Properties

Label 558.2.ba.e.361.1
Level $558$
Weight $2$
Character 558.361
Analytic conductor $4.456$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [558,2,Mod(19,558)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(558, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("558.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 558 = 2 \cdot 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 558.ba (of order \(15\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,2,0,-2,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.45565243279\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 186)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 361.1
Root \(-0.978148 - 0.207912i\) of defining polynomial
Character \(\chi\) \(=\) 558.361
Dual form 558.2.ba.e.541.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{4} +(-0.360114 - 0.623735i) q^{5} +(0.173699 + 1.65264i) q^{7} +(0.809017 + 0.587785i) q^{8} +(-0.481926 + 0.535233i) q^{10} +(1.28716 + 0.573083i) q^{11} +(2.72256 - 0.578699i) q^{13} +(1.51807 - 0.675890i) q^{14} +(0.309017 - 0.951057i) q^{16} +(0.388870 - 0.173136i) q^{17} +(2.25638 + 0.479607i) q^{19} +(0.657960 + 0.292943i) q^{20} +(0.147278 - 1.40126i) q^{22} +(4.74803 + 3.44964i) q^{23} +(2.24064 - 3.88090i) q^{25} +(-1.39169 - 2.41048i) q^{26} +(-1.11192 - 1.23491i) q^{28} +(-0.0752842 - 0.231701i) q^{29} +(4.91949 - 2.60741i) q^{31} -1.00000 q^{32} +(-0.284829 - 0.316335i) q^{34} +(0.968255 - 0.703479i) q^{35} +(1.38479 - 2.39853i) q^{37} +(-0.241125 - 2.29415i) q^{38} +(0.0752842 - 0.716282i) q^{40} +(-3.38286 + 3.75704i) q^{41} +(-2.77823 - 0.590530i) q^{43} +(-1.37819 + 0.292943i) q^{44} +(1.81359 - 5.58164i) q^{46} +(2.12920 - 6.55302i) q^{47} +(4.14600 - 0.881260i) q^{49} +(-4.38335 - 0.931709i) q^{50} +(-1.86245 + 2.06846i) q^{52} +(-0.501380 + 4.77031i) q^{53} +(-0.106074 - 1.00922i) q^{55} +(-0.830869 + 1.43911i) q^{56} +(-0.197097 + 0.143199i) q^{58} +(8.08107 + 8.97493i) q^{59} -2.61994 q^{61} +(-4.00000 - 3.87298i) q^{62} +(0.309017 + 0.951057i) q^{64} +(-1.34139 - 1.48976i) q^{65} +(2.62464 + 4.54600i) q^{67} +(-0.212835 + 0.368642i) q^{68} +(-0.968255 - 0.703479i) q^{70} +(1.12618 - 10.7149i) q^{71} +(-5.42610 - 2.41585i) q^{73} +(-2.70906 - 0.575828i) q^{74} +(-2.10735 + 0.938254i) q^{76} +(-0.723518 + 2.22676i) q^{77} +(-12.2359 + 5.44777i) q^{79} +(-0.704489 + 0.149744i) q^{80} +(4.61852 + 2.05630i) q^{82} +(4.01038 - 4.45398i) q^{83} +(-0.248028 - 0.180203i) q^{85} +(0.296892 + 2.82474i) q^{86} +(0.704489 + 1.22021i) q^{88} +(0.481926 - 0.350140i) q^{89} +(1.42928 + 4.39888i) q^{91} -5.86889 q^{92} -6.89025 q^{94} +(-0.513403 - 1.58009i) q^{95} +(-4.23452 + 3.07656i) q^{97} +(-2.11931 - 3.67076i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 2 q^{4} - 3 q^{5} - 4 q^{7} + 2 q^{8} - 12 q^{10} - 3 q^{11} + 11 q^{13} + 4 q^{14} - 2 q^{16} + 2 q^{19} - 3 q^{20} - 12 q^{22} + 6 q^{23} - q^{25} + 4 q^{26} + 6 q^{28} - 3 q^{29} - 8 q^{31}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/558\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(497\)
\(\chi(n)\) \(e\left(\frac{4}{15}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 0.951057i −0.218508 0.672499i
\(3\) 0 0
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) −0.360114 0.623735i −0.161048 0.278943i 0.774197 0.632945i \(-0.218154\pi\)
−0.935245 + 0.354002i \(0.884821\pi\)
\(6\) 0 0
\(7\) 0.173699 + 1.65264i 0.0656521 + 0.624638i 0.977035 + 0.213078i \(0.0683490\pi\)
−0.911383 + 0.411559i \(0.864984\pi\)
\(8\) 0.809017 + 0.587785i 0.286031 + 0.207813i
\(9\) 0 0
\(10\) −0.481926 + 0.535233i −0.152398 + 0.169256i
\(11\) 1.28716 + 0.573083i 0.388095 + 0.172791i 0.591502 0.806303i \(-0.298535\pi\)
−0.203408 + 0.979094i \(0.565202\pi\)
\(12\) 0 0
\(13\) 2.72256 0.578699i 0.755103 0.160502i 0.185752 0.982597i \(-0.440528\pi\)
0.569351 + 0.822095i \(0.307195\pi\)
\(14\) 1.51807 0.675890i 0.405722 0.180639i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) 0.388870 0.173136i 0.0943147 0.0419916i −0.359037 0.933323i \(-0.616895\pi\)
0.453352 + 0.891332i \(0.350228\pi\)
\(18\) 0 0
\(19\) 2.25638 + 0.479607i 0.517648 + 0.110029i 0.459325 0.888268i \(-0.348091\pi\)
0.0583230 + 0.998298i \(0.481425\pi\)
\(20\) 0.657960 + 0.292943i 0.147124 + 0.0655040i
\(21\) 0 0
\(22\) 0.147278 1.40126i 0.0313998 0.298749i
\(23\) 4.74803 + 3.44964i 0.990032 + 0.719301i 0.959928 0.280246i \(-0.0904161\pi\)
0.0301042 + 0.999547i \(0.490416\pi\)
\(24\) 0 0
\(25\) 2.24064 3.88090i 0.448127 0.776179i
\(26\) −1.39169 2.41048i −0.272933 0.472735i
\(27\) 0 0
\(28\) −1.11192 1.23491i −0.210133 0.233377i
\(29\) −0.0752842 0.231701i −0.0139799 0.0430258i 0.943823 0.330451i \(-0.107201\pi\)
−0.957803 + 0.287425i \(0.907201\pi\)
\(30\) 0 0
\(31\) 4.91949 2.60741i 0.883567 0.468304i
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −0.284829 0.316335i −0.0488478 0.0542510i
\(35\) 0.968255 0.703479i 0.163665 0.118910i
\(36\) 0 0
\(37\) 1.38479 2.39853i 0.227658 0.394315i −0.729456 0.684028i \(-0.760227\pi\)
0.957114 + 0.289713i \(0.0935599\pi\)
\(38\) −0.241125 2.29415i −0.0391156 0.372160i
\(39\) 0 0
