Properties

Label 558.2.ba.e.541.1
Level $558$
Weight $2$
Character 558.541
Analytic conductor $4.456$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(19,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.ba (of order \(15\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,0,-2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 541.1
Root \(-0.978148 + 0.207912i\) of defining polynomial
Character \(\chi\) \(=\) 558.541
Dual form 558.2.ba.e.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.951057i) q^{2} +(-0.809017 - 0.587785i) q^{4} +(-0.360114 + 0.623735i) q^{5} +(0.173699 - 1.65264i) q^{7} +(0.809017 - 0.587785i) q^{8} +(-0.481926 - 0.535233i) q^{10} +(1.28716 - 0.573083i) q^{11} +(2.72256 + 0.578699i) q^{13} +(1.51807 + 0.675890i) q^{14} +(0.309017 + 0.951057i) q^{16} +(0.388870 + 0.173136i) q^{17} +(2.25638 - 0.479607i) q^{19} +(0.657960 - 0.292943i) q^{20} +(0.147278 + 1.40126i) q^{22} +(4.74803 - 3.44964i) q^{23} +(2.24064 + 3.88090i) q^{25} +(-1.39169 + 2.41048i) q^{26} +(-1.11192 + 1.23491i) q^{28} +(-0.0752842 + 0.231701i) q^{29} +(4.91949 + 2.60741i) q^{31} -1.00000 q^{32} +(-0.284829 + 0.316335i) q^{34} +(0.968255 + 0.703479i) q^{35} +(1.38479 + 2.39853i) q^{37} +(-0.241125 + 2.29415i) q^{38} +(0.0752842 + 0.716282i) q^{40} +(-3.38286 - 3.75704i) q^{41} +(-2.77823 + 0.590530i) q^{43} +(-1.37819 - 0.292943i) q^{44} +(1.81359 + 5.58164i) q^{46} +(2.12920 + 6.55302i) q^{47} +(4.14600 + 0.881260i) q^{49} +(-4.38335 + 0.931709i) q^{50} +(-1.86245 - 2.06846i) q^{52} +(-0.501380 - 4.77031i) q^{53} +(-0.106074 + 1.00922i) q^{55} +(-0.830869 - 1.43911i) q^{56} +(-0.197097 - 0.143199i) q^{58} +(8.08107 - 8.97493i) q^{59} -2.61994 q^{61} +(-4.00000 + 3.87298i) q^{62} +(0.309017 - 0.951057i) q^{64} +(-1.34139 + 1.48976i) q^{65} +(2.62464 - 4.54600i) q^{67} +(-0.212835 - 0.368642i) q^{68} +(-0.968255 + 0.703479i) q^{70} +(1.12618 + 10.7149i) q^{71} +(-5.42610 + 2.41585i) q^{73} +(-2.70906 + 0.575828i) q^{74} +(-2.10735 - 0.938254i) q^{76} +(-0.723518 - 2.22676i) q^{77} +(-12.2359 - 5.44777i) q^{79} +(-0.704489 - 0.149744i) q^{80} +(4.61852 - 2.05630i) q^{82} +(4.01038 + 4.45398i) q^{83} +(-0.248028 + 0.180203i) q^{85} +(0.296892 - 2.82474i) q^{86} +(0.704489 - 1.22021i) q^{88} +(0.481926 + 0.350140i) q^{89} +(1.42928 - 4.39888i) q^{91} -5.86889 q^{92} -6.89025 q^{94} +(-0.513403 + 1.58009i) q^{95} +(-4.23452 - 3.07656i) q^{97} +(-2.11931 + 3.67076i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{4} - 3 q^{5} - 4 q^{7} + 2 q^{8} - 12 q^{10} - 3 q^{11} + 11 q^{13} + 4 q^{14} - 2 q^{16} + 2 q^{19} - 3 q^{20} - 12 q^{22} + 6 q^{23} - q^{25} + 4 q^{26} + 6 q^{28} - 3 q^{29} - 8 q^{31}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/558\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(497\)
\(\chi(n)\) \(e\left(\frac{11}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.951057i −0.218508 + 0.672499i
\(3\) 0 0
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) −0.360114 + 0.623735i −0.161048 + 0.278943i −0.935245 0.354002i \(-0.884821\pi\)
0.774197 + 0.632945i \(0.218154\pi\)
\(6\) 0 0
\(7\) 0.173699 1.65264i 0.0656521 0.624638i −0.911383 0.411559i \(-0.864984\pi\)
0.977035 0.213078i \(-0.0683490\pi\)
\(8\) 0.809017 0.587785i 0.286031 0.207813i
\(9\) 0 0
\(10\) −0.481926 0.535233i −0.152398 0.169256i
\(11\) 1.28716 0.573083i 0.388095 0.172791i −0.203408 0.979094i \(-0.565202\pi\)
0.591502 + 0.806303i \(0.298535\pi\)
\(12\) 0 0
\(13\) 2.72256 + 0.578699i 0.755103 + 0.160502i 0.569351 0.822095i \(-0.307195\pi\)
0.185752 + 0.982597i \(0.440528\pi\)
\(14\) 1.51807 + 0.675890i 0.405722 + 0.180639i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) 0.388870 + 0.173136i 0.0943147 + 0.0419916i 0.453352 0.891332i \(-0.350228\pi\)
−0.359037 + 0.933323i \(0.616895\pi\)
\(18\) 0 0
\(19\) 2.25638 0.479607i 0.517648 0.110029i 0.0583230 0.998298i \(-0.481425\pi\)
0.459325 + 0.888268i \(0.348091\pi\)
\(20\) 0.657960 0.292943i 0.147124 0.0655040i
\(21\) 0 0
\(22\) 0.147278 + 1.40126i 0.0313998 + 0.298749i
\(23\) 4.74803 3.44964i 0.990032 0.719301i 0.0301042 0.999547i \(-0.490416\pi\)
0.959928 + 0.280246i \(0.0904161\pi\)
\(24\) 0 0
\(25\) 2.24064 + 3.88090i 0.448127 + 0.776179i
\(26\) −1.39169 + 2.41048i −0.272933 + 0.472735i
\(27\) 0 0
\(28\) −1.11192 + 1.23491i −0.210133 + 0.233377i
\(29\) −0.0752842 + 0.231701i −0.0139799 + 0.0430258i −0.957803 0.287425i \(-0.907201\pi\)
0.943823 + 0.330451i \(0.107201\pi\)
\(30\) 0 0
\(31\) 4.91949 + 2.60741i 0.883567 + 0.468304i
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −0.284829 + 0.316335i −0.0488478 + 0.0542510i
\(35\) 0.968255 + 0.703479i 0.163665 + 0.118910i
\(36\) 0 0
\(37\) 1.38479 + 2.39853i 0.227658 + 0.394315i 0.957114 0.289713i \(-0.0935599\pi\)
−0.729456 + 0.684028i \(0.760227\pi\)
\(38\) −0.241125 + 2.29415i −0.0391156 + 0.372160i
\(39\) 0 0
\(40\) 0.0752842 + 0.716282i 0.0119035 + 0.113254i
\(41\) −3.38286 3.75704i −0.528314 0.586752i 0.418628 0.908158i \(-0.362511\pi\)
−0.946941 + 0.321406i \(0.895845\pi\)
\(42\) 0 0
\(43\) −2.77823 + 0.590530i −0.423676 + 0.0900551i −0.414815 0.909906i \(-0.636154\pi\)
−0.00886054 + 0.999961i \(0.502820\pi\)
\(44\) −1.37819 0.292943i −0.207770 0.0441628i
\(45\) 0 0
\(46\) 1.81359 + 5.58164i 0.267399 + 0.822968i
\(47\) 2.12920 + 6.55302i 0.310576 + 0.955856i 0.977537 + 0.210763i \(0.0675948\pi\)
−0.666961 + 0.745093i \(0.732405\pi\)
\(48\) 0 0
\(49\) 4.14600 + 0.881260i 0.592286 + 0.125894i
\(50\) −4.38335 + 0.931709i −0.619899 + 0.131764i
\(51\) 0 0
\(52\) −1.86245 2.06846i −0.258275 0.286844i
\(53\) −0.501380 4.77031i −0.0688699 0.655253i −0.973442 0.228933i \(-0.926476\pi\)
0.904572 0.426320i \(-0.140190\pi\)
\(54\) 0 0
\(55\) −0.106074 + 1.00922i −0.0143030 + 0.136084i
\(56\) −0.830869 1.43911i −0.111030 0.192309i
\(57\) 0 0
\(58\) −0.197097 0.143199i −0.0258801 0.0188030i
\(59\) 8.08107 8.97493i 1.05207 1.16844i 0.0667365 0.997771i \(-0.478741\pi\)
0.985329 0.170666i \(-0.0545920\pi\)
\(60\) 0 0
\(61\) −2.61994 −0.335449 −0.167725 0.985834i \(-0.553642\pi\)
−0.167725 + 0.985834i \(0.553642\pi\)
\(62\) −4.00000 + 3.87298i −0.508001 + 0.491869i
\(63\) 0 0
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) −1.34139 + 1.48976i −0.166379 + 0.184782i
\(66\) 0 0
\(67\) 2.62464 4.54600i 0.320650 0.555383i −0.659972 0.751290i \(-0.729432\pi\)
0.980622 + 0.195908i \(0.0627652\pi\)
