1.00656
\(418\) 3.25021 0.158973
\(419\) 12.3561 0.603637 0.301818 0.953365i \(-0.402406\pi\)
0.301818 + 0.953365i \(0.402406\pi\)
\(420\) 1.19683 0.0583993
\(421\) 23.9422 1.16687 0.583435 0.812160i \(-0.301708\pi\)
0.583435 + 0.812160i \(0.301708\pi\)
\(422\) −16.4020 −0.798438
\(423\) −6.89025 −0.335015
\(424\) −4.79659 −0.232943
\(425\) 1.90755 0.0925296
\(426\) 10.7739 0.521998
\(427\) 4.35366 0.210689
\(428\) −4.47193 −0.216159
\(429\) 3.92173 0.189343
\(430\) −2.04566 −0.0986504
\(431\) 12.6020 0.607016 0.303508 0.952829i \(-0.401842\pi\)
0.303508 + 0.952829i \(0.401842\pi\)
\(432\) 1.00000 0.0481125
\(433\) −16.5682 −0.796215 −0.398107 0.917339i \(-0.630333\pi\)
−0.398107 + 0.917339i \(0.630333\pi\)
\(434\) 0 0
\(435\) −0.175465 −0.00841292
\(436\) −9.84187 −0.471340
\(437\) −13.5383 −0.647622
\(438\) −5.93960 −0.283805
\(439\) −16.3339 −0.779573 −0.389786 0.920905i \(-0.627451\pi\)
−0.389786 + 0.920905i \(0.627451\pi\)
\(440\) 1.01478 0.0483779
\(441\) −4.23862 −0.201839
\(442\) 1.18481 0.0563555
\(443\) 13.4178 0.637498 0.318749 0.947839i \(-0.396737\pi\)
0.318749 + 0.947839i \(0.396737\pi\)
\(444\) −2.76958 −0.131438
\(445\) −0.429035 −0.0203382
\(446\) −21.8525 −1.03474
\(447\) −20.4312 −0.966362
\(448\) −1.66174 −0.0785098
\(449\) 5.10431 0.240887 0.120444 0.992720i \(-0.461568\pi\)
0.120444 + 0.992720i \(0.461568\pi\)
\(450\) −4.48127 −0.211249
\(451\) −7.12323 −0.335420
\(452\) −10.9786 −0.516392
\(453\) 1.05029 0.0493467
\(454\) 11.5429 0.541733
\(455\) −3.33124 −0.156171
\(456\) −2.30678 −0.108025
\(457\) −38.1315 −1.78372 −0.891858 0.452315i \(-0.850598\pi\)
−0.891858 + 0.452315i \(0.850598\pi\)
\(458\) 20.8613 0.974786
\(459\) −0.425671 −0.0198686
\(460\) −4.22693 −0.197082
\(461\) −13.6508 −0.635779 −0.317890 0.948128i \(-0.602974\pi\)
−0.317890 + 0.948128i \(0.602974\pi\)
\(462\) 2.34135 0.108930
\(463\) 31.3505 1.45698 0.728490 0.685056i \(-0.240222\pi\)
0.728490 + 0.685056i \(0.240222\pi\)
\(464\) 0.243625 0.0113100
\(465\) 0 0
\(466\) −27.4079 −1.26965
\(467\) −6.51144 −0.301314 −0.150657 0.988586i \(-0.548139\pi\)
−0.150657 + 0.988586i \(0.548139\pi\)
\(468\) −2.78339 −0.128662
\(469\) 8.72292 0.402787
\(470\) 4.96255 0.228905
\(471\) 14.5822 0.671910
\(472\) −12.0770 −0.555887
\(473\) −4.00191 −0.184008
\(474\) −13.3939 −0.615201
\(475\) 10.3373 0.474309
\(476\) 0.707354 0.0324215
\(477\) −4.79659 −0.219621
\(478\) 4.70353 0.215135
\(479\) 12.6740 0.579091 0.289546 0.957164i \(-0.406496\pi\)
0.289546 + 0.957164i \(0.406496\pi\)
\(480\) −0.720227 −0.0328737
\(481\) 7.70881 0.351491
\(482\) 11.3375 0.516410
\(483\) −9.75255 −0.443757
\(484\) −9.01478 −0.409763
\(485\) −3.76978 −0.171177
\(486\) 1.00000 0.0453609
\(487\) 15.2003 0.688792 0.344396 0.938824i \(-0.388084\pi\)