\(40\) 0.0752842 0.716282i 0.0119035 0.113254i
\(41\) −3.38286 + 3.75704i −0.528314 + 0.586752i −0.946941 0.321406i \(-0.895845\pi\)
0.418628 + 0.908158i \(0.362511\pi\)
\(42\) 0 0
\(43\) −2.77823 0.590530i −0.423676 0.0900551i −0.00886054 0.999961i \(-0.502820\pi\)
−0.414815 + 0.909906i \(0.636154\pi\)
\(44\) −1.37819 + 0.292943i −0.207770 + 0.0441628i
\(45\) 0 0
\(46\) 1.81359 5.58164i 0.267399 0.822968i
\(47\) 2.12920 6.55302i 0.310576 0.955856i −0.666961 0.745093i \(-0.732405\pi\)
0.977537 0.210763i \(-0.0675948\pi\)
\(48\) 0 0
\(49\) 4.14600 0.881260i 0.592286 0.125894i
\(50\) −4.38335 0.931709i −0.619899 0.131764i
\(51\) 0 0
\(52\) −1.86245 + 2.06846i −0.258275 + 0.286844i
\(53\) −0.501380 + 4.77031i −0.0688699 + 0.655253i 0.904572 + 0.426320i \(0.140190\pi\)
−0.973442 + 0.228933i \(0.926476\pi\)
\(54\) 0 0
\(55\) −0.106074 1.00922i −0.0143030 0.136084i
\(56\) −0.830869 + 1.43911i −0.111030 + 0.192309i
\(57\) 0 0
\(58\) −0.197097 + 0.143199i −0.0258801 + 0.0188030i
\(59\) 8.08107 + 8.97493i 1.05207 + 1.16844i 0.985329 + 0.170666i \(0.0545920\pi\)
0.0667365 + 0.997771i \(0.478741\pi\)
\(60\) 0 0
\(61\) −2.61994 −0.335449 −0.167725 0.985834i \(-0.553642\pi\)
−0.167725 + 0.985834i \(0.553642\pi\)
\(62\) −4.00000 3.87298i −0.508001 0.491869i
\(63\) 0 0
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) −1.34139 1.48976i −0.166379 0.184782i
\(66\) 0 0
\(67\) 2.62464 + 4.54600i 0.320650 + 0.555383i 0.980622 0.195908i \(-0.0627652\pi\)
−0.659972 + 0.751290i \(0.729432\pi\)
\(68\) −0.212835 + 0.368642i −0.0258101 + 0.0447044i
\(69\) 0 0
\(70\) −0.968255 0.703479i −0.115729 0.0840818i
\(71\) 1.12618 10.7149i 0.133653 1.27162i −0.697906 0.716189i \(-0.745885\pi\)
0.831560 0.555436i \(-0.187448\pi\)
\(72\) 0 0
\(73\) −5.42610 2.41585i −0.635076 0.282754i 0.0638372 0.997960i \(-0.479666\pi\)
−0.698914 + 0.715206i \(0.746333\pi\)
\(74\) −2.70906 0.575828i −0.314921 0.0669386i
\(75\) 0 0
\(76\) −2.10735 + 0.938254i −0.241730 + 0.107625i
\(77\) −0.723518 + 2.22676i −0.0824525 + 0.253763i
\(78\) 0 0
\(79\) −12.2359 + 5.44777i −1.37665 + 0.612923i −0.955748 0.294185i \(-0.904952\pi\)
−0.420898 + 0.907108i \(0.638285\pi\)
\(80\) −0.704489 + 0.149744i −0.0787642 + 0.0167419i
\(81\) 0 0
\(82\) 4.61852 + 2.05630i 0.510030 + 0.227080i
\(83\) 4.01038 4.45398i 0.440196 0.488888i −0.481693 0.876340i \(-0.659978\pi\)
0.921890 + 0.387452i \(0.126645\pi\)
\(84\) 0 0
\(85\) −0.248028 0.180203i −0.0269024 0.0195458i
\(86\) 0.296892 + 2.82474i 0.0320146 + 0.304599i
\(87\) 0 0
\(88\) 0.704489 + 1.22021i 0.0750987 + 0.130075i
\(89\) 0.481926 0.350140i 0.0510841 0.0371147i −0.561950 0.827171i \(-0.689949\pi\)
0.613034 + 0.790056i \(0.289949\pi\)
\(90\) 0 0
\(91\) 1.42928 + 4.39888i 0.149830 + 0.461128i
\(92\) −5.86889 −0.611874
\(93\) 0 0
\(94\) −6.89025 −0.710675
\(95\) −0.513403 1.58009i −0.0526741 0.162114i
\(96\) 0 0
\(97\) −4.23452 + 3.07656i −0.429951 + 0.312377i −0.781629 0.623743i \(-0.785611\pi\)
0.351679 + 0.936121i \(0.385611\pi\)
\(98\) −2.11931 3.67076i −0.214083 0.370802i
\(99\) 0 0
\(100\) 0.468421 + 4.45672i 0.0468421 + 0.445672i
\(101\) −8.02685 5.83184i −0.798701 0.580290i 0.111832 0.993727i \(-0.464328\pi\)
−0.910533 + 0.413437i \(0.864328\pi\)
\(102\) 0 0
\(103\) −12.2525 + 13.6078i −1.20728 + 1.34082i −0.282990 + 0.959123i \(0.591326\pi\)
−0.924288 + 0.381695i \(0.875340\pi\)
\(104\) 2.54275 + 1.13211i 0.249337 + 0.111012i
\(105\) 0 0
\(106\) 4.69177 0.997267i 0.455705 0.0968631i
\(107\) 4.08531 1.81890i 0.394942 0.175840i −0.199650 0.979867i \(-0.563980\pi\)
0.594592 + 0.804028i \(0.297314\pi\)
\(108\) 0 0
\(109\) −3.04131 + 9.36018i −0.291304 + 0.896543i 0.693133 + 0.720809i \(0.256230\pi\)
−0.984438 + 0.175733i \(0.943770\pi\)
\(110\) −0.927051 + 0.412750i −0.0883908 + 0.0393541i
\(111\) 0 0
\(112\) 1.62543 + 0.345495i 0.153588 + 0.0326462i
\(113\) 10.0295 + 4.46541i 0.943494 + 0.420071i 0.820057 0.572282i \(-0.193942\pi\)
0.123437 + 0.992352i \(0.460608\pi\)
\(114\) 0 0
\(115\) 0.441835 4.20378i 0.0412013 0.392004i
\(116\) 0.197097 + 0.143199i 0.0183000 + 0.0132957i
\(117\) 0 0
\(118\) 6.03848 10.4590i 0.555887 0.962825i
\(119\) 0.353677 + 0.612586i 0.0324215 + 0.0561557i
\(120\) 0 0
\(121\) −6.03207 6.69929i −0.548370 0.609026i
\(122\) 0.809607 + 2.49171i 0.0732984 + 0.225589i
\(123\) 0 0
\(124\) −2.44736 + 5.00104i −0.219779 + 0.449107i
\(125\) −6.82867 −0.610775
\(126\) 0 0
\(127\) 10.9291 + 12.1380i 0.969799 + 1.07707i 0.996997 + 0.0774413i \(0.0246750\pi\)
−0.0271975 + 0.999630i \(0.508658\pi\)
\(128\) 0.809017 0.587785i 0.0715077 0.0519534i
\(129\) 0 0
\(130\) −1.00234 + 1.73610i −0.0879106 + 0.152266i
\(131\) 0.744436 + 7.08284i 0.0650417 + 0.618830i 0.977685 + 0.210074i \(0.0673706\pi\)
−0.912644 + 0.408756i \(0.865963\pi\)
\(132\) 0 0
\(133\) −0.400686 + 3.81227i −0.0347439 + 0.330566i
\(134\) 3.51245 3.90097i 0.303429 0.336992i
\(135\) 0 0
\(136\) 0.416369 + 0.0885019i 0.0357033 + 0.00758898i
\(137\) −14.1799 + 3.01403i −1.21147 + 0.257506i −0.768982 0.639270i \(-0.779237\pi\)
−0.442486 + 0.896775i \(0.645903\pi\)
\(138\) 0 0
\(139\) 6.35170 19.5485i 0.538744 1.65808i −0.196672 0.980469i \(-0.563013\pi\)