\(68\) −0.212835 0.368642i −0.0258101 0.0447044i
\(69\) 0 0
\(70\) −0.968255 + 0.703479i −0.115729 + 0.0840818i
\(71\) 1.12618 + 10.7149i 0.133653 + 1.27162i 0.831560 + 0.555436i \(0.187448\pi\)
−0.697906 + 0.716189i \(0.745885\pi\)
\(72\) 0 0
\(73\) −5.42610 + 2.41585i −0.635076 + 0.282754i −0.698914 0.715206i \(-0.746333\pi\)
0.0638372 + 0.997960i \(0.479666\pi\)
\(74\) −2.70906 + 0.575828i −0.314921 + 0.0669386i
\(75\) 0 0
\(76\) −2.10735 0.938254i −0.241730 0.107625i
\(77\) −0.723518 2.22676i −0.0824525 0.253763i
\(78\) 0 0
\(79\) −12.2359 5.44777i −1.37665 0.612923i −0.420898 0.907108i \(-0.638285\pi\)
−0.955748 + 0.294185i \(0.904952\pi\)
\(80\) −0.704489 0.149744i −0.0787642 0.0167419i
\(81\) 0 0
\(82\) 4.61852 2.05630i 0.510030 0.227080i
\(83\) 4.01038 + 4.45398i 0.440196 + 0.488888i 0.921890 0.387452i \(-0.126645\pi\)
−0.481693 + 0.876340i \(0.659978\pi\)
\(84\) 0 0
\(85\) −0.248028 + 0.180203i −0.0269024 + 0.0195458i
\(86\) 0.296892 2.82474i 0.0320146 0.304599i
\(87\) 0 0
\(88\) 0.704489 1.22021i 0.0750987 0.130075i
\(89\) 0.481926 + 0.350140i 0.0510841 + 0.0371147i 0.613034 0.790056i \(-0.289949\pi\)
−0.561950 + 0.827171i \(0.689949\pi\)
\(90\) 0 0
\(91\) 1.42928 4.39888i 0.149830 0.461128i
\(92\) −5.86889 −0.611874
\(93\) 0 0
\(94\) −6.89025 −0.710675
\(95\) −0.513403 + 1.58009i −0.0526741 + 0.162114i
\(96\) 0 0
\(97\) −4.23452 3.07656i −0.429951 0.312377i 0.351679 0.936121i \(-0.385611\pi\)
−0.781629 + 0.623743i \(0.785611\pi\)
\(98\) −2.11931 + 3.67076i −0.214083 + 0.370802i
\(99\) 0 0
\(100\) 0.468421 4.45672i 0.0468421 0.445672i
\(101\) −8.02685 + 5.83184i −0.798701 + 0.580290i −0.910533 0.413437i \(-0.864328\pi\)
0.111832 + 0.993727i \(0.464328\pi\)
\(102\) 0 0
\(103\) −12.2525 13.6078i −1.20728 1.34082i −0.924288 0.381695i \(-0.875340\pi\)
−0.282990 0.959123i \(-0.591326\pi\)
\(104\) 2.54275 1.13211i 0.249337 0.111012i
\(105\) 0 0
\(106\) 4.69177 + 0.997267i 0.455705 + 0.0968631i
\(107\) 4.08531 + 1.81890i 0.394942 + 0.175840i 0.594592 0.804028i \(-0.297314\pi\)
−0.199650 + 0.979867i \(0.563980\pi\)
\(108\) 0 0
\(109\) −3.04131 9.36018i −0.291304 0.896543i −0.984438 0.175733i \(-0.943770\pi\)
0.693133 0.720809i \(-0.256230\pi\)
\(110\) −0.927051 0.412750i −0.0883908 0.0393541i
\(111\) 0 0
\(112\) 1.62543 0.345495i 0.153588 0.0326462i
\(113\) 10.0295 4.46541i 0.943494 0.420071i 0.123437 0.992352i \(-0.460608\pi\)
0.820057 + 0.572282i \(0.193942\pi\)
\(114\) 0 0
\(115\) 0.441835 + 4.20378i 0.0412013 + 0.392004i
\(116\) 0.197097 0.143199i 0.0183000 0.0132957i
\(117\) 0 0
\(118\) 6.03848 + 10.4590i 0.555887 + 0.962825i
\(119\) 0.353677 0.612586i 0.0324215 0.0561557i
\(120\) 0 0
\(121\) −6.03207 + 6.69929i −0.548370 + 0.609026i
\(122\) 0.809607 2.49171i 0.0732984 0.225589i
\(123\) 0 0
\(124\) −2.44736 5.00104i −0.219779 0.449107i
\(125\) −6.82867 −0.610775
\(126\) 0 0
\(127\) 10.9291 12.1380i 0.969799 1.07707i −0.0271975 0.999630i \(-0.508658\pi\)
0.996997 0.0774413i \(-0.0246750\pi\)
\(128\) 0.809017 + 0.587785i 0.0715077 + 0.0519534i
\(129\) 0 0
\(130\) −1.00234 1.73610i −0.0879106 0.152266i
\(131\) 0.744436 7.08284i 0.0650417 0.618830i −0.912644 0.408756i \(-0.865963\pi\)
0.977685 0.210074i \(-0.0673706\pi\)
\(132\) 0 0
\(133\) −0.400686 3.81227i −0.0347439 0.330566i
\(134\) 3.51245 + 3.90097i 0.303429 + 0.336992i
\(135\) 0 0
\(136\) 0.416369 0.0885019i 0.0357033 0.00758898i
\(137\) −14.1799 3.01403i −1.21147 0.257506i −0.442486 0.896775i \(-0.645903\pi\)
−0.768982 + 0.639270i \(0.779237\pi\)
\(138\) 0 0
\(139\) 6.35170 + 19.5485i 0.538744 + 1.65808i 0.735416 + 0.677616i \(0.236987\pi\)
−0.196672 + 0.980469i \(0.563013\pi\)
\(140\) −0.369841 1.13825i −0.0312572 0.0961999i
\(141\) 0 0
\(142\) −10.5385 2.24002i −0.884370 0.187979i
\(143\) 3.83603 0.815373i 0.320785 0.0681849i
\(144\) 0 0
\(145\) −0.117409 0.130396i −0.00975030 0.0108288i
\(146\) −0.620857 5.90706i −0.0513825 0.488872i
\(147\) 0 0
\(148\) 0.289500 2.75441i 0.0237967 0.226411i
\(149\) −10.2156 17.6939i −0.836894 1.44954i −0.892479 0.451089i \(-0.851036\pi\)
0.0555846 0.998454i \(-0.482298\pi\)
\(150\) 0 0
\(151\) −0.849699 0.617342i −0.0691475 0.0502386i 0.552675 0.833397i \(-0.313607\pi\)
−0.621822 + 0.783159i \(0.713607\pi\)
\(152\) 1.54354 1.71427i 0.125198 0.139046i
\(153\) 0 0
\(154\) 2.34135 0.188672
\(155\) −3.39791 + 2.12950i −0.272927 + 0.171045i
\(156\) 0 0
\(157\) 4.50614 13.8685i 0.359629 1.10682i −0.593648 0.804725i \(-0.702313\pi\)
0.953277 0.302099i \(-0.0976872\pi\)
\(158\) 8.96224 9.95358i 0.712998 0.791864i
\(159\) 0 0
\(160\) 0.360114 0.623735i 0.0284695 0.0493106i
\(161\) −4.87628 8.44596i −0.384304 0.665635i
\(162\) 0 0
\(163\) −3.95554 + 2.87387i −0.309822 + 0.225099i −0.731820 0.681498i \(-0.761329\pi\)
0.421998 + 0.906597i \(0.361329\pi\)
\(164\) 0.528454 + 5.02791i 0.0412653 + 0.392614i
\(165\) 0 0
\(166\) −5.47526 + 2.43774i −0.424963 + 0.189206i
\(167\) 12.2190 2.59723i 0.945535 0.200980i 0.290754 0.956798i \(-0.406094\pi\)
0.654782 + 0.755818i \(0.272761\pi\)
\(168\) 0 0
\(169\) −4.79864 2.13649i −0.369126 0.164345i
\(170\) −0.0947383 0.291575i −0.00726610 0.0223628i
\(171\) 0 0
\(172\) 2.59474 + 1.15525i 0.197847 + 0.0880871i
\(173\) −4.97591 1.05766i −0.378312 0.0804126i 0.0148312 0.999890i \(-0.495279\pi\)
−0.393143 + 0.919477i \(0.628612\pi\)
\(174\) 0 0
\(175\) 6.80290 3.02885i 0.514251 0.228959i
\(176\) 0.942790 + 1.04707i 0.0710654 + 0.0789262i
\(177\) 0 0
\(178\) −0.481926 + 0.350140i −0.0361219 + 0.0262441i
\(179\) 1.48412 14.1204i 0.110928 1.05541i −0.787507 0.616305i \(-0.788629\pi\)
0.898435 0.439106i \(-0.144705\pi\)
\(180\) 0 0
\(181\) −8.41115 + 14.5685i −0.625196 + 1.08287i 0.363307 + 0.931669i \(0.381647\pi\)
−0.988503 + 0.151201i \(0.951686\pi\)
\(182\) 3.74191 + 2.71866i 0.277369 + 0.201520i
\(183\) 0 0
\(184\) 1.81359 5.58164i 0.133699 0.411484i
\(185\) −1.99473 −0.146655
\(186\) 0 0
\(187\) 0.599760 0.0438588
\(188\) 2.12920 6.55302i 0.155288 0.477928i
\(189\) 0 0
\(190\) −1.34411 0.976551i −0.0975118 0.0708465i
\(191\) −12.2441 + 21.2073i −0.885948 + 1.53451i −0.0413256 + 0.999146i \(0.513158\pi\)
−0.844623 + 0.535362i \(0.820175\pi\)
\(192\) 0 0
\(193\) −1.25433 + 11.9341i −0.0902885 + 0.859038i 0.851844 + 0.523796i \(0.175485\pi\)
−0.942132 + 0.335242i \(0.891182\pi\)
\(194\) 4.23452 3.07656i 0.304021 0.220884i
\(195\) 0 0
\(196\) −2.83619 3.14991i −0.202585 0.224994i