0.344396 + 0.938824i \(0.388084\pi\)
\(488\) −2.61994 −0.118599
\(489\) 4.88932 0.221103
\(490\) 3.05277 0.137910
\(491\) −26.8000 −1.20947 −0.604734 0.796427i \(-0.706721\pi\)
−0.604734 + 0.796427i \(0.706721\pi\)
\(492\) 5.05560 0.227924
\(493\) −0.103704 −0.00467059
\(494\) 6.42067 0.288880
\(495\) 1.01478 0.0456111
\(496\) 0 0
\(497\) −17.9034 −0.803079
\(498\) −5.99342 −0.268572
\(499\) 32.0535 1.43491 0.717456 0.696604i \(-0.245307\pi\)
0.717456 + 0.696604i \(0.245307\pi\)
\(500\) 6.82867 0.305387
\(501\) 12.4920 0.558101
\(502\) 1.01072 0.0451105
\(503\) 11.6737 0.520504 0.260252 0.965541i \(-0.416194\pi\)
0.260252 + 0.965541i \(0.416194\pi\)
\(504\) −1.66174 −0.0740197
\(505\) 7.14590 0.317988
\(506\) −8.26913 −0.367607
\(507\) −5.25276 −0.233283
\(508\) 16.3333 0.724671
\(509\) −18.2946 −0.810892 −0.405446 0.914119i \(-0.632884\pi\)
−0.405446 + 0.914119i \(0.632884\pi\)
\(510\) 0.306580 0.0135756
\(511\) 9.87007 0.436626
\(512\) 1.00000 0.0441942
\(513\) −2.30678 −0.101847
\(514\) 30.6255 1.35083
\(515\) 13.1882 0.581140
\(516\) 2.84029 0.125037
\(517\) 9.70820 0.426966
\(518\) 4.60232 0.202214
\(519\) −5.08708 −0.223298
\(520\) 2.00467 0.0879106
\(521\) 26.7701 1.17282 0.586410 0.810015i \(-0.300541\pi\)
0.586410 + 0.810015i \(0.300541\pi\)
\(522\) 0.243625 0.0106632
\(523\) 23.7051 1.03655 0.518276 0.855213i \(-0.326574\pi\)
0.518276 + 0.855213i \(0.326574\pi\)
\(524\) 7.12185 0.311120
\(525\) 7.44670 0.325001
\(526\) −5.84536 −0.254870
\(527\) 0 0
\(528\) −1.40898 −0.0613179
\(529\) 11.4438 0.497557
\(530\) 3.45463 0.150060
\(531\) −12.0770 −0.524096
\(532\) 3.83327 0.166193
\(533\) −14.0717 −0.609513
\(534\) 0.595693 0.0257782
\(535\) 3.22081 0.139248
\(536\) −5.24927 −0.226734
\(537\) 14.1982 0.612698
\(538\) 0.455772 0.0196497
\(539\) 5.97212 0.257238
\(540\) −0.720227 −0.0309936
\(541\) −13.3550 −0.574174 −0.287087 0.957904i \(-0.592687\pi\)
−0.287087 + 0.957904i \(0.592687\pi\)
\(542\) −2.57551 −0.110628
\(543\) 16.8223 0.721914
\(544\) −0.425671 −0.0182505
\(545\) 7.08839 0.303633
\(546\) 4.62526 0.197943
\(547\) 0.974196 0.0416536 0.0208268 0.999783i \(-0.493370\pi\)
0.0208268 + 0.999783i \(0.493370\pi\)
\(548\) −14.4967 −0.619267
\(549\) −2.61994 −0.111816
\(550\) 6.31401 0.269230
\(551\) −0.561990 −0.0239416
\(552\) 5.86889 0.249796
\(553\) 22.2571 0.946468
\(554\) 23.4233 0.995161
\(555\) 1.99473 0.0846714
\(556\) 20.5545 0.871707
\(557\) −4.59258 −0.194594 −0.0972969 0.995255i \(-0.531020\pi\)
−0.0972969 + 0.995255i \(0.531020\pi\)
\(558\) 0 0
\(559\) −7.90564 −0.334373
\(560\) 1.19683 0.0505753
\(561\) 0.599760 0.0253219
\(562\) 29.3381 1.23755
\(563\) −30.3395 −1.27866 −0.639329 0.768933i \(-0.720788\pi\)
−0.639329 + 0.768933i \(0.720788\pi\)
\(564\) −6.89025 −0.290132
\(565\) 7.90711 0.332655