0.735416 0.677616i \(-0.236987\pi\)
\(140\) −0.369841 + 1.13825i −0.0312572 + 0.0961999i
\(141\) 0 0
\(142\) −10.5385 + 2.24002i −0.884370 + 0.187979i
\(143\) 3.83603 + 0.815373i 0.320785 + 0.0681849i
\(144\) 0 0
\(145\) −0.117409 + 0.130396i −0.00975030 + 0.0108288i
\(146\) −0.620857 + 5.90706i −0.0513825 + 0.488872i
\(147\) 0 0
\(148\) 0.289500 + 2.75441i 0.0237967 + 0.226411i
\(149\) −10.2156 + 17.6939i −0.836894 + 1.44954i 0.0555846 + 0.998454i \(0.482298\pi\)
−0.892479 + 0.451089i \(0.851036\pi\)
\(150\) 0 0
\(151\) −0.849699 + 0.617342i −0.0691475 + 0.0502386i −0.621822 0.783159i \(-0.713607\pi\)
0.552675 + 0.833397i \(0.313607\pi\)
\(152\) 1.54354 + 1.71427i 0.125198 + 0.139046i
\(153\) 0 0
\(154\) 2.34135 0.188672
\(155\) −3.39791 2.12950i −0.272927 0.171045i
\(156\) 0 0
\(157\) 4.50614 + 13.8685i 0.359629 + 1.10682i 0.953277 + 0.302099i \(0.0976872\pi\)
−0.593648 + 0.804725i \(0.702313\pi\)
\(158\) 8.96224 + 9.95358i 0.712998 + 0.791864i
\(159\) 0 0
\(160\) 0.360114 + 0.623735i 0.0284695 + 0.0493106i
\(161\) −4.87628 + 8.44596i −0.384304 + 0.665635i
\(162\) 0 0
\(163\) −3.95554 2.87387i −0.309822 0.225099i 0.421998 0.906597i \(-0.361329\pi\)
−0.731820 + 0.681498i \(0.761329\pi\)
\(164\) 0.528454 5.02791i 0.0412653 0.392614i
\(165\) 0 0
\(166\) −5.47526 2.43774i −0.424963 0.189206i
\(167\) 12.2190 + 2.59723i 0.945535 + 0.200980i 0.654782 0.755818i \(-0.272761\pi\)
0.290754 + 0.956798i \(0.406094\pi\)
\(168\) 0 0
\(169\) −4.79864 + 2.13649i −0.369126 + 0.164345i
\(170\) −0.0947383 + 0.291575i −0.00726610 + 0.0223628i
\(171\) 0 0
\(172\) 2.59474 1.15525i 0.197847 0.0880871i
\(173\) −4.97591 + 1.05766i −0.378312 + 0.0804126i −0.393143 0.919477i \(-0.628612\pi\)
0.0148312 + 0.999890i \(0.495279\pi\)
\(174\) 0 0
\(175\) 6.80290 + 3.02885i 0.514251 + 0.228959i
\(176\) 0.942790 1.04707i 0.0710654 0.0789262i
\(177\) 0 0
\(178\) −0.481926 0.350140i −0.0361219 0.0262441i
\(179\) 1.48412 + 14.1204i 0.110928 + 1.05541i 0.898435 + 0.439106i \(0.144705\pi\)
−0.787507 + 0.616305i \(0.788629\pi\)
\(180\) 0 0
\(181\) −8.41115 14.5685i −0.625196 1.08287i −0.988503 0.151201i \(-0.951686\pi\)
0.363307 0.931669i \(-0.381647\pi\)
\(182\) 3.74191 2.71866i 0.277369 0.201520i
\(183\) 0 0
\(184\) 1.81359 + 5.58164i 0.133699 + 0.411484i
\(185\) −1.99473 −0.146655
\(186\) 0 0
\(187\) 0.599760 0.0438588
\(188\) 2.12920 + 6.55302i 0.155288 + 0.477928i
\(189\) 0 0
\(190\) −1.34411 + 0.976551i −0.0975118 + 0.0708465i
\(191\) −12.2441 21.2073i −0.885948 1.53451i −0.844623 0.535362i \(-0.820175\pi\)
−0.0413256 0.999146i \(-0.513158\pi\)
\(192\) 0 0
\(193\) −1.25433 11.9341i −0.0902885 0.859038i −0.942132 0.335242i \(-0.891182\pi\)
0.851844 0.523796i \(-0.175485\pi\)
\(194\) 4.23452 + 3.07656i 0.304021 + 0.220884i
\(195\) 0 0
\(196\) −2.83619 + 3.14991i −0.202585 + 0.224994i
\(197\) −12.2437 5.45125i −0.872327 0.388385i −0.0787788 0.996892i \(-0.525102\pi\)
−0.793549 + 0.608507i \(0.791769\pi\)
\(198\) 0 0
\(199\) 1.02057 0.216930i 0.0723466 0.0153777i −0.171596 0.985167i \(-0.554892\pi\)
0.243943 + 0.969790i \(0.421559\pi\)
\(200\) 4.09385 1.82270i 0.289479 0.128884i
\(201\) 0 0
\(202\) −3.06598 + 9.43612i −0.215722 + 0.663923i
\(203\) 0.369841 0.164664i 0.0259577 0.0115571i
\(204\) 0 0
\(205\) 3.56161 + 0.757044i 0.248754 + 0.0528743i
\(206\) 16.7280 + 7.44781i 1.16550 + 0.518913i
\(207\) 0 0
\(208\) 0.290943 2.76814i 0.0201733 0.191936i
\(209\) 2.62947 + 1.91042i 0.181884 + 0.132147i
\(210\) 0 0
\(211\) 8.20101 14.2046i 0.564581 0.977883i −0.432508 0.901630i \(-0.642371\pi\)
0.997089 0.0762526i \(-0.0242955\pi\)
\(212\) −2.39829 4.15397i −0.164716 0.285296i
\(213\) 0 0
\(214\) −2.99231 3.32329i −0.204550 0.227176i
\(215\) 0.632143 + 1.94554i 0.0431118 + 0.132684i
\(216\) 0 0
\(217\) 5.16361 + 7.67723i 0.350528 + 0.521164i
\(218\) 9.84187 0.666576
\(219\) 0 0
\(220\) 0.679023 + 0.754131i 0.0457797 + 0.0508435i
\(221\) 0.958528 0.696412i 0.0644776 0.0468457i
\(222\) 0 0
\(223\) 10.9262 18.9248i 0.731675 1.26730i −0.224492 0.974476i \(-0.572072\pi\)
0.956167 0.292822i \(-0.0945943\pi\)
\(224\) −0.173699 1.65264i −0.0116058 0.110421i
\(225\) 0 0
\(226\) 1.14758 10.9185i 0.0763359 0.726287i
\(227\) −7.72368 + 8.57801i −0.512638 + 0.569343i −0.942779 0.333420i \(-0.891797\pi\)
0.430140 + 0.902762i \(0.358464\pi\)
\(228\) 0 0
\(229\) −20.4055 4.33731i −1.34843 0.286618i −0.523584 0.851974i \(-0.675405\pi\)
−0.824847 + 0.565356i \(0.808739\pi\)
\(230\) −4.13456 + 0.878828i −0.272625 + 0.0579482i
\(231\) 0 0
\(232\) 0.0752842 0.231701i 0.00494265 0.0152119i
\(233\) 8.46951 26.0665i 0.554856 1.70767i −0.141467 0.989943i \(-0.545182\pi\)
0.696323 0.717729i \(-0.254818\pi\)
\(234\) 0 0
\(235\) −4.85410 + 1.03177i −0.316647 + 0.0673053i
\(236\) −11.8131 2.51094i −0.768964 0.163448i
\(237\) 0 0
\(238\) 0.473312 0.525666i 0.0306803 0.0340739i
\(239\) 0.491653 4.67777i 0.0318024 0.302580i −0.967046 0.254602i \(-0.918056\pi\)
0.998848 0.0479779i \(-0.0152777\pi\)
\(240\) 0 0
\(241\) −1.18509 11.2754i −0.0763387 0.726314i −0.964015 0.265847i \(-0.914349\pi\)
0.887677 0.460467i \(-0.152318\pi\)
\(242\) −4.50739 + 7.80703i −0.289746 + 0.501855i