\(197\) −12.2437 + 5.45125i −0.872327 + 0.388385i −0.793549 0.608507i \(-0.791769\pi\)
−0.0787788 + 0.996892i \(0.525102\pi\)
\(198\) 0 0
\(199\) 1.02057 + 0.216930i 0.0723466 + 0.0153777i 0.243943 0.969790i \(-0.421559\pi\)
−0.171596 + 0.985167i \(0.554892\pi\)
\(200\) 4.09385 + 1.82270i 0.289479 + 0.128884i
\(201\) 0 0
\(202\) −3.06598 9.43612i −0.215722 0.663923i
\(203\) 0.369841 + 0.164664i 0.0259577 + 0.0115571i
\(204\) 0 0
\(205\) 3.56161 0.757044i 0.248754 0.0528743i
\(206\) 16.7280 7.44781i 1.16550 0.518913i
\(207\) 0 0
\(208\) 0.290943 + 2.76814i 0.0201733 + 0.191936i
\(209\) 2.62947 1.91042i 0.181884 0.132147i
\(210\) 0 0
\(211\) 8.20101 + 14.2046i 0.564581 + 0.977883i 0.997089 + 0.0762526i \(0.0242955\pi\)
−0.432508 + 0.901630i \(0.642371\pi\)
\(212\) −2.39829 + 4.15397i −0.164716 + 0.285296i
\(213\) 0 0
\(214\) −2.99231 + 3.32329i −0.204550 + 0.227176i
\(215\) 0.632143 1.94554i 0.0431118 0.132684i
\(216\) 0 0
\(217\) 5.16361 7.67723i 0.350528 0.521164i
\(218\) 9.84187 0.666576
\(219\) 0 0
\(220\) 0.679023 0.754131i 0.0457797 0.0508435i
\(221\) 0.958528 + 0.696412i 0.0644776 + 0.0468457i
\(222\) 0 0
\(223\) 10.9262 + 18.9248i 0.731675 + 1.26730i 0.956167 + 0.292822i \(0.0945943\pi\)
−0.224492 + 0.974476i \(0.572072\pi\)
\(224\) −0.173699 + 1.65264i −0.0116058 + 0.110421i
\(225\) 0 0
\(226\) 1.14758 + 10.9185i 0.0763359 + 0.726287i
\(227\) −7.72368 8.57801i −0.512638 0.569343i 0.430140 0.902762i \(-0.358464\pi\)
−0.942779 + 0.333420i \(0.891797\pi\)
\(228\) 0 0
\(229\) −20.4055 + 4.33731i −1.34843 + 0.286618i −0.824847 0.565356i \(-0.808739\pi\)
−0.523584 + 0.851974i \(0.675405\pi\)
\(230\) −4.13456 0.878828i −0.272625 0.0579482i
\(231\) 0 0
\(232\) 0.0752842 + 0.231701i 0.00494265 + 0.0152119i
\(233\) 8.46951 + 26.0665i 0.554856 + 1.70767i 0.696323 + 0.717729i \(0.254818\pi\)
−0.141467 + 0.989943i \(0.545182\pi\)
\(234\) 0 0
\(235\) −4.85410 1.03177i −0.316647 0.0673053i
\(236\) −11.8131 + 2.51094i −0.768964 + 0.163448i
\(237\) 0 0
\(238\) 0.473312 + 0.525666i 0.0306803 + 0.0340739i
\(239\) 0.491653 + 4.67777i 0.0318024 + 0.302580i 0.998848 + 0.0479779i \(0.0152777\pi\)
−0.967046 + 0.254602i \(0.918056\pi\)
\(240\) 0 0
\(241\) −1.18509 + 11.2754i −0.0763387 + 0.726314i 0.887677 + 0.460467i \(0.152318\pi\)
−0.964015 + 0.265847i \(0.914349\pi\)
\(242\) −4.50739 7.80703i −0.289746 0.501855i
\(243\) 0 0
\(244\) 2.11958 + 1.53996i 0.135692 + 0.0985861i
\(245\) −2.04270 + 2.26865i −0.130504 + 0.144939i
\(246\) 0 0
\(247\) 6.42067 0.408537
\(248\) 5.51255 0.782168i 0.350047 0.0496677i
\(249\) 0 0
\(250\) 2.11018 6.49445i 0.133459 0.410745i
\(251\) −0.676301 + 0.751109i −0.0426878 + 0.0474096i −0.764111 0.645085i \(-0.776822\pi\)
0.721423 + 0.692495i \(0.243488\pi\)
\(252\) 0 0
\(253\) 4.13456 7.16127i 0.259938 0.450225i
\(254\) 8.16663 + 14.1450i 0.512420 + 0.887537i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 3.20124 + 30.4577i 0.199688 + 1.89990i 0.394237 + 0.919009i \(0.371009\pi\)
−0.194549 + 0.980893i \(0.562324\pi\)
\(258\) 0 0
\(259\) 4.20443 1.87193i 0.261250 0.116316i
\(260\) 1.96086 0.416794i 0.121608 0.0258485i
\(261\) 0 0
\(262\) 6.50614 + 2.89672i 0.401950 + 0.178960i
\(263\) 1.80632 + 5.55927i 0.111382 + 0.342799i 0.991175 0.132558i \(-0.0423189\pi\)
−0.879793 + 0.475357i \(0.842319\pi\)
\(264\) 0 0
\(265\) 3.15597 + 1.40513i 0.193869 + 0.0863162i
\(266\) 3.74951 + 0.796982i 0.229897 + 0.0488661i
\(267\) 0 0
\(268\) −4.79545 + 2.13507i −0.292929 + 0.130420i
\(269\) −0.304971 0.338705i −0.0185944 0.0206512i 0.733776 0.679392i \(-0.237756\pi\)
−0.752370 + 0.658740i \(0.771090\pi\)
\(270\) 0 0
\(271\) 2.08363 1.51385i 0.126572 0.0919596i −0.522698 0.852518i \(-0.675075\pi\)
0.649270 + 0.760558i \(0.275075\pi\)
\(272\) −0.0444947 + 0.423339i −0.00269789 + 0.0256687i
\(273\) 0 0
\(274\) 7.24833 12.5545i 0.437888 0.758444i
\(275\) 5.10814 + 3.71128i 0.308033 + 0.223799i
\(276\) 0 0
\(277\) 7.23820 22.2769i 0.434901 1.33849i −0.458287 0.888804i \(-0.651537\pi\)
0.893188 0.449684i \(-0.148463\pi\)
\(278\) −20.5545 −1.23278
\(279\) 0 0
\(280\) 1.19683 0.0715242
\(281\) −9.06598 + 27.9022i −0.540831 + 1.66451i 0.189870 + 0.981809i \(0.439193\pi\)
−0.730701 + 0.682698i \(0.760807\pi\)
\(282\) 0 0
\(283\) 8.80869 + 6.39989i 0.523622 + 0.380434i 0.817967 0.575266i \(-0.195101\pi\)
−0.294345 + 0.955699i \(0.595101\pi\)
\(284\) 5.38696 9.33049i 0.319657 0.553663i
\(285\) 0 0
\(286\) −0.409932 + 3.90024i −0.0242398 + 0.230626i
\(287\) −6.79662 + 4.93804i −0.401192 + 0.291483i
\(288\) 0 0
\(289\) −11.2540 12.4988i −0.661999 0.735224i
\(290\) 0.160296 0.0713682i 0.00941288 0.00419088i
\(291\) 0 0
\(292\) 5.80981 + 1.23491i 0.339993 + 0.0722678i
\(293\) −10.0783 4.48715i −0.588781 0.262142i 0.0906485 0.995883i \(-0.471106\pi\)
−0.679430 + 0.733741i \(0.737773\pi\)
\(294\) 0 0
\(295\) 2.68788 + 8.27244i 0.156494 + 0.481640i
\(296\) 2.53014 + 1.12649i 0.147061 + 0.0654759i
\(297\) 0 0
\(298\) 19.9847 4.24788i 1.15768 0.246073i
\(299\) 14.9231 6.64420i 0.863026 0.384244i
\(300\) 0 0
\(301\) 0.493356 + 4.69397i 0.0284366 + 0.270556i
\(302\) 0.849699 0.617342i 0.0488947 0.0355241i
\(303\) 0 0
\(304\) 1.15339 + 1.99773i 0.0661516 + 0.114578i
\(305\) 0.943478 1.63415i 0.0540234 0.0935712i
\(306\) 0 0
\(307\) −5.03883 + 5.59619i −0.287581 + 0.319392i −0.869574 0.493802i \(-0.835607\pi\)
0.581993 + 0.813194i \(0.302273\pi\)
\(308\) −0.723518 + 2.22676i −0.0412262 + 0.126881i
\(309\) 0 0
\(310\) −0.975261 3.88965i −0.0553911 0.220918i
\(311\) 13.9560 0.791370 0.395685 0.918386i \(-0.370507\pi\)
0.395685 + 0.918386i \(0.370507\pi\)
\(312\) 0 0
\(313\) 16.7885 18.6455i 0.948943 1.05391i −0.0495358 0.998772i \(-0.515774\pi\)
0.998479 0.0551357i \(-0.0175591\pi\)
\(314\) 11.7972 + 8.57118i 0.665755 + 0.483700i
\(315\) 0 0
\(316\) 6.69693 + 11.5994i 0.376732 + 0.652519i
\(317\) −1.44088 + 13.7091i −0.0809279 + 0.769977i 0.876519 + 0.481367i \(0.159860\pi\)
−0.957447 + 0.288610i \(0.906807\pi\)
\(318\) 0 0
\(319\) 0.0358806 + 0.341382i 0.00200893 + 0.0191137i
\(320\) 0.481926 + 0.535233i 0.0269405 + 0.0299204i
\(321\) 0 0
\(322\) 9.53944 2.02767i 0.531612 0.112998i
\(323\) 0.960473 + 0.204155i 0.0534421 + 0.0113595i
\(324\) 0 0
\(325\) 3.85440 + 11.8626i 0.213804 + 0.658021i
\(326\) −1.51088 4.65002i −0.0836800 0.257541i
\(327\) 0 0
\(328\) −4.94512 1.05112i −0.273049 0.0580383i
\(329\) 11.1996 2.38055i 0.617453 0.131244i