\(566\) −10.8881 −0.457662
\(567\) −1.66174 −0.0697865
\(568\) 10.7739 0.452064
\(569\) 30.9486 1.29743 0.648717 0.761030i \(-0.275306\pi\)
0.648717 + 0.761030i \(0.275306\pi\)
\(570\) 1.66141 0.0695887
\(571\) 38.2386 1.60023 0.800117 0.599844i \(-0.204771\pi\)
0.800117 + 0.599844i \(0.204771\pi\)
\(572\) 3.92173 0.163976
\(573\) −24.4881 −1.02301
\(574\) −8.40109 −0.350655
\(575\) −26.3001 −1.09679
\(576\) 1.00000 0.0416667
\(577\) −21.6380 −0.900802 −0.450401 0.892826i \(-0.648719\pi\)
−0.450401 + 0.892826i \(0.648719\pi\)
\(578\) −16.8188 −0.699570
\(579\) 11.9999 0.498698
\(580\) −0.175465 −0.00728580
\(581\) 9.95950 0.413190
\(582\) 5.23416 0.216963
\(583\) 6.75829 0.279900
\(584\) −5.93960 −0.245782
\(585\) 2.00467 0.0828829
\(586\) 11.0321 0.455731
\(587\) −42.2673 −1.74456 −0.872279 0.489009i \(-0.837359\pi\)
−0.872279 + 0.489009i \(0.837359\pi\)
\(588\) −4.23862 −0.174798
\(589\) 0 0
\(590\) 8.69816 0.358098
\(591\) 13.4024 0.551301
\(592\) −2.76958 −0.113829
\(593\) −9.58437 −0.393583 −0.196792 0.980445i \(-0.563052\pi\)
−0.196792 + 0.980445i \(0.563052\pi\)
\(594\) −1.40898 −0.0578110
\(595\) −0.509455 −0.0208856
\(596\) −20.4312 −0.836894
\(597\) −1.04337 −0.0427025
\(598\) −16.3354 −0.668003
\(599\) 35.9741 1.46986 0.734931 0.678142i \(-0.237214\pi\)
0.734931 + 0.678142i \(0.237214\pi\)
\(600\) −4.48127 −0.182947
\(601\) −18.2067 −0.742669 −0.371334 0.928499i \(-0.621100\pi\)
−0.371334 + 0.928499i \(0.621100\pi\)
\(602\) −4.71983 −0.192366
\(603\) −5.24927 −0.213767
\(604\) 1.05029 0.0427355
\(605\) 6.49269 0.263965
\(606\) −9.92173 −0.403043
\(607\) 19.8432 0.805410 0.402705 0.915330i \(-0.368070\pi\)
0.402705 + 0.915330i \(0.368070\pi\)
\(608\) −2.30678 −0.0935524
\(609\) −0.404841 −0.0164050
\(610\) 1.88696 0.0764006
\(611\) 19.1782 0.775868
\(612\) −0.425671 −0.0172067
\(613\) −21.7481 −0.878397 −0.439199 0.898390i \(-0.644738\pi\)
−0.439199 + 0.898390i \(0.644738\pi\)
\(614\) −7.53042 −0.303903
\(615\) −3.64118 −0.146827
\(616\) 2.34135 0.0943358
\(617\) 0.675876 0.0272098 0.0136049 0.999907i \(-0.495669\pi\)
0.0136049 + 0.999907i \(0.495669\pi\)
\(618\) −18.3111 −0.736581
\(619\) 10.7141 0.430634 0.215317 0.976544i \(-0.430921\pi\)
0.215317 + 0.976544i \(0.430921\pi\)
\(620\) 0 0
\(621\) 5.86889 0.235510
\(622\) −13.9560 −0.559583
\(623\) −0.989887 −0.0396590
\(624\) −2.78339 −0.111425
\(625\) 17.4882 0.699527
\(626\) 25.0900 1.00280
\(627\) 3.25021 0.129801
\(628\) 14.5822 0.581892
\(629\) 1.17893 0.0470070
\(630\) 1.19683 0.0476828
\(631\) −23.8780 −0.950567 −0.475283 0.879833i \(-0.657654\pi\)
−0.475283 + 0.879833i \(0.657654\pi\)
\(632\) −13.3939 −0.532779
\(633\) −16.4020 −0.651922
\(634\) −13.7846 −0.547455
\(635\) −11.7637 −0.466827
\(636\) −4.79659 −0.190197