\(243\) 0 0
\(244\) 2.11958 1.53996i 0.135692 0.0985861i
\(245\) −2.04270 2.26865i −0.130504 0.144939i
\(246\) 0 0
\(247\) 6.42067 0.408537
\(248\) 5.51255 + 0.782168i 0.350047 + 0.0496677i
\(249\) 0 0
\(250\) 2.11018 + 6.49445i 0.133459 + 0.410745i
\(251\) −0.676301 0.751109i −0.0426878 0.0474096i 0.721423 0.692495i \(-0.243488\pi\)
−0.764111 + 0.645085i \(0.776822\pi\)
\(252\) 0 0
\(253\) 4.13456 + 7.16127i 0.259938 + 0.450225i
\(254\) 8.16663 14.1450i 0.512420 0.887537i
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 3.20124 30.4577i 0.199688 1.89990i −0.194549 0.980893i \(-0.562324\pi\)
0.394237 0.919009i \(-0.371009\pi\)
\(258\) 0 0
\(259\) 4.20443 + 1.87193i 0.261250 + 0.116316i
\(260\) 1.96086 + 0.416794i 0.121608 + 0.0258485i
\(261\) 0 0
\(262\) 6.50614 2.89672i 0.401950 0.178960i
\(263\) 1.80632 5.55927i 0.111382 0.342799i −0.879793 0.475357i \(-0.842319\pi\)
0.991175 + 0.132558i \(0.0423189\pi\)
\(264\) 0 0
\(265\) 3.15597 1.40513i 0.193869 0.0863162i
\(266\) 3.74951 0.796982i 0.229897 0.0488661i
\(267\) 0 0
\(268\) −4.79545 2.13507i −0.292929 0.130420i
\(269\) −0.304971 + 0.338705i −0.0185944 + 0.0206512i −0.752370 0.658740i \(-0.771090\pi\)
0.733776 + 0.679392i \(0.237756\pi\)
\(270\) 0 0
\(271\) 2.08363 + 1.51385i 0.126572 + 0.0919596i 0.649270 0.760558i \(-0.275075\pi\)
−0.522698 + 0.852518i \(0.675075\pi\)
\(272\) −0.0444947 0.423339i −0.00269789 0.0256687i
\(273\) 0 0
\(274\) 7.24833 + 12.5545i 0.437888 + 0.758444i
\(275\) 5.10814 3.71128i 0.308033 0.223799i
\(276\) 0 0
\(277\) 7.23820 + 22.2769i 0.434901 + 1.33849i 0.893188 + 0.449684i \(0.148463\pi\)
−0.458287 + 0.888804i \(0.651537\pi\)
\(278\) −20.5545 −1.23278
\(279\) 0 0
\(280\) 1.19683 0.0715242
\(281\) −9.06598 27.9022i −0.540831 1.66451i −0.730701 0.682698i \(-0.760807\pi\)
0.189870 0.981809i \(-0.439193\pi\)
\(282\) 0 0
\(283\) 8.80869 6.39989i 0.523622 0.380434i −0.294345 0.955699i \(-0.595101\pi\)
0.817967 + 0.575266i \(0.195101\pi\)
\(284\) 5.38696 + 9.33049i 0.319657 + 0.553663i
\(285\) 0 0
\(286\) −0.409932 3.90024i −0.0242398 0.230626i
\(287\) −6.79662 4.93804i −0.401192 0.291483i
\(288\) 0 0
\(289\) −11.2540 + 12.4988i −0.661999 + 0.735224i
\(290\) 0.160296 + 0.0713682i 0.00941288 + 0.00419088i
\(291\) 0 0
\(292\) 5.80981 1.23491i 0.339993 0.0722678i
\(293\) −10.0783 + 4.48715i −0.588781 + 0.262142i −0.679430 0.733741i \(-0.737773\pi\)
0.0906485 + 0.995883i \(0.471106\pi\)
\(294\) 0 0
\(295\) 2.68788 8.27244i 0.156494 0.481640i
\(296\) 2.53014 1.12649i 0.147061 0.0654759i
\(297\) 0 0
\(298\) 19.9847 + 4.24788i 1.15768 + 0.246073i
\(299\) 14.9231 + 6.64420i 0.863026 + 0.384244i
\(300\) 0 0
\(301\) 0.493356 4.69397i 0.0284366 0.270556i
\(302\) 0.849699 + 0.617342i 0.0488947 + 0.0355241i
\(303\) 0 0
\(304\) 1.15339 1.99773i 0.0661516 0.114578i
\(305\) 0.943478 + 1.63415i 0.0540234 + 0.0935712i
\(306\) 0 0
\(307\) −5.03883 5.59619i −0.287581 0.319392i 0.581993 0.813194i \(-0.302273\pi\)
−0.869574 + 0.493802i \(0.835607\pi\)
\(308\) −0.723518 2.22676i −0.0412262 0.126881i
\(309\) 0 0
\(310\) −0.975261 + 3.88965i −0.0553911 + 0.220918i
\(311\) 13.9560 0.791370 0.395685 0.918386i \(-0.370507\pi\)
0.395685 + 0.918386i \(0.370507\pi\)
\(312\) 0 0
\(313\) 16.7885 + 18.6455i 0.948943 + 1.05391i 0.998479 + 0.0551357i \(0.0175591\pi\)
−0.0495358 + 0.998772i \(0.515774\pi\)
\(314\) 11.7972 8.57118i 0.665755 0.483700i
\(315\) 0 0
\(316\) 6.69693 11.5994i 0.376732 0.652519i
\(317\) −1.44088 13.7091i −0.0809279 0.769977i −0.957447 0.288610i \(-0.906807\pi\)
0.876519 0.481367i \(-0.159860\pi\)
\(318\) 0 0
\(319\) 0.0358806 0.341382i 0.00200893 0.0191137i
\(320\) 0.481926 0.535233i 0.0269405 0.0299204i
\(321\) 0 0
\(322\) 9.53944 + 2.02767i 0.531612 + 0.112998i
\(323\) 0.960473 0.204155i 0.0534421 0.0113595i
\(324\) 0 0
\(325\) 3.85440 11.8626i 0.213804 0.658021i
\(326\) −1.51088 + 4.65002i −0.0836800 + 0.257541i
\(327\) 0 0
\(328\) −4.94512 + 1.05112i −0.273049 + 0.0580383i
\(329\) 11.1996 + 2.38055i 0.617453 + 0.131244i
\(330\) 0 0
\(331\) 0.242751 0.269602i 0.0133428 0.0148187i −0.736436 0.676507i \(-0.763493\pi\)
0.749779 + 0.661688i \(0.230160\pi\)
\(332\) −0.626483 + 5.96059i −0.0343827 + 0.327130i
\(333\) 0 0
\(334\) −1.30577 12.4236i −0.0714485 0.679787i
\(335\) 1.89033 3.27415i 0.103280 0.178886i
\(336\) 0 0
\(337\) 10.8516 7.88415i 0.591124 0.429477i −0.251593 0.967833i \(-0.580954\pi\)
0.842717 + 0.538356i \(0.180954\pi\)
\(338\) 3.51478 + 3.90356i 0.191179 + 0.212326i
\(339\) 0 0
\(340\) 0.306580 0.0166266
\(341\) 7.82646 0.536887i 0.423827 0.0290741i
\(342\) 0 0
\(343\) 5.77110 + 17.7616i 0.311610 + 0.959037i
\(344\) −1.90053 2.11075i −0.102470 0.113804i
\(345\) 0 0
\(346\) 2.54354 + 4.40554i 0.136742 + 0.236843i
\(347\) −17.6702 + 30.6057i −0.948585 + 1.64300i −0.200176 + 0.979760i \(0.564151\pi\)
−0.748409 + 0.663237i \(0.769182\pi\)
\(348\) 0 0
\(349\) −25.0879 18.2274i −1.34293 0.975693i −0.999331 0.0365750i \(-0.988355\pi\)
−0.343595 0.939118i \(-0.611645\pi\)
\(350\) 0.778393 7.40591i 0.0416068 0.395863i
\(351\) 0 0
\(352\) −1.28716 0.573083i −0.0686061 0.0305454i
\(353\) 23.7860 + 5.05587i 1.26600 + 0.269097i 0.791506 0.611162i \(-0.209298\pi\)