\(330\) 0 0
\(331\) 0.242751 + 0.269602i 0.0133428 + 0.0148187i 0.749779 0.661688i \(-0.230160\pi\)
−0.736436 + 0.676507i \(0.763493\pi\)
\(332\) −0.626483 5.96059i −0.0343827 0.327130i
\(333\) 0 0
\(334\) −1.30577 + 12.4236i −0.0714485 + 0.679787i
\(335\) 1.89033 + 3.27415i 0.103280 + 0.178886i
\(336\) 0 0
\(337\) 10.8516 + 7.88415i 0.591124 + 0.429477i 0.842717 0.538356i \(-0.180954\pi\)
−0.251593 + 0.967833i \(0.580954\pi\)
\(338\) 3.51478 3.90356i 0.191179 0.212326i
\(339\) 0 0
\(340\) 0.306580 0.0166266
\(341\) 7.82646 + 0.536887i 0.423827 + 0.0290741i
\(342\) 0 0
\(343\) 5.77110 17.7616i 0.311610 0.959037i
\(344\) −1.90053 + 2.11075i −0.102470 + 0.113804i
\(345\) 0 0
\(346\) 2.54354 4.40554i 0.136742 0.236843i
\(347\) −17.6702 30.6057i −0.948585 1.64300i −0.748409 0.663237i \(-0.769182\pi\)
−0.200176 0.979760i \(-0.564151\pi\)
\(348\) 0 0
\(349\) −25.0879 + 18.2274i −1.34293 + 0.975693i −0.343595 + 0.939118i \(0.611645\pi\)
−0.999331 + 0.0365750i \(0.988355\pi\)
\(350\) 0.778393 + 7.40591i 0.0416068 + 0.395863i
\(351\) 0 0
\(352\) −1.28716 + 0.573083i −0.0686061 + 0.0305454i
\(353\) 23.7860 5.05587i 1.26600 0.269097i 0.474494 0.880259i \(-0.342631\pi\)
0.791506 + 0.611162i \(0.209298\pi\)
\(354\) 0 0
\(355\) −7.08881 3.15614i −0.376235 0.167511i
\(356\) −0.184079 0.566538i −0.00975619 0.0300265i
\(357\) 0 0
\(358\) 12.9707 + 5.77493i 0.685524 + 0.305215i
\(359\) −19.0052 4.03968i −1.00306 0.213206i −0.323026 0.946390i \(-0.604700\pi\)
−0.680031 + 0.733184i \(0.738034\pi\)
\(360\) 0 0
\(361\) −12.4962 + 5.56365i −0.657693 + 0.292824i
\(362\) −11.2563 12.5014i −0.591619 0.657059i
\(363\) 0 0
\(364\) −3.74191 + 2.71866i −0.196130 + 0.142497i
\(365\) 0.447158 4.25443i 0.0234053 0.222687i
\(366\) 0 0
\(367\) −9.63456 + 16.6876i −0.502920 + 0.871083i 0.497074 + 0.867708i \(0.334408\pi\)
−0.999994 + 0.00337510i \(0.998926\pi\)
\(368\) 4.74803 + 3.44964i 0.247508 + 0.179825i
\(369\) 0 0
\(370\) 0.616404 1.89710i 0.0320453 0.0986254i
\(371\) −7.97068 −0.413817
\(372\) 0 0
\(373\) −4.38573 −0.227084 −0.113542 0.993533i \(-0.536220\pi\)
−0.113542 + 0.993533i \(0.536220\pi\)
\(374\) −0.185336 + 0.570406i −0.00958350 + 0.0294950i
\(375\) 0 0
\(376\) 5.57433 + 4.04999i 0.287474 + 0.208862i
\(377\) −0.339051 + 0.587254i −0.0174620 + 0.0302451i
\(378\) 0 0
\(379\) −1.33865 + 12.7364i −0.0687619 + 0.654226i 0.904805 + 0.425825i \(0.140016\pi\)
−0.973567 + 0.228401i \(0.926650\pi\)
\(380\) 1.34411 0.976551i 0.0689513 0.0500960i
\(381\) 0 0
\(382\) −16.3857 18.1982i −0.838367 0.931101i
\(383\) 25.6906 11.4382i 1.31273 0.584464i 0.373459 0.927647i \(-0.378172\pi\)
0.939269 + 0.343183i \(0.111505\pi\)
\(384\) 0 0
\(385\) 1.64946 + 0.350603i 0.0840640 + 0.0178684i
\(386\) −10.9624 4.88079i −0.557973 0.248426i
\(387\) 0 0
\(388\) 1.61744 + 4.97798i 0.0821133 + 0.252719i
\(389\) −2.14390 0.954527i −0.108700 0.0483965i 0.351666 0.936126i \(-0.385615\pi\)
−0.460366 + 0.887729i \(0.652282\pi\)
\(390\) 0 0
\(391\) 2.44362 0.519408i 0.123579 0.0262676i
\(392\) 3.87218 1.72400i 0.195574 0.0870753i
\(393\) 0 0
\(394\) −1.40093 13.3290i −0.0705779 0.671504i
\(395\) 7.80428 5.67014i 0.392676 0.285296i
\(396\) 0 0
\(397\) −11.2870 19.5496i −0.566477 0.981167i −0.996911 0.0785449i \(-0.974973\pi\)
0.430433 0.902622i \(-0.358361\pi\)
\(398\) −0.521687 + 0.903589i −0.0261498 + 0.0452928i
\(399\) 0 0
\(400\) −2.99856 + 3.33023i −0.149928 + 0.166512i
\(401\) 6.51963 20.0654i 0.325575 1.00202i −0.645606 0.763671i \(-0.723395\pi\)
0.971180 0.238345i \(-0.0766050\pi\)
\(402\) 0 0
\(403\) 11.8847 + 9.94574i 0.592020 + 0.495432i
\(404\) 9.92173 0.493624
\(405\) 0 0
\(406\) −0.270892 + 0.300855i −0.0134441 + 0.0149312i
\(407\) 3.15701 + 2.29370i 0.156487 + 0.113694i
\(408\) 0 0
\(409\) 10.7156 + 18.5600i 0.529852 + 0.917731i 0.999394 + 0.0348204i \(0.0110859\pi\)
−0.469541 + 0.882910i \(0.655581\pi\)
\(410\) −0.380607 + 3.62124i −0.0187968 + 0.178840i
\(411\) 0 0
\(412\) 1.91403 + 18.2108i 0.0942977 + 0.897182i
\(413\) −13.4286 14.9140i −0.660779 0.733870i
\(414\) 0 0
\(415\) −4.22230 + 0.897477i −0.207264 + 0.0440554i
\(416\) −2.72256 0.578699i −0.133485 0.0283730i
\(417\) 0 0
\(418\) 1.00437 + 3.09113i 0.0491253 + 0.151192i
\(419\) −3.81826 11.7514i −0.186534 0.574093i 0.813437 0.581652i \(-0.197594\pi\)
−0.999971 + 0.00755981i \(0.997594\pi\)
\(420\) 0 0
\(421\) −23.4190 4.97785i −1.14137 0.242606i −0.401828 0.915715i \(-0.631625\pi\)
−0.739543 + 0.673110i \(0.764958\pi\)
\(422\) −16.0436 + 3.41017i −0.780990 + 0.166005i
\(423\) 0 0
\(424\) −3.20955 3.56456i −0.155869 0.173110i
\(425\) 0.199393 + 1.89710i 0.00967198 + 0.0920227i
\(426\) 0 0
\(427\) −0.455082 + 4.32981i −0.0220229 + 0.209534i
\(428\) −2.23597 3.87281i −0.108079 0.187199i
\(429\) 0 0
\(430\) 1.65497 + 1.20241i 0.0798098 + 0.0579852i
\(431\) −8.43237 + 9.36510i −0.406173 + 0.451101i −0.911176 0.412016i \(-0.864825\pi\)
0.505003 + 0.863117i \(0.331491\pi\)
\(432\) 0 0
\(433\) −16.5682 −0.796215 −0.398107 0.917339i \(-0.630333\pi\)
−0.398107 + 0.917339i \(0.630333\pi\)
\(434\) 5.70583 + 7.28328i 0.273889 + 0.349608i
\(435\) 0 0
\(436\) −3.04131 + 9.36018i −0.145652 + 0.448271i
\(437\) 9.05886 10.0609i 0.433344 0.481277i
\(438\) 0 0
\(439\) 8.16693 14.1455i 0.389786 0.675130i −0.602634 0.798018i \(-0.705882\pi\)
0.992421 + 0.122888i \(0.0392155\pi\)
\(440\) 0.507392 + 0.878828i 0.0241890 + 0.0418965i
\(441\) 0 0
\(442\) −0.958528 + 0.696412i −0.0455925 + 0.0331249i
\(443\) 1.40254 + 13.3443i 0.0666367 + 0.634006i 0.975965 + 0.217927i \(0.0699294\pi\)
−0.909328 + 0.416079i \(0.863404\pi\)
\(444\) 0 0
\(445\) −0.391943 + 0.174504i −0.0185799 + 0.00827229i
\(446\) −21.3749 + 4.54338i −1.01213 + 0.215135i
\(447\) 0 0
\(448\) −1.51807 0.675890i −0.0717223 0.0319328i
\(449\) −1.57732 4.85448i −0.0744382 0.229097i 0.906914 0.421316i \(-0.138432\pi\)
−0.981352 + 0.192219i \(0.938432\pi\)
\(450\) 0 0
\(451\) −6.50739 2.89728i −0.306421 0.136427i
\(452\) −10.7387 2.28259i −0.505107 0.107364i
\(453\) 0 0
\(454\) 10.5449 4.69490i 0.494898 0.220343i
\(455\) 2.22903 + 2.47559i 0.104499 + 0.116058i
\(456\) 0 0
\(457\) 30.8490 22.4131i 1.44306 1.04844i 0.455665 0.890152i \(-0.349402\pi\)
0.987393 0.158291i \(-0.0505984\pi\)
\(458\) 2.18060 20.7470i 0.101893 0.969446i
\(459\) 0 0
\(460\) 2.11347 3.66063i 0.0985408 0.170678i
\(461\) −11.0437 8.02372i −0.514356 0.373702i 0.300117 0.953902i \(-0.402974\pi\)