\(637\) 11.7977 0.467443
\(638\) −0.343262 −0.0135899
\(639\) 10.7739 0.426210
\(640\) −0.720227 −0.0284695
\(641\) 3.70300 0.146260 0.0731298 0.997322i \(-0.476701\pi\)
0.0731298 + 0.997322i \(0.476701\pi\)
\(642\) −4.47193 −0.176493
\(643\) −15.2231 −0.600339 −0.300170 0.953886i \(-0.597043\pi\)
−0.300170 + 0.953886i \(0.597043\pi\)
\(644\) −9.75255 −0.384304
\(645\) −2.04566 −0.0805477
\(646\) 0.981931 0.0386335
\(647\) −7.43908 −0.292460 −0.146230 0.989251i \(-0.546714\pi\)
−0.146230 + 0.989251i \(0.546714\pi\)
\(648\) 1.00000 0.0392837
\(649\) 17.0162 0.667943
\(650\) 12.4731 0.489236
\(651\) 0 0
\(652\) 4.88932 0.191480
\(653\) 9.46780 0.370503 0.185252 0.982691i \(-0.440690\pi\)
0.185252 + 0.982691i \(0.440690\pi\)
\(654\) −9.84187 −0.384848
\(655\) −5.12935 −0.200420
\(656\) 5.05560 0.197388
\(657\) −5.93960 −0.231726
\(658\) 11.4498 0.446359
\(659\) −21.9987 −0.856947 −0.428474 0.903554i \(-0.640949\pi\)
−0.428474 + 0.903554i \(0.640949\pi\)
\(660\) 1.01478 0.0395004
\(661\) 18.9918 0.738695 0.369347 0.929291i \(-0.379581\pi\)
0.369347 + 0.929291i \(0.379581\pi\)
\(662\) 0.362785 0.0141000
\(663\) 1.18481 0.0460141
\(664\) −5.99342 −0.232590
\(665\) −2.76083 −0.107060
\(666\) −2.76958 −0.107319
\(667\) 1.42981 0.0553623
\(668\) 12.4920 0.483330
\(669\) −21.8525 −0.844865
\(670\) 3.78067 0.146060
\(671\) 3.69144 0.142507
\(672\) −1.66174 −0.0641030
\(673\) 15.8404 0.610601 0.305301 0.952256i \(-0.401243\pi\)
0.305301 + 0.952256i \(0.401243\pi\)
\(674\) −13.4133 −0.516662
\(675\) −4.48127 −0.172484
\(676\) −5.25276 −0.202029
\(677\) 36.2335 1.39257 0.696284 0.717766i \(-0.254835\pi\)
0.696284 + 0.717766i \(0.254835\pi\)
\(678\) −10.9786 −0.421632
\(679\) −8.69780 −0.333791
\(680\) 0.306580 0.0117568
\(681\) 11.5429 0.442323
\(682\) 0 0
\(683\) 21.4383 0.820312 0.410156 0.912015i \(-0.365474\pi\)
0.410156 + 0.912015i \(0.365474\pi\)
\(684\) −2.30678 −0.0882021
\(685\) 10.4409 0.398926
\(686\) 18.6757 0.713040
\(687\) 20.8613 0.795909
\(688\) 2.84029 0.108285
\(689\) 13.3508 0.508624
\(690\) −4.22693 −0.160917
\(691\) −25.0515 −0.953002 −0.476501 0.879174i \(-0.658095\pi\)
−0.476501 + 0.879174i \(0.658095\pi\)
\(692\) −5.08708 −0.193382
\(693\) 2.34135 0.0889406
\(694\) −35.3404 −1.34150
\(695\) −14.8039 −0.561546
\(696\) 0.243625 0.00923458
\(697\) −2.15202 −0.0815137
\(698\) 31.0104 1.17376
\(699\) −27.4079 −1.03666
\(700\) 7.44670 0.281459
\(701\) 2.41580 0.0912437 0.0456218 0.998959i \(-0.485473\pi\)
0.0456218 + 0.998959i \(0.485473\pi\)
\(702\) −2.78339 −0.105052
\(703\) 6.38882 0.240959
\(704\) −1.40898 −0.0531028
\(705\) 4.96255 0.186900
\(706\) 24.3174 0.915196
\(707\) 16.4873 0.620069
\(708\) −12.0770 −0.453880
\(709\) −36.1246 −1.35669 −0.678344 0.734744i \(-0.737302\pi\)
−0.678344 + 0.734744i \(0.737302\pi\)