0.474494 + 0.880259i \(0.342631\pi\)
\(354\) 0 0
\(355\) −7.08881 + 3.15614i −0.376235 + 0.167511i
\(356\) −0.184079 + 0.566538i −0.00975619 + 0.0300265i
\(357\) 0 0
\(358\) 12.9707 5.77493i 0.685524 0.305215i
\(359\) −19.0052 + 4.03968i −1.00306 + 0.213206i −0.680031 0.733184i \(-0.738034\pi\)
−0.323026 + 0.946390i \(0.604700\pi\)
\(360\) 0 0
\(361\) −12.4962 5.56365i −0.657693 0.292824i
\(362\) −11.2563 + 12.5014i −0.591619 + 0.657059i
\(363\) 0 0
\(364\) −3.74191 2.71866i −0.196130 0.142497i
\(365\) 0.447158 + 4.25443i 0.0234053 + 0.222687i
\(366\) 0 0
\(367\) −9.63456 16.6876i −0.502920 0.871083i −0.999994 0.00337510i \(-0.998926\pi\)
0.497074 0.867708i \(-0.334408\pi\)
\(368\) 4.74803 3.44964i 0.247508 0.179825i
\(369\) 0 0
\(370\) 0.616404 + 1.89710i 0.0320453 + 0.0986254i
\(371\) −7.97068 −0.413817
\(372\) 0 0
\(373\) −4.38573 −0.227084 −0.113542 0.993533i \(-0.536220\pi\)
−0.113542 + 0.993533i \(0.536220\pi\)
\(374\) −0.185336 0.570406i −0.00958350 0.0294950i
\(375\) 0 0
\(376\) 5.57433 4.04999i 0.287474 0.208862i
\(377\) −0.339051 0.587254i −0.0174620 0.0302451i
\(378\) 0 0
\(379\) −1.33865 12.7364i −0.0687619 0.654226i −0.973567 0.228401i \(-0.926650\pi\)
0.904805 0.425825i \(-0.140016\pi\)
\(380\) 1.34411 + 0.976551i 0.0689513 + 0.0500960i
\(381\) 0 0
\(382\) −16.3857 + 18.1982i −0.838367 + 0.931101i
\(383\) 25.6906 + 11.4382i 1.31273 + 0.584464i 0.939269 0.343183i \(-0.111505\pi\)
0.373459 + 0.927647i \(0.378172\pi\)
\(384\) 0 0
\(385\) 1.64946 0.350603i 0.0840640 0.0178684i
\(386\) −10.9624 + 4.88079i −0.557973 + 0.248426i
\(387\) 0 0
\(388\) 1.61744 4.97798i 0.0821133 0.252719i
\(389\) −2.14390 + 0.954527i −0.108700 + 0.0483965i −0.460366 0.887729i \(-0.652282\pi\)
0.351666 + 0.936126i \(0.385615\pi\)
\(390\) 0 0
\(391\) 2.44362 + 0.519408i 0.123579 + 0.0262676i
\(392\) 3.87218 + 1.72400i 0.195574 + 0.0870753i
\(393\) 0 0
\(394\) −1.40093 + 13.3290i −0.0705779 + 0.671504i
\(395\) 7.80428 + 5.67014i 0.392676 + 0.285296i
\(396\) 0 0
\(397\) −11.2870 + 19.5496i −0.566477 + 0.981167i 0.430433 + 0.902622i \(0.358361\pi\)
−0.996911 + 0.0785449i \(0.974973\pi\)
\(398\) −0.521687 0.903589i −0.0261498 0.0452928i
\(399\) 0 0
\(400\) −2.99856 3.33023i −0.149928 0.166512i
\(401\) 6.51963 + 20.0654i 0.325575 + 1.00202i 0.971180 + 0.238345i \(0.0766050\pi\)
−0.645606 + 0.763671i \(0.723395\pi\)
\(402\) 0 0
\(403\) 11.8847 9.94574i 0.592020 0.495432i
\(404\) 9.92173 0.493624
\(405\) 0 0
\(406\) −0.270892 0.300855i −0.0134441 0.0149312i
\(407\) 3.15701 2.29370i 0.156487 0.113694i
\(408\) 0 0
\(409\) 10.7156 18.5600i 0.529852 0.917731i −0.469541 0.882910i \(-0.655581\pi\)
0.999394 0.0348204i \(-0.0110859\pi\)
\(410\) −0.380607 3.62124i −0.0187968 0.178840i
\(411\) 0 0
\(412\) 1.91403 18.2108i 0.0942977 0.897182i
\(413\) −13.4286 + 14.9140i −0.660779 + 0.733870i
\(414\) 0 0
\(415\) −4.22230 0.897477i −0.207264 0.0440554i
\(416\) −2.72256 + 0.578699i −0.133485 + 0.0283730i
\(417\) 0 0
\(418\) 1.00437 3.09113i 0.0491253 0.151192i
\(419\) −3.81826 + 11.7514i −0.186534 + 0.574093i −0.999971 0.00755981i \(-0.997594\pi\)
0.813437 + 0.581652i \(0.197594\pi\)
\(420\) 0 0
\(421\) −23.4190 + 4.97785i −1.14137 + 0.242606i −0.739543 0.673110i \(-0.764958\pi\)
−0.401828 + 0.915715i \(0.631625\pi\)
\(422\) −16.0436 3.41017i −0.780990 0.166005i
\(423\) 0 0
\(424\) −3.20955 + 3.56456i −0.155869 + 0.173110i
\(425\) 0.199393 1.89710i 0.00967198 0.0920227i
\(426\) 0 0
\(427\) −0.455082 4.32981i −0.0220229 0.209534i
\(428\) −2.23597 + 3.87281i −0.108079 + 0.187199i
\(429\) 0 0
\(430\) 1.65497 1.20241i 0.0798098 0.0579852i
\(431\) −8.43237 9.36510i −0.406173 0.451101i 0.505003 0.863117i \(-0.331491\pi\)
−0.911176 + 0.412016i \(0.864825\pi\)
\(432\) 0 0
\(433\) −16.5682 −0.796215 −0.398107 0.917339i \(-0.630333\pi\)
−0.398107 + 0.917339i \(0.630333\pi\)
\(434\) 5.70583 7.28328i 0.273889 0.349608i
\(435\) 0 0
\(436\) −3.04131 9.36018i −0.145652 0.448271i
\(437\) 9.05886 + 10.0609i 0.433344 + 0.481277i
\(438\) 0 0
\(439\) 8.16693 + 14.1455i 0.389786 + 0.675130i 0.992421 0.122888i \(-0.0392155\pi\)
−0.602634 + 0.798018i \(0.705882\pi\)
\(440\) 0.507392 0.878828i 0.0241890 0.0418965i
\(441\) 0 0
\(442\) −0.958528 0.696412i −0.0455925 0.0331249i
\(443\) 1.40254 13.3443i 0.0666367 0.634006i −0.909328 0.416079i \(-0.863404\pi\)
0.975965 0.217927i \(-0.0699294\pi\)
\(444\) 0 0
\(445\) −0.391943 0.174504i −0.0185799 0.00827229i
\(446\) −21.3749 4.54338i −1.01213 0.215135i
\(447\) 0 0
\(448\) −1.51807 + 0.675890i −0.0717223 + 0.0319328i
\(449\) −1.57732 + 4.85448i −0.0744382 + 0.229097i −0.981352 0.192219i \(-0.938432\pi\)
0.906914 + 0.421316i \(0.138432\pi\)
\(450\) 0 0
\(451\) −6.50739 + 2.89728i −0.306421 + 0.136427i
\(452\) −10.7387 + 2.28259i −0.505107 + 0.107364i
\(453\) 0 0
\(454\) 10.5449 + 4.69490i 0.494898 + 0.220343i
\(455\) 2.22903 2.47559i 0.104499 0.116058i
\(456\) 0 0
\(457\) 30.8490 + 22.4131i 1.44306 + 1.04844i 0.987393 + 0.158291i \(0.0505984\pi\)
0.455665 + 0.890152i \(0.349402\pi\)
\(458\) 2.18060 + 20.7470i 0.101893 + 0.969446i
\(459\) 0 0
\(460\) 2.11347 + 3.66063i 0.0985408 + 0.170678i