−0.814474 + 0.580201i \(0.802974\pi\)
\(462\) 0 0
\(463\) 9.68783 29.8161i 0.450232 1.38567i −0.426411 0.904529i \(-0.640222\pi\)
0.876643 0.481142i \(-0.159778\pi\)
\(464\) −0.243625 −0.0113100
\(465\) 0 0
\(466\) −27.4079 −1.26965
\(467\) 2.01215 6.19275i 0.0931110 0.286566i −0.893646 0.448773i \(-0.851861\pi\)
0.986757 + 0.162207i \(0.0518612\pi\)
\(468\) 0 0
\(469\) −7.05699 5.12720i −0.325861 0.236752i
\(470\) 2.48127 4.29769i 0.114453 0.198238i
\(471\) 0 0
\(472\) 1.26239 12.0108i 0.0581061 0.552842i
\(473\) −3.23761 + 2.35226i −0.148866 + 0.108157i
\(474\) 0 0
\(475\) 6.91702 + 7.68213i 0.317375 + 0.352480i
\(476\) −0.646200 + 0.287707i −0.0296185 + 0.0131870i
\(477\) 0 0
\(478\) −4.60075 0.977920i −0.210433 0.0447290i
\(479\) −11.5783 5.15499i −0.529026 0.235538i 0.124801 0.992182i \(-0.460171\pi\)
−0.653827 + 0.756644i \(0.726838\pi\)
\(480\) 0 0
\(481\) 2.38215 + 7.33151i 0.108617 + 0.334288i
\(482\) −10.3574 4.61139i −0.471764 0.210043i
\(483\) 0 0
\(484\) 8.81779 1.87428i 0.400809 0.0851945i
\(485\) 3.44387 1.53331i 0.156378 0.0696240i
\(486\) 0 0
\(487\) −1.58887 15.1171i −0.0719984 0.685019i −0.969681 0.244376i \(-0.921417\pi\)
0.897682 0.440643i \(-0.145250\pi\)
\(488\) −2.11958 + 1.53996i −0.0959488 + 0.0697109i
\(489\) 0 0
\(490\) −1.52639 2.64378i −0.0689551 0.119434i
\(491\) −13.4000 + 23.2095i −0.604734 + 1.04743i 0.387359 + 0.921929i \(0.373387\pi\)
−0.992093 + 0.125501i \(0.959946\pi\)
\(492\) 0 0
\(493\) −0.0693915 + 0.0770671i −0.00312524 + 0.00347093i
\(494\) −1.98410 + 6.10642i −0.0892687 + 0.274741i
\(495\) 0 0
\(496\) −0.959585 + 5.48445i −0.0430867 + 0.246259i
\(497\) 17.9034 0.803079
\(498\) 0 0
\(499\) 21.4480 23.8204i 0.960143 1.06635i −0.0376063 0.999293i \(-0.511973\pi\)
0.997749 0.0670542i \(-0.0213600\pi\)
\(500\) 5.52451 + 4.01379i 0.247064 + 0.179502i
\(501\) 0 0
\(502\) −0.505358 0.875306i −0.0225552 0.0390668i
\(503\) 1.22023 11.6097i 0.0544074 0.517652i −0.933048 0.359753i \(-0.882861\pi\)
0.987455 0.157900i \(-0.0504722\pi\)
\(504\) 0 0
\(505\) −0.746950 7.10675i −0.0332388 0.316246i
\(506\) 5.53312 + 6.14516i 0.245977 + 0.273186i
\(507\) 0 0
\(508\) −15.9763 + 3.39588i −0.708835 + 0.150668i
\(509\) −17.8948 3.80365i −0.793172 0.168594i −0.206530 0.978440i \(-0.566217\pi\)
−0.586642 + 0.809846i \(0.699550\pi\)
\(510\) 0 0
\(511\) 3.05002 + 9.38699i 0.134925 + 0.415256i
\(512\) −0.309017 0.951057i −0.0136568 0.0420312i
\(513\) 0 0
\(514\) −29.9563 6.36740i −1.32131 0.280854i
\(515\) 12.9000 2.74197i 0.568441 0.120826i
\(516\) 0 0
\(517\) 6.49606 + 7.21460i 0.285696 + 0.317298i
\(518\) 0.481073 + 4.57710i 0.0211371 + 0.201106i
\(519\) 0 0
\(520\) −0.209545 + 1.99369i −0.00918916 + 0.0874290i
\(521\) 13.3850 + 23.1836i 0.586410 + 1.01569i 0.994698 + 0.102838i \(0.0327924\pi\)
−0.408288 + 0.912853i \(0.633874\pi\)
\(522\) 0 0
\(523\) −19.1778 13.9335i −0.838588 0.609270i 0.0833876 0.996517i \(-0.473426\pi\)
−0.921976 + 0.387247i \(0.873426\pi\)
\(524\) −4.76545 + 5.29257i −0.208180 + 0.231207i
\(525\) 0 0
\(526\) −5.84536 −0.254870
\(527\) 1.46161 + 1.86568i 0.0636685 + 0.0812704i
\(528\) 0 0
\(529\) 3.53633 10.8837i 0.153754 0.473205i
\(530\) −2.31160 + 2.56729i −0.100410 + 0.111516i
\(531\) 0 0
\(532\) −1.91664 + 3.31971i −0.0830967 + 0.143928i
\(533\) −7.03585 12.1864i −0.304756 0.527853i
\(534\) 0 0
\(535\) −2.60569 + 1.89314i −0.112654 + 0.0818477i
\(536\) −0.548698 5.22052i −0.0237002 0.225492i
\(537\) 0 0
\(538\) 0.416369 0.185379i 0.0179509 0.00799227i
\(539\) 5.84162 1.24167i 0.251616 0.0534827i
\(540\) 0 0
\(541\) −12.2004 5.43195i −0.524534 0.233538i 0.127348 0.991858i \(-0.459354\pi\)
−0.651882 + 0.758320i \(0.726020\pi\)
\(542\) 0.795876 + 2.44946i 0.0341858 + 0.105213i
\(543\) 0 0
\(544\) −0.388870 0.173136i −0.0166726 0.00742314i
\(545\) 6.93349 + 1.47376i 0.296998 + 0.0631289i
\(546\) 0 0
\(547\) 0.889972 0.396241i 0.0380525 0.0169420i −0.387622 0.921818i \(-0.626703\pi\)
0.425675 + 0.904876i \(0.360037\pi\)
\(548\) 9.70016 + 10.7731i 0.414370 + 0.460205i
\(549\) 0 0
\(550\) −5.10814 + 3.71128i −0.217812 + 0.158250i
\(551\) −0.0587440 + 0.558911i −0.00250258 + 0.0238104i
\(552\) 0 0
\(553\) −11.1286 + 19.2752i −0.473234 + 0.819666i
\(554\) 18.9499 + 13.7679i 0.805102 + 0.584941i
\(555\) 0 0
\(556\) 6.35170 19.5485i 0.269372 0.829042i
\(557\) 4.59258 0.194594 0.0972969 0.995255i \(-0.468980\pi\)
0.0972969 + 0.995255i \(0.468980\pi\)
\(558\) 0 0
\(559\) −7.90564 −0.334373
\(560\) −0.369841 + 1.13825i −0.0156286 + 0.0480999i
\(561\) 0 0
\(562\) −23.7350 17.2445i −1.00120 0.727416i
\(563\) −15.1698 + 26.2748i −0.639329 + 1.10735i 0.346251 + 0.938142i \(0.387455\pi\)
−0.985580 + 0.169209i \(0.945879\pi\)
\(564\) 0 0
\(565\) −0.826518 + 7.86380i −0.0347719 + 0.330832i
\(566\) −8.80869 + 6.39989i −0.370257 + 0.269007i
\(567\) 0 0
\(568\) 7.20916 + 8.00658i 0.302490 + 0.335949i
\(569\) −28.2730 + 12.5879i −1.18526 + 0.527714i −0.902171 0.431379i \(-0.858027\pi\)
−0.283093 + 0.959092i \(0.591361\pi\)
\(570\) 0 0
\(571\) −37.4030 7.95025i −1.56527 0.332707i −0.657918 0.753089i \(-0.728563\pi\)
−0.907347 + 0.420382i \(0.861896\pi\)
\(572\) −3.58268 1.59511i −0.149799 0.0666949i
\(573\) 0 0
\(574\) −2.59608 7.98991i −0.108358 0.333492i
\(575\) 24.0263 + 10.6972i 1.00197 + 0.446104i
\(576\) 0 0
\(577\) 21.1652 4.49879i 0.881117 0.187287i 0.254930 0.966960i \(-0.417948\pi\)
0.626188 + 0.779672i \(0.284614\pi\)
\(578\) 15.3647 6.84082i 0.639089 0.284541i
\(579\) 0 0
\(580\) 0.0183411 + 0.174504i 0.000761574 + 0.00724589i
\(581\) 8.05740 5.85405i 0.334277 0.242867i
\(582\) 0 0
\(583\) −3.37914 5.85285i −0.139950 0.242400i
\(584\) −2.96980 + 5.14385i −0.122891 + 0.212854i
\(585\) 0 0
\(586\) 7.38190 8.19843i 0.304944 0.338674i
\(587\) 13.0613 40.1986i 0.539098 1.65917i −0.195526 0.980699i \(-0.562641\pi\)
0.734624 0.678475i \(-0.237359\pi\)
\(588\) 0 0
\(589\) 12.3508 + 3.52387i 0.508904 + 0.145198i
\(590\) −8.69816 −0.358098
\(591\) 0 0
\(592\) −1.85321 + 2.05820i −0.0761665 + 0.0845914i
\(593\) −7.75392 5.63355i −0.318415 0.231342i 0.417084 0.908868i \(-0.363052\pi\)
−0.735499 + 0.677526i \(0.763052\pi\)
\(594\) 0 0
\(595\) 0.254728 + 0.441201i 0.0104428 + 0.0180875i
\(596\) −2.13564 + 20.3193i −0.0874793 + 0.832310i
\(597\) 0 0
\(598\) 1.70751 + 16.2459i 0.0698253 + 0.664344i
\(599\) −24.0714 26.7340i −0.983530 1.09232i −0.995722 0.0923950i \(-0.970548\pi\)