\(710\) −7.75967 −0.291215
\(711\) −13.3939 −0.502309
\(712\) 0.595693 0.0223246
\(713\) 0 0
\(714\) 0.707354 0.0264720
\(715\) −2.82453 −0.105632
\(716\) 14.1982 0.530612
\(717\) 4.70353 0.175657
\(718\) −19.4298 −0.725114
\(719\) 26.4602 0.986797 0.493399 0.869803i \(-0.335754\pi\)
0.493399 + 0.869803i \(0.335754\pi\)
\(720\) −0.720227 −0.0268413
\(721\) 30.4283 1.13321
\(722\) −13.6787 −0.509070
\(723\) 11.3375 0.421647
\(724\) 16.8223 0.625196
\(725\) −1.09175 −0.0405466
\(726\) −9.01478 −0.334570
\(727\) −7.08103 −0.262621 −0.131310 0.991341i \(-0.541918\pi\)
−0.131310 + 0.991341i \(0.541918\pi\)
\(728\) 4.62526 0.171424
\(729\) 1.00000 0.0370370
\(730\) 4.27786 0.158331
\(731\) −1.20903 −0.0447176
\(732\) −2.61994 −0.0968359
\(733\) 26.8470 0.991616 0.495808 0.868432i \(-0.334872\pi\)
0.495808 + 0.868432i \(0.334872\pi\)
\(734\) 19.2691 0.711236
\(735\) 3.05277 0.112603
\(736\) 5.86889 0.216330
\(737\) 7.39610 0.272439
\(738\) 5.05560 0.186099
\(739\) 23.4062 0.861010 0.430505 0.902588i \(-0.358336\pi\)
0.430505 + 0.902588i \(0.358336\pi\)
\(740\) 1.99473 0.0733276
\(741\) 6.42067 0.235869
\(742\) 7.97068 0.292613
\(743\) −15.2912 −0.560979 −0.280490 0.959857i \(-0.590497\pi\)
−0.280490 + 0.959857i \(0.590497\pi\)
\(744\) 0 0
\(745\) 14.7151 0.539120
\(746\) −4.38573 −0.160573
\(747\) −5.99342 −0.219288
\(748\) 0.599760 0.0219294
\(749\) 7.43118 0.271530
\(750\) 6.82867 0.249348
\(751\) −21.2551 −0.775610 −0.387805 0.921741i \(-0.626767\pi\)
−0.387805 + 0.921741i \(0.626767\pi\)
\(752\) −6.89025 −0.251262
\(753\) 1.01072 0.0368326
\(754\) −0.678102 −0.0246950
\(755\) −0.756444 −0.0275298
\(756\) −1.66174 −0.0604369
\(757\) 48.8803 1.77659 0.888293 0.459278i \(-0.151892\pi\)
0.888293 + 0.459278i \(0.151892\pi\)
\(758\) 12.8066 0.465156
\(759\) −8.26913 −0.300150
\(760\) 1.66141 0.0602656
\(761\) −22.5878 −0.818807 −0.409404 0.912353i \(-0.634263\pi\)
−0.409404 + 0.912353i \(0.634263\pi\)
\(762\) 16.3333 0.591692
\(763\) 16.3546 0.592077
\(764\) −24.4881 −0.885948
\(765\) 0.306580 0.0110844
\(766\) −28.1219 −1.01608
\(767\) 33.6149 1.21376
\(768\) 1.00000 0.0360844
\(769\) −46.7012 −1.68409 −0.842044 0.539408i \(-0.818648\pi\)
−0.842044 + 0.539408i \(0.818648\pi\)
\(770\) −1.68631 −0.0607702
\(771\) 30.6255 1.10295
\(772\) 11.9999 0.431885
\(773\) −26.3710 −0.948499 −0.474249 0.880391i \(-0.657280\pi\)
−0.474249 + 0.880391i \(0.657280\pi\)
\(774\) 2.84029 0.102092
\(775\) 0 0
\(776\) 5.23416 0.187895
\(777\) 4.60232 0.165107
\(778\) 2.34679 0.0841367
\(779\) −11.6622 −0.417841
\(780\) 2.00467 0.0717787
\(781\) −15.1802 −0.543190
\(782\) −2.49821 −0.0893359
\(783\) 0.243625 0.00870644
\(784\) −4.23862 −0.151379
\(785\) −10.5025 −0.374849
\(786\) 7.12185 0.254028