\(461\) −11.0437 + 8.02372i −0.514356 + 0.373702i −0.814474 0.580201i \(-0.802974\pi\)
0.300117 + 0.953902i \(0.402974\pi\)
\(462\) 0 0
\(463\) 9.68783 + 29.8161i 0.450232 + 1.38567i 0.876643 + 0.481142i \(0.159778\pi\)
−0.426411 + 0.904529i \(0.640222\pi\)
\(464\) −0.243625 −0.0113100
\(465\) 0 0
\(466\) −27.4079 −1.26965
\(467\) 2.01215 + 6.19275i 0.0931110 + 0.286566i 0.986757 0.162207i \(-0.0518612\pi\)
−0.893646 + 0.448773i \(0.851861\pi\)
\(468\) 0 0
\(469\) −7.05699 + 5.12720i −0.325861 + 0.236752i
\(470\) 2.48127 + 4.29769i 0.114453 + 0.198238i
\(471\) 0 0
\(472\) 1.26239 + 12.0108i 0.0581061 + 0.552842i
\(473\) −3.23761 2.35226i −0.148866 0.108157i
\(474\) 0 0
\(475\) 6.91702 7.68213i 0.317375 0.352480i
\(476\) −0.646200 0.287707i −0.0296185 0.0131870i
\(477\) 0 0
\(478\) −4.60075 + 0.977920i −0.210433 + 0.0447290i
\(479\) −11.5783 + 5.15499i −0.529026 + 0.235538i −0.653827 0.756644i \(-0.726838\pi\)
0.124801 + 0.992182i \(0.460171\pi\)
\(480\) 0 0
\(481\) 2.38215 7.33151i 0.108617 0.334288i
\(482\) −10.3574 + 4.61139i −0.471764 + 0.210043i
\(483\) 0 0
\(484\) 8.81779 + 1.87428i 0.400809 + 0.0851945i
\(485\) 3.44387 + 1.53331i 0.156378 + 0.0696240i
\(486\) 0 0
\(487\) −1.58887 + 15.1171i −0.0719984 + 0.685019i 0.897682 + 0.440643i \(0.145250\pi\)
−0.969681 + 0.244376i \(0.921417\pi\)
\(488\) −2.11958 1.53996i −0.0959488 0.0697109i
\(489\) 0 0
\(490\) −1.52639 + 2.64378i −0.0689551 + 0.119434i
\(491\) −13.4000 23.2095i −0.604734 1.04743i −0.992093 0.125501i \(-0.959946\pi\)
0.387359 0.921929i \(-0.373387\pi\)
\(492\) 0 0
\(493\) −0.0693915 0.0770671i −0.00312524 0.00347093i
\(494\) −1.98410 6.10642i −0.0892687 0.274741i
\(495\) 0 0
\(496\) −0.959585 5.48445i −0.0430867 0.246259i
\(497\) 17.9034 0.803079
\(498\) 0 0
\(499\) 21.4480 + 23.8204i 0.960143 + 1.06635i 0.997749 + 0.0670542i \(0.0213600\pi\)
−0.0376063 + 0.999293i \(0.511973\pi\)
\(500\) 5.52451 4.01379i 0.247064 0.179502i
\(501\) 0 0
\(502\) −0.505358 + 0.875306i −0.0225552 + 0.0390668i
\(503\) 1.22023 + 11.6097i 0.0544074 + 0.517652i 0.987455 + 0.157900i \(0.0504722\pi\)
−0.933048 + 0.359753i \(0.882861\pi\)
\(504\) 0 0
\(505\) −0.746950 + 7.10675i −0.0332388 + 0.316246i
\(506\) 5.53312 6.14516i 0.245977 0.273186i
\(507\) 0 0
\(508\) −15.9763 3.39588i −0.708835 0.150668i
\(509\) −17.8948 + 3.80365i −0.793172 + 0.168594i −0.586642 0.809846i \(-0.699550\pi\)
−0.206530 + 0.978440i \(0.566217\pi\)
\(510\) 0 0
\(511\) 3.05002 9.38699i 0.134925 0.415256i
\(512\) −0.309017 + 0.951057i −0.0136568 + 0.0420312i
\(513\) 0 0
\(514\) −29.9563 + 6.36740i −1.32131 + 0.280854i
\(515\) 12.9000 + 2.74197i 0.568441 + 0.120826i
\(516\) 0 0
\(517\) 6.49606 7.21460i 0.285696 0.317298i
\(518\) 0.481073 4.57710i 0.0211371 0.201106i
\(519\) 0 0
\(520\) −0.209545 1.99369i −0.00918916 0.0874290i
\(521\) 13.3850 23.1836i 0.586410 1.01569i −0.408288 0.912853i \(-0.633874\pi\)
0.994698 0.102838i \(-0.0327924\pi\)
\(522\) 0 0
\(523\) −19.1778 + 13.9335i −0.838588 + 0.609270i −0.921976 0.387247i \(-0.873426\pi\)
0.0833876 + 0.996517i \(0.473426\pi\)
\(524\) −4.76545 5.29257i −0.208180 0.231207i
\(525\) 0 0
\(526\) −5.84536 −0.254870
\(527\) 1.46161 1.86568i 0.0636685 0.0812704i
\(528\) 0 0
\(529\) 3.53633 + 10.8837i 0.153754 + 0.473205i
\(530\) −2.31160 2.56729i −0.100410 0.111516i
\(531\) 0 0
\(532\) −1.91664 3.31971i −0.0830967 0.143928i
\(533\) −7.03585 + 12.1864i −0.304756 + 0.527853i
\(534\) 0 0
\(535\) −2.60569 1.89314i −0.112654 0.0818477i
\(536\) −0.548698 + 5.22052i −0.0237002 + 0.225492i
\(537\) 0 0
\(538\) 0.416369 + 0.185379i 0.0179509 + 0.00799227i
\(539\) 5.84162 + 1.24167i 0.251616 + 0.0534827i
\(540\) 0 0
\(541\) −12.2004 + 5.43195i −0.524534 + 0.233538i −0.651882 0.758320i \(-0.726020\pi\)
0.127348 + 0.991858i \(0.459354\pi\)
\(542\) 0.795876 2.44946i 0.0341858 0.105213i
\(543\) 0 0
\(544\) −0.388870 + 0.173136i −0.0166726 + 0.00742314i
\(545\) 6.93349 1.47376i 0.296998 0.0631289i
\(546\) 0 0
\(547\) 0.889972 + 0.396241i 0.0380525 + 0.0169420i 0.425675 0.904876i \(-0.360037\pi\)
−0.387622 + 0.921818i \(0.626703\pi\)
\(548\) 9.70016 10.7731i 0.414370 0.460205i
\(549\) 0 0
\(550\) −5.10814 3.71128i −0.217812 0.158250i
\(551\) −0.0587440 0.558911i −0.00250258 0.0238104i
\(552\) 0 0
\(553\) −11.1286 19.2752i −0.473234 0.819666i
\(554\) 18.9499 13.7679i 0.805102 0.584941i
\(555\) 0 0
\(556\) 6.35170 + 19.5485i 0.269372 + 0.829042i
\(557\) 4.59258 0.194594 0.0972969 0.995255i \(-0.468980\pi\)
0.0972969 + 0.995255i \(0.468980\pi\)
\(558\) 0 0
\(559\) −7.90564 −0.334373
\(560\) −0.369841 1.13825i −0.0156286 0.0480999i
\(561\) 0 0
\(562\) −23.7350 + 17.2445i −1.00120 + 0.727416i
\(563\) −15.1698 26.2748i −0.639329 1.10735i −0.985580 0.169209i \(-0.945879\pi\)
0.346251 0.938142i \(-0.387455\pi\)
\(564\) 0 0
\(565\) −0.826518 7.86380i −0.0347719 0.330832i
\(566\) −8.80869 6.39989i −0.370257 0.269007i
\(567\) 0 0
\(568\) 7.20916 8.00658i 0.302490 0.335949i
\(569\) −28.2730 12.5879i −1.18526 0.527714i −0.283093 0.959092i \(-0.591361\pi\)
−0.902171 + 0.431379i \(0.858027\pi\)
\(570\) 0 0
\(571\) −37.4030 + 7.95025i −1.56527 + 0.332707i −0.907347 0.420382i \(-0.861896\pi\)