0.0121925 0.999926i \(-0.496119\pi\)
\(600\) 0 0
\(601\) 17.8089 3.78540i 0.726440 0.154410i 0.170174 0.985414i \(-0.445567\pi\)
0.556266 + 0.831005i \(0.312234\pi\)
\(602\) −4.61669 0.981307i −0.188162 0.0399951i
\(603\) 0 0
\(604\) 0.324556 + 0.998881i 0.0132060 + 0.0406439i
\(605\) −2.00635 6.17492i −0.0815698 0.251046i
\(606\) 0 0
\(607\) −19.4096 4.12563i −0.787810 0.167454i −0.203597 0.979055i \(-0.565263\pi\)
−0.584213 + 0.811601i \(0.698597\pi\)
\(608\) −2.25638 + 0.479607i −0.0915081 + 0.0194506i
\(609\) 0 0
\(610\) 1.26262 + 1.40228i 0.0511220 + 0.0567767i
\(611\) 2.00467 + 19.0732i 0.0811003 + 0.771618i
\(612\) 0 0
\(613\) 2.27329 21.6290i 0.0918175 0.873585i −0.847560 0.530700i \(-0.821929\pi\)
0.939377 0.342885i \(-0.111404\pi\)
\(614\) −3.76521 6.52154i −0.151952 0.263188i
\(615\) 0 0
\(616\) −1.89419 1.37621i −0.0763192 0.0554492i
\(617\) −0.452250 + 0.502274i −0.0182069 + 0.0202208i −0.752179 0.658958i \(-0.770997\pi\)
0.733973 + 0.679179i \(0.237664\pi\)
\(618\) 0 0
\(619\) 10.7141 0.430634 0.215317 0.976544i \(-0.430921\pi\)
0.215317 + 0.976544i \(0.430921\pi\)
\(620\) 4.00065 + 0.274441i 0.160670 + 0.0110218i
\(621\) 0 0
\(622\) −4.31263 + 13.2729i −0.172921 + 0.532195i
\(623\) 0.662364 0.735629i 0.0265370 0.0294724i
\(624\) 0 0
\(625\) −8.74408 + 15.1452i −0.349763 + 0.605808i
\(626\) 12.5450 + 21.7286i 0.501400 + 0.868450i
\(627\) 0 0
\(628\) −11.7972 + 8.57118i −0.470760 + 0.342027i
\(629\) 0.123232 + 1.17247i 0.00491357 + 0.0467495i
\(630\) 0 0
\(631\) −21.8136 + 9.71204i −0.868386 + 0.386630i −0.792053 0.610452i \(-0.790988\pi\)
−0.0763328 + 0.997082i \(0.524321\pi\)
\(632\) −13.1012 + 2.78474i −0.521137 + 0.110771i
\(633\) 0 0
\(634\) −12.5928 5.60669i −0.500125 0.222670i
\(635\) 3.63517 + 11.1879i 0.144257 + 0.443978i
\(636\) 0 0
\(637\) 10.7778 + 4.79857i 0.427030 + 0.190126i
\(638\) −0.335761 0.0713682i −0.0132929 0.00282549i
\(639\) 0 0
\(640\) −0.657960 + 0.292943i −0.0260082 + 0.0115796i
\(641\) −2.47779 2.75186i −0.0978668 0.108692i 0.692222 0.721685i \(-0.256632\pi\)
−0.790088 + 0.612993i \(0.789965\pi\)
\(642\) 0 0
\(643\) 12.3157 8.94790i 0.485685 0.352871i −0.317838 0.948145i \(-0.602957\pi\)
0.803522 + 0.595275i \(0.202957\pi\)
\(644\) −1.01942 + 9.69913i −0.0401708 + 0.382199i
\(645\) 0 0
\(646\) −0.490965 + 0.850377i −0.0193168 + 0.0334576i
\(647\) −6.01834 4.37258i −0.236605 0.171904i 0.463164 0.886272i \(-0.346714\pi\)
−0.699770 + 0.714369i \(0.746714\pi\)
\(648\) 0 0
\(649\) 5.25829 16.1833i 0.206406 0.635252i
\(650\) −12.4731 −0.489236
\(651\) 0 0
\(652\) 4.88932 0.191480
\(653\) −2.92571 + 9.00441i −0.114492 + 0.352370i −0.991841 0.127483i \(-0.959310\pi\)
0.877349 + 0.479853i \(0.159310\pi\)
\(654\) 0 0
\(655\) 4.14973 + 3.01496i 0.162143 + 0.117804i
\(656\) 2.52780 4.37828i 0.0986940 0.170943i
\(657\) 0 0
\(658\) −1.19683 + 11.3871i −0.0466573 + 0.443914i
\(659\) −17.7973 + 12.9305i −0.693285 + 0.503701i −0.877738 0.479140i \(-0.840949\pi\)
0.184453 + 0.982841i \(0.440949\pi\)
\(660\) 0 0
\(661\) 12.7080 + 14.1136i 0.494283 + 0.548957i 0.937740 0.347339i \(-0.112915\pi\)
−0.443456 + 0.896296i \(0.646248\pi\)
\(662\) −0.331421 + 0.147558i −0.0128810 + 0.00573500i
\(663\) 0 0
\(664\) 5.86245 + 1.24610i 0.227507 + 0.0483581i
\(665\) 2.52214 + 1.12293i 0.0978044 + 0.0435453i
\(666\) 0 0
\(667\) 0.441835 + 1.35983i 0.0171079 + 0.0526527i
\(668\) −11.4120 5.08095i −0.441544 0.196588i
\(669\) 0 0
\(670\) −3.69805 + 0.786045i −0.142868 + 0.0303676i
\(671\) −3.37230 + 1.50144i −0.130186 + 0.0579626i
\(672\) 0 0
\(673\) −1.65577 15.7536i −0.0638252 0.607256i −0.978952 0.204090i \(-0.934576\pi\)
0.915127 0.403166i \(-0.132090\pi\)
\(674\) −10.8516 + 7.88415i −0.417988 + 0.303686i
\(675\) 0 0
\(676\) 2.62638 + 4.54903i 0.101015 + 0.174963i
\(677\) 18.1168 31.3792i 0.696284 1.20600i −0.273462 0.961883i \(-0.588169\pi\)
0.969746 0.244116i \(-0.0784979\pi\)
\(678\) 0 0
\(679\) −5.81997 + 6.46373i −0.223350 + 0.248055i
\(680\) −0.0947383 + 0.291575i −0.00363305 + 0.0111814i
\(681\) 0 0
\(682\) −2.92912 + 7.27750i −0.112162 + 0.278670i
\(683\) −21.4383 −0.820312 −0.410156 0.912015i \(-0.634526\pi\)
−0.410156 + 0.912015i \(0.634526\pi\)
\(684\) 0 0
\(685\) 6.98632 7.75909i 0.266934 0.296460i
\(686\) 15.1089 + 10.9773i 0.576861 + 0.419114i
\(687\) 0 0
\(688\) −1.42015 2.45977i −0.0541426 0.0937778i
\(689\) 1.39553 13.2776i 0.0531656 0.505837i
\(690\) 0 0
\(691\) 2.61859 + 24.9142i 0.0996158 + 0.947781i 0.924166 + 0.381992i \(0.124762\pi\)
−0.824550 + 0.565789i \(0.808572\pi\)
\(692\) 3.40392 + 3.78044i 0.129398 + 0.143711i
\(693\) 0 0
\(694\) 34.5681 7.34767i 1.31219 0.278914i
\(695\) −14.4804 3.07791i −0.549274 0.116752i
\(696\) 0 0
\(697\) −0.665011 2.04669i −0.0251891 0.0775241i
\(698\) −9.58274 29.4926i −0.362712 1.11631i
\(699\) 0 0
\(700\) −7.28398 1.54826i −0.275308 0.0585186i
\(701\) 2.36301 0.502274i 0.0892498 0.0189706i −0.163070 0.986614i \(-0.552140\pi\)
0.252320 + 0.967644i \(0.418806\pi\)
\(702\) 0 0
\(703\) 4.27495 + 4.74782i 0.161233 + 0.179067i
\(704\) −0.147278 1.40126i −0.00555076 0.0528119i
\(705\) 0 0
\(706\) −2.54186 + 24.1842i −0.0956641 + 0.910183i
\(707\) 8.24366 + 14.2784i 0.310035 + 0.536996i
\(708\) 0 0
\(709\) 29.2254 + 21.2335i 1.09758 + 0.797441i 0.980664 0.195700i \(-0.0626979\pi\)
0.116920 + 0.993141i \(0.462698\pi\)
\(710\) 5.19223 5.76656i 0.194861 0.216415i
\(711\) 0 0
\(712\) 0.595693 0.0223246
\(713\) 32.3525 4.59046i 1.21161 0.171914i
\(714\) 0 0
\(715\) −0.872829 + 2.68629i −0.0326420 + 0.100462i
\(716\) −9.50046 + 10.5513i −0.355049 + 0.394322i
\(717\) 0 0
\(718\) 9.71490 16.8267i 0.362557 0.627967i
\(719\) 13.2301 + 22.9152i 0.493399 + 0.854592i 0.999971 0.00760589i \(-0.00242105\pi\)
−0.506572 + 0.862197i \(0.669088\pi\)
\(720\) 0 0
\(721\) −24.6170 + 17.8853i −0.916786 + 0.666084i
\(722\) −1.42982 13.6038i −0.0532123 0.506282i
\(723\) 0 0
\(724\) 15.3679 6.84224i 0.571145 0.254290i
\(725\) −1.06789 + 0.226988i −0.0396605 + 0.00843011i
\(726\) 0 0
\(727\) −6.46885 2.88012i −0.239916 0.106818i 0.283257 0.959044i \(-0.408585\pi\)
−0.523173 + 0.852227i \(0.675252\pi\)
\(728\) −1.42928 4.39888i −0.0529728 0.163033i
\(729\) 0 0
\(730\) 3.90802 + 1.73996i 0.144642 + 0.0643989i
\(731\) −1.18261 0.251372i −0.0437404 0.00929731i
\(732\) 0 0
\(733\) 24.5259 10.9197i 0.905886 0.403327i 0.0997200 0.995016i \(-0.468205\pi\)