\(787\) −5.23167 −0.186489 −0.0932445 0.995643i \(-0.529724\pi\)
−0.0932445 + 0.995643i \(0.529724\pi\)
\(788\) 13.4024 0.477441
\(789\) −5.84536 −0.208100
\(790\) 9.64662 0.343212
\(791\) 18.2436 0.648669
\(792\) −1.40898 −0.0500658
\(793\) 7.29232 0.258958
\(794\) 22.5740 0.801120
\(795\) 3.45463 0.122523
\(796\) −1.04337 −0.0369814
\(797\) 37.0158 1.31117 0.655583 0.755123i \(-0.272423\pi\)
0.655583 + 0.755123i \(0.272423\pi\)
\(798\) 3.83327 0.135696
\(799\) 2.93298 0.103761
\(800\) −4.48127 −0.158437
\(801\) 0.595693 0.0210478
\(802\) −21.0980 −0.744995
\(803\) 8.36876 0.295327
\(804\) −5.24927 −0.185128
\(805\) 7.02406 0.247565
\(806\) 0 0
\(807\) 0.455772 0.0160440
\(808\) −9.92173 −0.349045
\(809\) −23.1764 −0.814839 −0.407419 0.913241i \(-0.633571\pi\)
−0.407419 + 0.913241i \(0.633571\pi\)
\(810\) −0.720227 −0.0253062
\(811\) −25.2396 −0.886281 −0.443140 0.896452i \(-0.646136\pi\)
−0.443140 + 0.896452i \(0.646136\pi\)
\(812\) −0.404841 −0.0142071
\(813\) −2.57551 −0.0903271
\(814\) 3.90227 0.136775
\(815\) −3.52142 −0.123350
\(816\) −0.425671 −0.0149015
\(817\) −6.55195 −0.229224
\(818\) −21.4312 −0.749324
\(819\) 4.62526 0.161620
\(820\) −3.64118 −0.127156
\(821\) 12.6943 0.443036 0.221518 0.975156i \(-0.428899\pi\)
0.221518 + 0.975156i \(0.428899\pi\)
\(822\) −14.4967 −0.505629
\(823\) −12.2905 −0.428421 −0.214211 0.976788i \(-0.568718\pi\)
−0.214211 + 0.976788i \(0.568718\pi\)
\(824\) −18.3111 −0.637898
\(825\) 6.31401 0.219826
\(826\) 20.0688 0.698282
\(827\) −28.8402 −1.00287 −0.501437 0.865194i \(-0.667195\pi\)
−0.501437 + 0.865194i \(0.667195\pi\)
\(828\) 5.86889 0.203958
\(829\) −28.8464 −1.00188 −0.500939 0.865483i \(-0.667012\pi\)
−0.500939 + 0.865483i \(0.667012\pi\)
\(830\) 4.31662 0.149832
\(831\) 23.4233 0.812545
\(832\) −2.78339 −0.0964966
\(833\) 1.80426 0.0625139
\(834\) 20.5545 0.711746
\(835\) −8.99707 −0.311356
\(836\) 3.25021 0.112411
\(837\) 0 0
\(838\) 12.3561 0.426836
\(839\) −19.3028 −0.666405 −0.333203 0.942855i \(-0.608129\pi\)
−0.333203 + 0.942855i \(0.608129\pi\)
\(840\) 1.19683 0.0412945
\(841\) −28.9406 −0.997953
\(842\) 23.9422 0.825101
\(843\) 29.3381 1.01046
\(844\) −16.4020 −0.564581
\(845\) 3.78318 0.130145
\(846\) −6.89025 −0.236892
\(847\) 14.9802 0.514726
\(848\) −4.79659 −0.164716
\(849\) −10.8881 −0.373680
\(850\) 1.90755 0.0654283
\(851\) −16.2543 −0.557192
\(852\) 10.7739 0.369108
\(853\) −5.20072 −0.178069 −0.0890346 0.996029i \(-0.528378\pi\)
−0.0890346 + 0.996029i \(0.528378\pi\)
\(854\) 4.35366 0.148979
\(855\) 1.66141 0.0568190
\(856\) −4.47193 −0.152847
\(857\) 6.71771 0.229473 0.114736 0.993396i \(-0.463398\pi\)
0.114736 + 0.993396i \(0.463398\pi\)
\(858\) 3.92173 0.133886
\(859\) 47.7349 1.62869 0.814347 0.580378i \(-0.197095\pi\)
0.814347 + 0.580378i \(0.197095\pi\)