−0.657918 + 0.753089i \(0.728563\pi\)
\(572\) −3.58268 + 1.59511i −0.149799 + 0.0666949i
\(573\) 0 0
\(574\) −2.59608 + 7.98991i −0.108358 + 0.333492i
\(575\) 24.0263 10.6972i 1.00197 0.446104i
\(576\) 0 0
\(577\) 21.1652 + 4.49879i 0.881117 + 0.187287i 0.626188 0.779672i \(-0.284614\pi\)
0.254930 + 0.966960i \(0.417948\pi\)
\(578\) 15.3647 + 6.84082i 0.639089 + 0.284541i
\(579\) 0 0
\(580\) 0.0183411 0.174504i 0.000761574 0.00724589i
\(581\) 8.05740 + 5.85405i 0.334277 + 0.242867i
\(582\) 0 0
\(583\) −3.37914 + 5.85285i −0.139950 + 0.242400i
\(584\) −2.96980 5.14385i −0.122891 0.212854i
\(585\) 0 0
\(586\) 7.38190 + 8.19843i 0.304944 + 0.338674i
\(587\) 13.0613 + 40.1986i 0.539098 + 1.65917i 0.734624 + 0.678475i \(0.237359\pi\)
−0.195526 + 0.980699i \(0.562641\pi\)
\(588\) 0 0
\(589\) 12.3508 3.52387i 0.508904 0.145198i
\(590\) −8.69816 −0.358098
\(591\) 0 0
\(592\) −1.85321 2.05820i −0.0761665 0.0845914i
\(593\) −7.75392 + 5.63355i −0.318415 + 0.231342i −0.735499 0.677526i \(-0.763052\pi\)
0.417084 + 0.908868i \(0.363052\pi\)
\(594\) 0 0
\(595\) 0.254728 0.441201i 0.0104428 0.0180875i
\(596\) −2.13564 20.3193i −0.0874793 0.832310i
\(597\) 0 0
\(598\) 1.70751 16.2459i 0.0698253 0.664344i
\(599\) −24.0714 + 26.7340i −0.983530 + 1.09232i 0.0121925 + 0.999926i \(0.496119\pi\)
−0.995722 + 0.0923950i \(0.970548\pi\)
\(600\) 0 0
\(601\) 17.8089 + 3.78540i 0.726440 + 0.154410i 0.556266 0.831005i \(-0.312234\pi\)
0.170174 + 0.985414i \(0.445567\pi\)
\(602\) −4.61669 + 0.981307i −0.188162 + 0.0399951i
\(603\) 0 0
\(604\) 0.324556 0.998881i 0.0132060 0.0406439i
\(605\) −2.00635 + 6.17492i −0.0815698 + 0.251046i
\(606\) 0 0
\(607\) −19.4096 + 4.12563i −0.787810 + 0.167454i −0.584213 0.811601i \(-0.698597\pi\)
−0.203597 + 0.979055i \(0.565263\pi\)
\(608\) −2.25638 0.479607i −0.0915081 0.0194506i
\(609\) 0 0
\(610\) 1.26262 1.40228i 0.0511220 0.0567767i
\(611\) 2.00467 19.0732i 0.0811003 0.771618i
\(612\) 0 0
\(613\) 2.27329 + 21.6290i 0.0918175 + 0.873585i 0.939377 + 0.342885i \(0.111404\pi\)
−0.847560 + 0.530700i \(0.821929\pi\)
\(614\) −3.76521 + 6.52154i −0.151952 + 0.263188i
\(615\) 0 0
\(616\) −1.89419 + 1.37621i −0.0763192 + 0.0554492i
\(617\) −0.452250 0.502274i −0.0182069 0.0202208i 0.733973 0.679179i \(-0.237664\pi\)
−0.752179 + 0.658958i \(0.770997\pi\)
\(618\) 0 0
\(619\) 10.7141 0.430634 0.215317 0.976544i \(-0.430921\pi\)
0.215317 + 0.976544i \(0.430921\pi\)
\(620\) 4.00065 0.274441i 0.160670 0.0110218i
\(621\) 0 0
\(622\) −4.31263 13.2729i −0.172921 0.532195i
\(623\) 0.662364 + 0.735629i 0.0265370 + 0.0294724i
\(624\) 0 0
\(625\) −8.74408 15.1452i −0.349763 0.605808i
\(626\) 12.5450 21.7286i 0.501400 0.868450i
\(627\) 0 0
\(628\) −11.7972 8.57118i −0.470760 0.342027i
\(629\) 0.123232 1.17247i 0.00491357 0.0467495i
\(630\) 0 0
\(631\) −21.8136 9.71204i −0.868386 0.386630i −0.0763328 0.997082i \(-0.524321\pi\)
−0.792053 + 0.610452i \(0.790988\pi\)
\(632\) −13.1012 2.78474i −0.521137 0.110771i
\(633\) 0 0
\(634\) −12.5928 + 5.60669i −0.500125 + 0.222670i
\(635\) 3.63517 11.1879i 0.144257 0.443978i
\(636\) 0 0
\(637\) 10.7778 4.79857i 0.427030 0.190126i
\(638\) −0.335761 + 0.0713682i −0.0132929 + 0.00282549i
\(639\) 0 0
\(640\) −0.657960 0.292943i −0.0260082 0.0115796i
\(641\) −2.47779 + 2.75186i −0.0978668 + 0.108692i −0.790088 0.612993i \(-0.789965\pi\)
0.692222 + 0.721685i \(0.256632\pi\)
\(642\) 0 0
\(643\) 12.3157 + 8.94790i 0.485685 + 0.352871i 0.803522 0.595275i \(-0.202957\pi\)
−0.317838 + 0.948145i \(0.602957\pi\)
\(644\) −1.01942 9.69913i −0.0401708 0.382199i
\(645\) 0 0
\(646\) −0.490965 0.850377i −0.0193168 0.0334576i
\(647\) −6.01834 + 4.37258i −0.236605 + 0.171904i −0.699770 0.714369i \(-0.746714\pi\)
0.463164 + 0.886272i \(0.346714\pi\)
\(648\) 0 0
\(649\) 5.25829 + 16.1833i 0.206406 + 0.635252i
\(650\) −12.4731 −0.489236
\(651\) 0 0
\(652\) 4.88932 0.191480
\(653\) −2.92571 9.00441i −0.114492 0.352370i 0.877349 0.479853i \(-0.159310\pi\)
−0.991841 + 0.127483i \(0.959310\pi\)
\(654\) 0 0
\(655\) 4.14973 3.01496i 0.162143 0.117804i
\(656\) 2.52780 + 4.37828i 0.0986940 + 0.170943i
\(657\) 0 0
\(658\) −1.19683 11.3871i −0.0466573 0.443914i
\(659\) −17.7973 12.9305i −0.693285 0.503701i 0.184453 0.982841i \(-0.440949\pi\)
−0.877738 + 0.479140i \(0.840949\pi\)
\(660\) 0 0
\(661\) 12.7080 14.1136i 0.494283 0.548957i −0.443456 0.896296i \(-0.646248\pi\)
0.937740 + 0.347339i \(0.112915\pi\)
\(662\) −0.331421 0.147558i −0.0128810 0.00573500i
\(663\) 0 0
\(664\) 5.86245 1.24610i 0.227507 0.0483581i
\(665\) 2.52214 1.12293i 0.0978044 0.0435453i
\(666\) 0 0
\(667\) 0.441835 1.35983i 0.0171079 0.0526527i
\(668\) −11.4120 + 5.08095i −0.441544 + 0.196588i
\(669\) 0 0
\(670\) −3.69805 0.786045i −0.142868 0.0303676i
\(671\) −3.37230 1.50144i −0.130186 0.0579626i
\(672\) 0 0
\(673\) −1.65577 + 15.7536i −0.0638252 + 0.607256i 0.915127 + 0.403166i \(0.132090\pi\)
−0.978952 + 0.204090i \(0.934576\pi\)
\(674\) −10.8516 7.88415i −0.417988 0.303686i
\(675\) 0 0
\(676\) 2.62638 4.54903i 0.101015 0.174963i
\(677\) 18.1168 + 31.3792i 0.696284 + 1.20600i 0.969746 + 0.244116i \(0.0784979\pi\)