0.806166 + 0.591689i \(0.201539\pi\)
\(734\) −12.8936 14.3198i −0.475910 0.528552i
\(735\) 0 0
\(736\) −4.74803 + 3.44964i −0.175015 + 0.127156i
\(737\) 0.773103 7.35559i 0.0284776 0.270947i
\(738\) 0 0
\(739\) −11.7031 + 20.2703i −0.430505 + 0.745656i −0.996917 0.0784659i \(-0.974998\pi\)
0.566412 + 0.824122i \(0.308331\pi\)
\(740\) 1.61377 + 1.17247i 0.0593233 + 0.0431009i
\(741\) 0 0
\(742\) 2.46308 7.58057i 0.0904223 0.278291i
\(743\) 15.2912 0.560979 0.280490 0.959857i \(-0.409503\pi\)
0.280490 + 0.959857i \(0.409503\pi\)
\(744\) 0 0
\(745\) 14.7151 0.539120
\(746\) 1.35526 4.17108i 0.0496198 0.152714i
\(747\) 0 0
\(748\) −0.485216 0.352530i −0.0177413 0.0128898i
\(749\) 3.71559 6.43559i 0.135765 0.235151i
\(750\) 0 0
\(751\) 2.22176 21.1387i 0.0810733 0.771361i −0.876155 0.482029i \(-0.839900\pi\)
0.957229 0.289332i \(-0.0934333\pi\)
\(752\) −5.57433 + 4.04999i −0.203275 + 0.147688i
\(753\) 0 0
\(754\) −0.453739 0.503928i −0.0165242 0.0183520i
\(755\) 0.691046 0.307674i 0.0251497 0.0111974i
\(756\) 0 0
\(757\) −47.8122 10.1628i −1.73776 0.369373i −0.773392 0.633928i \(-0.781442\pi\)
−0.964371 + 0.264555i \(0.914775\pi\)
\(758\) −11.6994 5.20890i −0.424941 0.189196i
\(759\) 0 0
\(760\) 0.513403 + 1.58009i 0.0186231 + 0.0573160i
\(761\) 20.6350 + 9.18729i 0.748018 + 0.333039i 0.745096 0.666957i \(-0.232403\pi\)
0.00292132 + 0.999996i \(0.499070\pi\)
\(762\) 0 0
\(763\) −15.9972 + 3.40032i −0.579139 + 0.123100i
\(764\) 22.3710 9.96021i 0.809354 0.360348i
\(765\) 0 0
\(766\) 2.93953 + 27.9678i 0.106210 + 1.01052i
\(767\) 27.1950 19.7583i 0.981954 0.713432i
\(768\) 0 0
\(769\) 23.3506 + 40.4444i 0.842044 + 1.45846i 0.888163 + 0.459528i \(0.151981\pi\)
−0.0461191 + 0.998936i \(0.514685\pi\)
\(770\) −0.843153 + 1.46038i −0.0303851 + 0.0526286i
\(771\) 0 0
\(772\) 8.02948 8.91764i 0.288987 0.320953i
\(773\) 8.14908 25.0803i 0.293102 0.902076i −0.690750 0.723094i \(-0.742720\pi\)
0.983852 0.178982i \(-0.0572804\pi\)
\(774\) 0 0
\(775\) 0.903716 + 24.9343i 0.0324624 + 0.895666i
\(776\) −5.23416 −0.187895
\(777\) 0 0
\(778\) 1.57031 1.74401i 0.0562984 0.0625257i
\(779\) −9.43490 6.85486i −0.338040 0.245601i
\(780\) 0 0
\(781\) 7.59010 + 13.1464i 0.271595 + 0.470417i
\(782\) −0.261134 + 2.48453i −0.00933815 + 0.0888465i
\(783\) 0 0
\(784\) 0.443057 + 4.21540i 0.0158235 + 0.150550i
\(785\) 7.02752 + 7.80485i 0.250823 + 0.278567i
\(786\) 0 0
\(787\) 5.11735 1.08773i 0.182414 0.0387732i −0.115799 0.993273i \(-0.536943\pi\)
0.298213 + 0.954499i \(0.403610\pi\)
\(788\) 13.1095 + 2.78651i 0.467007 + 0.0992655i
\(789\) 0 0
\(790\) 2.98097 + 9.17449i 0.106058 + 0.326414i
\(791\) −5.63759 17.3507i −0.200450 0.616921i
\(792\) 0 0
\(793\) −7.13296 1.51616i −0.253299 0.0538403i
\(794\) 22.0807 4.69339i 0.783613 0.166562i
\(795\) 0 0
\(796\) −0.698154 0.775378i −0.0247454 0.0274826i
\(797\) 3.86920 + 36.8130i 0.137054 + 1.30398i 0.819513 + 0.573060i \(0.194244\pi\)
−0.682459 + 0.730924i \(0.739090\pi\)
\(798\) 0 0
\(799\) −0.306580 + 2.91691i −0.0108460 + 0.103193i
\(800\) −2.24064 3.88090i −0.0792185 0.137210i
\(801\) 0 0
\(802\) 17.0686 + 12.4011i 0.602714 + 0.437897i
\(803\) −5.59979 + 6.21920i −0.197612 + 0.219471i
\(804\) 0 0
\(805\) 7.02406 0.247565
\(806\) −13.1315 + 8.22964i −0.462539 + 0.289877i
\(807\) 0 0
\(808\) −3.06598 + 9.43612i −0.107861 + 0.331962i
\(809\) 15.5080 17.2234i 0.545233 0.605543i −0.406054 0.913849i \(-0.633095\pi\)
0.951287 + 0.308306i \(0.0997621\pi\)
\(810\) 0 0
\(811\) 12.6198 21.8581i 0.443140 0.767542i −0.554780 0.831997i \(-0.687198\pi\)
0.997921 + 0.0644553i \(0.0205310\pi\)
\(812\) −0.202421 0.350603i −0.00710357 0.0123037i
\(813\) 0 0
\(814\) −3.15701 + 2.29370i −0.110653 + 0.0803941i
\(815\) −0.368088 3.50213i −0.0128936 0.122674i
\(816\) 0 0
\(817\) −5.98550 + 2.66492i −0.209406 + 0.0932336i
\(818\) −20.9629 + 4.45580i −0.732950 + 0.155793i
\(819\) 0 0
\(820\) −3.32639 1.48100i −0.116162 0.0517188i
\(821\) −3.92277 12.0730i −0.136906 0.421352i 0.858976 0.512016i \(-0.171101\pi\)
−0.995882 + 0.0906640i \(0.971101\pi\)
\(822\) 0 0
\(823\) −11.2280 4.99901i −0.391382 0.174255i 0.201604 0.979467i \(-0.435385\pi\)
−0.592986 + 0.805213i \(0.702051\pi\)
\(824\) −17.9110 3.80710i −0.623959 0.132626i
\(825\) 0 0
\(826\) 18.3337 8.16270i 0.637912 0.284017i
\(827\) 19.2979 + 21.4325i 0.671053 + 0.745280i 0.978491 0.206288i \(-0.0661384\pi\)
−0.307438 + 0.951568i \(0.599472\pi\)
\(828\) 0 0
\(829\) 23.3372 16.9555i 0.810536 0.588889i −0.103450 0.994635i \(-0.532988\pi\)
0.913986 + 0.405746i \(0.132988\pi\)
\(830\) 0.451210 4.29298i 0.0156617 0.149011i
\(831\) 0 0
\(832\) 1.39169 2.41048i 0.0482483 0.0835685i
\(833\) 1.45968 + 1.06052i 0.0505748 + 0.0367447i
\(834\) 0 0
\(835\) −2.78025 + 8.55672i −0.0962144 + 0.296118i
\(836\) −3.25021 −0.112411
\(837\) 0 0
\(838\) 12.3561 0.426836
\(839\) 5.96488 18.3580i 0.205931 0.633789i −0.793743 0.608253i \(-0.791871\pi\)
0.999674 0.0255362i \(-0.00812932\pi\)
\(840\) 0 0
\(841\) 23.4135 + 17.0109i 0.807361 + 0.586582i
\(842\) 11.9711 20.7345i 0.412551 0.714559i
\(843\) 0 0
\(844\) 1.71448 16.3122i 0.0590148 0.561488i
\(845\) 3.06066 2.22370i 0.105290 0.0764976i
\(846\) 0 0
\(847\) 10.0237 + 11.1325i 0.344419 + 0.382516i
\(848\) 4.38190 1.95095i 0.150475 0.0669959i
\(849\) 0 0
\(850\) −1.86586 0.396601i −0.0639986 0.0136033i
\(851\) 14.8491 + 6.61124i 0.509020 + 0.226630i
\(852\) 0 0
\(853\) −1.60711 4.94618i −0.0550264 0.169354i 0.919766 0.392467i \(-0.128378\pi\)
−0.974793 + 0.223113i \(0.928378\pi\)
\(854\) −3.97727 1.77079i −0.136099 0.0605953i
\(855\) 0 0
\(856\) 4.37421 0.929767i 0.149507 0.0317788i
\(857\) −6.13694 + 2.73234i −0.209634 + 0.0933350i −0.508867 0.860845i \(-0.669936\pi\)
0.299234 + 0.954180i \(0.403269\pi\)
\(858\) 0 0
\(859\) −4.98966 47.4734i −0.170245 1.61977i −0.662321 0.749220i \(-0.730428\pi\)
0.492076 0.870552i \(-0.336238\pi\)
\(860\) −1.65497 + 1.20241i −0.0564341 + 0.0410018i
\(861\) 0 0
\(862\) −6.30099 10.9136i −0.214613 0.371720i
\(863\) −17.0047 + 29.4530i −0.578846 + 1.00259i 0.416766 + 0.909014i \(0.363163\pi\)
−0.995612 + 0.0935766i \(0.970170\pi\)
\(864\) 0 0
\(865\) 2.45160 2.72277i 0.0833568 0.0925771i
\(866\) 5.11984 15.7573i 0.173979 0.535453i
\(867\) 0 0
\(868\) −8.69001 + 3.17591i −0.294958 + 0.107798i
\(869\) −18.8716 −0.640177
\(870\) 0 0
\(871\) 9.77650 10.8579i 0.331264 0.367906i