\(860\) −2.04566 −0.0697563
\(861\) −8.40109 −0.286308
\(862\) 12.6020 0.429225
\(863\) −34.0093 −1.15769 −0.578846 0.815437i \(-0.696497\pi\)
−0.578846 + 0.815437i \(0.696497\pi\)
\(864\) 1.00000 0.0340207
\(865\) 3.66385 0.124575
\(866\) −16.5682 −0.563009
\(867\) −16.8188 −0.571197
\(868\) 0 0
\(869\) 18.8716 0.640177
\(870\) −0.175465 −0.00594883
\(871\) 14.6108 0.495066
\(872\) −9.84187 −0.333288
\(873\) 5.23416 0.177149
\(874\) −13.5383 −0.457938
\(875\) −11.3475 −0.383614
\(876\) −5.93960 −0.200681
\(877\) −12.9499 −0.437288 −0.218644 0.975805i \(-0.570163\pi\)
−0.218644 + 0.975805i \(0.570163\pi\)
\(878\) −16.3339 −0.551241
\(879\) 11.0321 0.372103
\(880\) 1.01478 0.0342083
\(881\) 46.3994 1.56323 0.781617 0.623759i \(-0.214395\pi\)
0.781617 + 0.623759i \(0.214395\pi\)
\(882\) −4.23862 −0.142722
\(883\) 18.3961 0.619078 0.309539 0.950887i \(-0.399825\pi\)
0.309539 + 0.950887i \(0.399825\pi\)
\(884\) 1.18481 0.0398493
\(885\) 8.69816 0.292385
\(886\) 13.4178 0.450779
\(887\) −1.15541 −0.0387948 −0.0193974 0.999812i \(-0.506175\pi\)
−0.0193974 + 0.999812i \(0.506175\pi\)
\(888\) −2.76958 −0.0929410
\(889\) −27.1416 −0.910300
\(890\) −0.429035 −0.0143813
\(891\) −1.40898 −0.0472025
\(892\) −21.8525 −0.731675
\(893\) 15.8943 0.531883
\(894\) −20.4312 −0.683321
\(895\) −10.2259 −0.341815
\(896\) −1.66174 −0.0555148
\(897\) −16.3354 −0.545422
\(898\) 5.10431 0.170333
\(899\) 0 0
\(900\) −4.48127 −0.149376
\(901\) 2.04177 0.0680212
\(902\) −7.12323 −0.237178
\(903\) −4.71983 −0.157066
\(904\) −10.9786 −0.365144
\(905\) −12.1159 −0.402745
\(906\) 1.05029 0.0348934
\(907\) 4.42201 0.146830 0.0734152 0.997301i \(-0.476610\pi\)
0.0734152 + 0.997301i \(0.476610\pi\)
\(908\) 11.5429 0.383063
\(909\) −9.92173 −0.329083
\(910\) −3.33124 −0.110429
\(911\) −11.3713 −0.376747 −0.188374 0.982097i \(-0.560322\pi\)
−0.188374 + 0.982097i \(0.560322\pi\)
\(912\) −2.30678 −0.0763852
\(913\) 8.44459 0.279475
\(914\) −38.1315 −1.26128
\(915\) 1.88696 0.0623808
\(916\) 20.8613 0.689278
\(917\) −11.8347 −0.390815
\(918\) −0.425671 −0.0140492
\(919\) 23.4042 0.772033 0.386016 0.922492i \(-0.373851\pi\)
0.386016 + 0.922492i \(0.373851\pi\)
\(920\) −4.22693 −0.139358
\(921\) −7.53042 −0.248136
\(922\) −13.6508 −0.449564
\(923\) −29.9880 −0.987066
\(924\) 2.34135 0.0770248
\(925\) 12.4112 0.408079
\(926\) 31.3505 1.03024
\(927\) −18.3111 −0.601416
\(928\) 0.243625 0.00799738
\(929\) −33.5711 −1.10143 −0.550716 0.834692i \(-0.685645\pi\)
−0.550716 + 0.834692i \(0.685645\pi\)
\(930\) 0 0
\(931\) 9.77759 0.320448
\(932\) −27.4079 −0.897776
\(933\) −13.9560 −0.456898
\(934\) −6.51144 −0.213061
\(935\) −0.431964 −0.0141267
\(936\) −2.78339 −0.0909778
\(937\) 5.57092 0.181994 0.0909971 0.995851i \(-0.470995\pi\)
0.0909971 + 0.995851i \(0.470995\pi\)
