L(s) = 1 | + (−0.309 + 0.951i)2-s + (−0.809 − 0.587i)4-s + (−0.360 + 0.623i)5-s + (0.173 − 1.65i)7-s + (0.809 − 0.587i)8-s + (−0.481 − 0.535i)10-s + (1.28 − 0.573i)11-s + (2.72 + 0.578i)13-s + (1.51 + 0.675i)14-s + (0.309 + 0.951i)16-s + (0.388 + 0.173i)17-s + (2.25 − 0.479i)19-s + (0.657 − 0.292i)20-s + (0.147 + 1.40i)22-s + (4.74 − 3.44i)23-s + ⋯ |
L(s) = 1 | + (−0.218 + 0.672i)2-s + (−0.404 − 0.293i)4-s + (−0.161 + 0.278i)5-s + (0.0656 − 0.624i)7-s + (0.286 − 0.207i)8-s + (−0.152 − 0.169i)10-s + (0.388 − 0.172i)11-s + (0.755 + 0.160i)13-s + (0.405 + 0.180i)14-s + (0.0772 + 0.237i)16-s + (0.0943 + 0.0419i)17-s + (0.517 − 0.110i)19-s + (0.147 − 0.0655i)20-s + (0.0313 + 0.298i)22-s + (0.990 − 0.719i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.799 - 0.600i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.799 - 0.600i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.23814 + 0.412955i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.23814 + 0.412955i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.309 - 0.951i)T \) |
| 3 | \( 1 \) |
| 31 | \( 1 + (-4.91 - 2.60i)T \) |
good | 5 | \( 1 + (0.360 - 0.623i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.173 + 1.65i)T + (-6.84 - 1.45i)T^{2} \) |
| 11 | \( 1 + (-1.28 + 0.573i)T + (7.36 - 8.17i)T^{2} \) |
| 13 | \( 1 + (-2.72 - 0.578i)T + (11.8 + 5.28i)T^{2} \) |
| 17 | \( 1 + (-0.388 - 0.173i)T + (11.3 + 12.6i)T^{2} \) |
| 19 | \( 1 + (-2.25 + 0.479i)T + (17.3 - 7.72i)T^{2} \) |
| 23 | \( 1 + (-4.74 + 3.44i)T + (7.10 - 21.8i)T^{2} \) |
| 29 | \( 1 + (0.0752 - 0.231i)T + (-23.4 - 17.0i)T^{2} \) |
| 37 | \( 1 + (-1.38 - 2.39i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.38 + 3.75i)T + (-4.28 + 40.7i)T^{2} \) |
| 43 | \( 1 + (2.77 - 0.590i)T + (39.2 - 17.4i)T^{2} \) |
| 47 | \( 1 + (-2.12 - 6.55i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (0.501 + 4.77i)T + (-51.8 + 11.0i)T^{2} \) |
| 59 | \( 1 + (-8.08 + 8.97i)T + (-6.16 - 58.6i)T^{2} \) |
| 61 | \( 1 + 2.61T + 61T^{2} \) |
| 67 | \( 1 + (-2.62 + 4.54i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.12 - 10.7i)T + (-69.4 + 14.7i)T^{2} \) |
| 73 | \( 1 + (5.42 - 2.41i)T + (48.8 - 54.2i)T^{2} \) |
| 79 | \( 1 + (12.2 + 5.44i)T + (52.8 + 58.7i)T^{2} \) |
| 83 | \( 1 + (-4.01 - 4.45i)T + (-8.67 + 82.5i)T^{2} \) |
| 89 | \( 1 + (-0.481 - 0.350i)T + (27.5 + 84.6i)T^{2} \) |
| 97 | \( 1 + (4.23 + 3.07i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.81814146111737123497091419805, −9.923030998324676209973020711293, −8.937094610631663955817343967720, −8.198710548104854815665737126745, −7.11281746059834246302630836387, −6.58334249282610543857318912213, −5.39374130051011808820881592865, −4.30326911423235563123763377111, −3.18205586120900385808927958609, −1.12753313848498159844504944282,
1.17208825849658489999818833742, 2.66262683780225003017299007732, 3.81141499710637484303701542503, 4.94608924981851949850735503537, 5.98448611653426154154558141357, 7.21512651202568926499034757482, 8.333032422603810296261458025328, 8.935342193032267059594115871924, 9.807237274551227866102133906544, 10.71521289901764800837061638849