\(872\) −7.96224 5.78491i −0.269636 0.195902i
\(873\) 0 0
\(874\) 6.76913 + 11.7245i 0.228969 + 0.396586i
\(875\) −1.18613 + 11.2853i −0.0400986 + 0.381513i
\(876\) 0 0
\(877\) 1.35364 + 12.8790i 0.0457090 + 0.434892i 0.993314 + 0.115447i \(0.0368300\pi\)
−0.947605 + 0.319445i \(0.896503\pi\)
\(878\) 10.9295 + 12.1384i 0.368852 + 0.409652i
\(879\) 0 0
\(880\) −0.992608 + 0.210985i −0.0334608 + 0.00711232i
\(881\) 45.3854 + 9.64697i 1.52907 + 0.325015i 0.894224 0.447621i \(-0.147729\pi\)
0.634850 + 0.772635i \(0.281062\pi\)
\(882\) 0 0
\(883\) 5.68470 + 17.4957i 0.191306 + 0.588778i 1.00000 0.000548755i \(0.000174674\pi\)
−0.808694 + 0.588229i \(0.799825\pi\)
\(884\) −0.366125 1.12682i −0.0123141 0.0378990i
\(885\) 0 0
\(886\) −13.1246 2.78971i −0.440929 0.0937223i
\(887\) −1.13016 + 0.240223i −0.0379470 + 0.00806589i −0.226846 0.973931i \(-0.572841\pi\)
0.188899 + 0.981997i \(0.439508\pi\)
\(888\) 0 0
\(889\) −18.1613 20.1701i −0.609110 0.676485i
\(890\) −0.0448463 0.426684i −0.00150325 0.0143025i
\(891\) 0 0
\(892\) 2.28420 21.7328i 0.0764808 0.727666i
\(893\) 7.94716 + 13.7649i 0.265942 + 0.460624i
\(894\) 0 0
\(895\) 8.27296 + 6.01066i 0.276535 + 0.200914i
\(896\) 1.11192 1.23491i 0.0371466 0.0412555i
\(897\) 0 0
\(898\) 5.10431 0.170333
\(899\) −0.974500 + 0.943555i −0.0325014 + 0.0314693i
\(900\) 0 0
\(901\) 0.630941 1.94184i 0.0210197 0.0646920i
\(902\) 4.76637 5.29359i 0.158703 0.176257i
\(903\) 0 0
\(904\) 5.48932 9.50778i 0.182572 0.316224i
\(905\) −6.05794 10.4927i −0.201373 0.348788i
\(906\) 0 0
\(907\) −3.57748 + 2.59919i −0.118788 + 0.0863048i −0.645593 0.763681i \(-0.723390\pi\)
0.526805 + 0.849986i \(0.323390\pi\)
\(908\) 1.20656 + 11.4796i 0.0400410 + 0.380965i
\(909\) 0 0
\(910\) −3.04324 + 1.35494i −0.100882 + 0.0449157i
\(911\) −11.1228 + 2.36422i −0.368514 + 0.0783301i −0.388447 0.921471i \(-0.626988\pi\)
0.0199324 + 0.999801i \(0.493655\pi\)
\(912\) 0 0
\(913\) 7.71452 + 3.43472i 0.255313 + 0.113673i
\(914\) 11.7833 + 36.2652i 0.389756 + 1.19955i
\(915\) 0 0
\(916\) 19.0578 + 8.48507i 0.629687 + 0.280354i
\(917\) −11.5760 2.46056i −0.382275 0.0812550i
\(918\) 0 0
\(919\) 21.3808 9.51934i 0.705287 0.314014i −0.0225678 0.999745i \(-0.507184\pi\)
0.727855 + 0.685731i \(0.240517\pi\)
\(920\) 2.82837 + 3.14122i 0.0932486 + 0.103563i
\(921\) 0 0
\(922\) 11.0437 8.02372i 0.363705 0.264247i
\(923\) −3.13460 + 29.8237i −0.103177 + 0.981659i
\(924\) 0 0
\(925\) −6.20562 + 10.7484i −0.204040 + 0.353407i
\(926\) 25.3631 + 18.4274i 0.833482 + 0.605560i
\(927\) 0 0
\(928\) 0.0752842 0.231701i 0.00247133 0.00760596i
\(929\) 33.5711 1.10143 0.550716 0.834692i \(-0.314355\pi\)
0.550716 + 0.834692i \(0.314355\pi\)
\(930\) 0 0
\(931\) 9.77759 0.320448
\(932\) 8.46951 26.0665i 0.277428 0.853836i
\(933\) 0 0
\(934\) 5.26787 + 3.82733i 0.172370 + 0.125234i
\(935\) −0.215982 + 0.374092i −0.00706336 + 0.0122341i
\(936\) 0 0
\(937\) −0.582320 + 5.54040i −0.0190236 + 0.180997i −0.999908 0.0135962i \(-0.995672\pi\)
0.980884 + 0.194593i \(0.0623387\pi\)
\(938\) 7.05699 5.12720i 0.230419 0.167409i
\(939\) 0 0
\(940\) 3.32059 + 3.68789i 0.108306 + 0.120286i
\(941\) −40.6201 + 18.0852i −1.32418 + 0.589561i −0.942336 0.334667i \(-0.891376\pi\)
−0.381840 + 0.924229i \(0.624709\pi\)
\(942\) 0 0
\(943\) −29.0224 6.16890i −0.945098 0.200887i
\(944\) 11.0329 + 4.91214i 0.359089 + 0.159877i
\(945\) 0 0
\(946\) −1.23666 3.80604i −0.0402072 0.123745i
\(947\) 30.5374 + 13.5961i 0.992333 + 0.441815i 0.837684 0.546154i \(-0.183909\pi\)
0.154648 + 0.987970i \(0.450576\pi\)
\(948\) 0 0
\(949\) −16.1709 + 3.43724i −0.524931 + 0.111577i
\(950\) −9.44362 + 4.20457i −0.306391 + 0.136414i
\(951\) 0 0
\(952\) −0.0739386 0.703479i −0.00239636 0.0227999i
\(953\) −21.5000 + 15.6206i −0.696452 + 0.506002i −0.878775 0.477237i \(-0.841638\pi\)
0.182323 + 0.983239i \(0.441638\pi\)
\(954\) 0 0
\(955\) −8.81850 15.2741i −0.285360 0.494258i
\(956\) 2.35177 4.07338i 0.0760616 0.131743i
\(957\) 0 0
\(958\) 8.48058 9.41864i 0.273995 0.304303i
\(959\) −7.44411 + 22.9106i −0.240383 + 0.739823i
\(960\) 0 0
\(961\) 17.4028 + 25.6543i 0.561382 + 0.827557i
\(962\) −7.70881 −0.248542
\(963\) 0 0
\(964\) 7.58629 8.42543i 0.244338 0.271365i
\(965\) −6.99204 5.08001i −0.225082 0.163531i
\(966\) 0 0
\(967\) −16.0045 27.7207i −0.514671 0.891437i −0.999855 0.0170246i \(-0.994581\pi\)
0.485184 0.874412i \(-0.338753\pi\)
\(968\) −0.942301 + 8.96540i −0.0302867 + 0.288159i
\(969\) 0 0
\(970\) 0.394050 + 3.74913i 0.0126522 + 0.120377i
\(971\) −27.3662 30.3933i −0.878224 0.975366i 0.121628 0.992576i \(-0.461188\pi\)
−0.999852 + 0.0172096i \(0.994522\pi\)
\(972\) 0 0
\(973\) 33.4099 7.10149i 1.07107 0.227663i
\(974\) 14.8682 + 3.16032i 0.476406 + 0.101263i
\(975\) 0 0
\(976\) −0.809607 2.49171i −0.0259149 0.0797579i
\(977\) 13.1578 + 40.4956i 0.420956 + 1.29557i 0.906814 + 0.421531i \(0.138507\pi\)
−0.485858 + 0.874038i \(0.661493\pi\)
\(978\) 0 0
\(979\) 0.820977 + 0.174504i 0.0262385 + 0.00557717i
\(980\) 2.98606 0.634707i 0.0953863 0.0202750i
\(981\) 0 0
\(982\) −17.9327 19.9163i −0.572256 0.635555i
\(983\) −2.23926 21.3051i −0.0714212 0.679527i −0.970395 0.241524i \(-0.922353\pi\)
0.898974 0.438003i \(-0.144314\pi\)
\(984\) 0 0
\(985\) 1.00899 9.59989i 0.0321491 0.305878i
\(986\) −0.0518520 0.0898103i −0.00165130 0.00286014i
\(987\) 0 0
\(988\) −5.19443 3.77398i −0.165257 0.120066i
\(989\) −11.1540 + 12.3878i −0.354676 + 0.393908i
\(990\) 0 0
\(991\) −6.00211 −0.190663 −0.0953317 0.995446i \(-0.530391\pi\)
−0.0953317 + 0.995446i \(0.530391\pi\)
\(992\) −4.91949 2.60741i −0.156194 0.0827853i
\(993\) 0 0
\(994\) −5.53247 + 17.0272i −0.175479 + 0.540069i
\(995\) −0.502829 + 0.558449i −0.0159408 + 0.0177040i
\(996\) 0 0
\(997\) −18.0916 + 31.3356i −0.572968 + 0.992409i 0.423291 + 0.905994i \(0.360875\pi\)
−0.996259 + 0.0864157i \(0.972459\pi\)
\(998\) 16.0267 + 27.7591i 0.507318 + 0.878700i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.ba.e.541.1 8
3.2 odd 2 186.2.m.a.169.1 8
31.20 even 15 inner 558.2.ba.e.361.1 8
93.20 odd 30 186.2.m.a.175.1 yes 8
93.50 odd 30 5766.2.a.bg.1.3 4
93.74 even 30 5766.2.a.bc.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.m.a.169.1 8 3.2 odd 2
186.2.m.a.175.1 yes 8 93.20 odd 30
558.2.ba.e.361.1 8 31.20 even 15 inner
558.2.ba.e.541.1 8 1.1 even 1 trivial
5766.2.a.bc.1.3 4 93.74 even 30
5766.2.a.bg.1.3 4 93.50 odd 30