\(938\) 8.72292 0.284813
\(939\) 25.0900 0.818783
\(940\) 4.96255 0.161860
\(941\) 44.4642 1.44949 0.724746 0.689017i \(-0.241957\pi\)
0.724746 + 0.689017i \(0.241957\pi\)
\(942\) 14.5822 0.475112
\(943\) 29.6707 0.966213
\(944\) −12.0770 −0.393072
\(945\) 1.19683 0.0389329
\(946\) −4.00191 −0.130113
\(947\) −33.4274 −1.08624 −0.543122 0.839654i \(-0.682758\pi\)
−0.543122 + 0.839654i \(0.682758\pi\)
\(948\) −13.3939 −0.435012
\(949\) 16.5322 0.536658
\(950\) 10.3373 0.335387
\(951\) −13.7846 −0.446995
\(952\) 0.707354 0.0229255
\(953\) −26.5754 −0.860862 −0.430431 0.902623i \(-0.641638\pi\)
−0.430431 + 0.902623i \(0.641638\pi\)
\(954\) −4.79659 −0.155295
\(955\) 17.6370 0.570720
\(956\) 4.70353 0.152123
\(957\) −0.343262 −0.0110961
\(958\) 12.6740 0.409479
\(959\) 24.0897 0.777896
\(960\) −0.720227 −0.0232452
\(961\) 0 0
\(962\) 7.70881 0.248542
\(963\) −4.47193 −0.144106
\(964\) 11.3375 0.365157
\(965\) −8.64264 −0.278216
\(966\) −9.75255 −0.313783
\(967\) 32.0091 1.02934 0.514671 0.857388i \(-0.327914\pi\)
0.514671 + 0.857388i \(0.327914\pi\)
\(968\) −9.01478 −0.289746
\(969\) 0.981931 0.0315442
\(970\) −3.76978 −0.121040
\(971\) 40.8982 1.31248 0.656242 0.754550i \(-0.272145\pi\)
0.656242 + 0.754550i \(0.272145\pi\)
\(972\) 1.00000 0.0320750
\(973\) −34.1563 −1.09500
\(974\) 15.2003 0.487050
\(975\) 12.4731 0.399459
\(976\) −2.61994 −0.0838624
\(977\) −42.5796 −1.36224 −0.681121 0.732171i \(-0.738507\pi\)
−0.681121 + 0.732171i \(0.738507\pi\)
\(978\) 4.88932 0.156343
\(979\) −0.839318 −0.0268247
\(980\) 3.05277 0.0975172
\(981\) −9.84187 −0.314227
\(982\) −26.8000 −0.855223
\(983\) −21.4225 −0.683270 −0.341635 0.939833i \(-0.610981\pi\)
−0.341635 + 0.939833i \(0.610981\pi\)
\(984\) 5.05560 0.161167
\(985\) −9.65277 −0.307563
\(986\) −0.103704 −0.00330261
\(987\) 11.4498 0.364451
\(988\) 6.42067 0.204269
\(989\) 16.6694 0.530055
\(990\) 1.01478 0.0322519
\(991\) −6.00211 −0.190663 −0.0953317 0.995446i \(-0.530391\pi\)
−0.0953317 + 0.995446i \(0.530391\pi\)
\(992\) 0 0
\(993\) 0.362785 0.0115126
\(994\) −17.9034 −0.567863
\(995\) 0.751467 0.0238231
\(996\) −5.99342 −0.189909
\(997\) 36.1833 1.14594 0.572968 0.819578i \(-0.305792\pi\)
0.572968 + 0.819578i \(0.305792\pi\)
\(998\) 32.0535 1.01464
\(999\) −2.76958 −0.0876256
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5766.2.a.bg.1.3 4
31.18 even 15 186.2.m.a.169.1 8
31.19 even 15 186.2.m.a.175.1 yes 8
31.30 odd 2 5766.2.a.bc.1.3 4
93.50 odd 30 558.2.ba.e.361.1 8
93.80 odd 30 558.2.ba.e.541.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.m.a.169.1 8 31.18 even 15
186.2.m.a.175.1 yes 8 31.19 even 15
558.2.ba.e.361.1 8 93.50 odd 30
558.2.ba.e.541.1 8 93.80 odd 30
5766.2.a.bc.1.3 4 31.30 odd 2
5766.2.a.bg.1.3 4 1.1 even 1 trivial