−0.273462 + 0.961883i \(0.588169\pi\)
\(678\) 0 0
\(679\) −5.81997 6.46373i −0.223350 0.248055i
\(680\) −0.0947383 0.291575i −0.00363305 0.0111814i
\(681\) 0 0
\(682\) −2.92912 7.27750i −0.112162 0.278670i
\(683\) −21.4383 −0.820312 −0.410156 0.912015i \(-0.634526\pi\)
−0.410156 + 0.912015i \(0.634526\pi\)
\(684\) 0 0
\(685\) 6.98632 + 7.75909i 0.266934 + 0.296460i
\(686\) 15.1089 10.9773i 0.576861 0.419114i
\(687\) 0 0
\(688\) −1.42015 + 2.45977i −0.0541426 + 0.0937778i
\(689\) 1.39553 + 13.2776i 0.0531656 + 0.505837i
\(690\) 0 0
\(691\) 2.61859 24.9142i 0.0996158 0.947781i −0.824550 0.565789i \(-0.808572\pi\)
0.924166 0.381992i \(-0.124762\pi\)
\(692\) 3.40392 3.78044i 0.129398 0.143711i
\(693\) 0 0
\(694\) 34.5681 + 7.34767i 1.31219 + 0.278914i
\(695\) −14.4804 + 3.07791i −0.549274 + 0.116752i
\(696\) 0 0
\(697\) −0.665011 + 2.04669i −0.0251891 + 0.0775241i
\(698\) −9.58274 + 29.4926i −0.362712 + 1.11631i
\(699\) 0 0
\(700\) −7.28398 + 1.54826i −0.275308 + 0.0585186i
\(701\) 2.36301 + 0.502274i 0.0892498 + 0.0189706i 0.252320 0.967644i \(-0.418806\pi\)
−0.163070 + 0.986614i \(0.552140\pi\)
\(702\) 0 0
\(703\) 4.27495 4.74782i 0.161233 0.179067i
\(704\) −0.147278 + 1.40126i −0.00555076 + 0.0528119i
\(705\) 0 0
\(706\) −2.54186 24.1842i −0.0956641 0.910183i
\(707\) 8.24366 14.2784i 0.310035 0.536996i
\(708\) 0 0
\(709\) 29.2254 21.2335i 1.09758 0.797441i 0.116920 0.993141i \(-0.462698\pi\)
0.980664 + 0.195700i \(0.0626979\pi\)
\(710\) 5.19223 + 5.76656i 0.194861 + 0.216415i
\(711\) 0 0
\(712\) 0.595693 0.0223246
\(713\) 32.3525 + 4.59046i 1.21161 + 0.171914i
\(714\) 0 0
\(715\) −0.872829 2.68629i −0.0326420 0.100462i
\(716\) −9.50046 10.5513i −0.355049 0.394322i
\(717\) 0 0
\(718\) 9.71490 + 16.8267i 0.362557 + 0.627967i
\(719\) 13.2301 22.9152i 0.493399 0.854592i −0.506572 0.862197i \(-0.669088\pi\)
0.999971 + 0.00760589i \(0.00242105\pi\)
\(720\) 0 0
\(721\) −24.6170 17.8853i −0.916786 0.666084i
\(722\) −1.42982 + 13.6038i −0.0532123 + 0.506282i
\(723\) 0 0
\(724\) 15.3679 + 6.84224i 0.571145 + 0.254290i
\(725\) −1.06789 0.226988i −0.0396605 0.00843011i
\(726\) 0 0
\(727\) −6.46885 + 2.88012i −0.239916 + 0.106818i −0.523173 0.852227i \(-0.675252\pi\)
0.283257 + 0.959044i \(0.408585\pi\)
\(728\) −1.42928 + 4.39888i −0.0529728 + 0.163033i
\(729\) 0 0
\(730\) 3.90802 1.73996i 0.144642 0.0643989i
\(731\) −1.18261 + 0.251372i −0.0437404 + 0.00929731i
\(732\) 0 0
\(733\) 24.5259 + 10.9197i 0.905886 + 0.403327i 0.806166 0.591689i \(-0.201539\pi\)
0.0997200 + 0.995016i \(0.468205\pi\)
\(734\) −12.8936 + 14.3198i −0.475910 + 0.528552i
\(735\) 0 0
\(736\) −4.74803 3.44964i −0.175015 0.127156i
\(737\) 0.773103 + 7.35559i 0.0284776 + 0.270947i
\(738\) 0 0
\(739\) −11.7031 20.2703i −0.430505 0.745656i 0.566412 0.824122i \(-0.308331\pi\)
−0.996917 + 0.0784659i \(0.974998\pi\)
\(740\) 1.61377 1.17247i 0.0593233 0.0431009i
\(741\) 0 0
\(742\) 2.46308 + 7.58057i 0.0904223 + 0.278291i
\(743\) 15.2912 0.560979 0.280490 0.959857i \(-0.409503\pi\)
0.280490 + 0.959857i \(0.409503\pi\)
\(744\) 0 0
\(745\) 14.7151 0.539120
\(746\) 1.35526 + 4.17108i 0.0496198 + 0.152714i
\(747\) 0 0
\(748\) −0.485216 + 0.352530i −0.0177413 + 0.0128898i
\(749\) 3.71559 + 6.43559i 0.135765 + 0.235151i
\(750\) 0 0
\(751\) 2.22176 + 21.1387i 0.0810733 + 0.771361i 0.957229 + 0.289332i \(0.0934333\pi\)
−0.876155 + 0.482029i \(0.839900\pi\)
\(752\) −5.57433 4.04999i −0.203275 0.147688i
\(753\) 0 0
\(754\) −0.453739 + 0.503928i −0.0165242 + 0.0183520i
\(755\) 0.691046 + 0.307674i 0.0251497 + 0.0111974i
\(756\) 0 0
\(757\) −47.8122 + 10.1628i −1.73776 + 0.369373i −0.964371 0.264555i \(-0.914775\pi\)
−0.773392 + 0.633928i \(0.781442\pi\)
\(758\) −11.6994 + 5.20890i −0.424941 + 0.189196i
\(759\) 0 0
\(760\) 0.513403 1.58009i 0.0186231 0.0573160i
\(761\) 20.6350 9.18729i 0.748018 0.333039i 0.00292132 0.999996i \(-0.499070\pi\)
0.745096 + 0.666957i \(0.232403\pi\)
\(762\) 0 0
\(763\) −15.9972 3.40032i −0.579139 0.123100i
\(764\) 22.3710 + 9.96021i 0.809354 + 0.360348i
\(765\) 0 0
\(766\) 2.93953 27.9678i 0.106210 1.01052i
\(767\) 27.1950 + 19.7583i 0.981954 + 0.713432i
\(768\) 0 0
\(769\) 23.3506 40.4444i 0.842044 1.45846i −0.0461191 0.998936i \(-0.514685\pi\)
0.888163 0.459528i \(-0.151981\pi\)
\(770\) −0.843153 1.46038i −0.0303851 0.0526286i
\(771\) 0 0
\(772\) 8.02948 + 8.91764i 0.288987 + 0.320953i
\(773\) 8.14908 + 25.0803i 0.293102 + 0.902076i 0.983852 + 0.178982i \(0.0572804\pi\)
−0.690750 + 0.723094i \(0.742720\pi\)
\(774\) 0 0
\(775\) 0.903716 24.9343i 0.0324624 0.895666i
\(776\) −5.23416 −0.187895
\(777\) 0 0
\(778\) 1.57031 + 1.74401i 0.0562984 + 0.0625257i
\(779\) −9.43490 + 6.85486i −0.338040 + 0.245601i
\(780\) 0 0
\(781\) 7.59010 13.1464i 0.271595 0.470417i
\(782\) −0.261134 2.48453i −0.00933815 0.0888465i
\(783\) 0 0
\(784\) 0.443057 4.21540i 0.0158235 0.150550i
\(785\) 7.02752 7.80485i 0.250823 0.278567i
\(786\) 0 0
\(787\) 5.11735 + 1.08773i 0.182414 + 0.0387732i 0.298213 0.954499i \(-0.403610\pi\)
−0.115799 + 0.993273i \(0.536943\pi\)
\(788\) 13.1095 2.78651i 0.467007 0.0992655i
\(789\) 0 0
\(790\) 2.98097 9.17449i 0.106058 0.326414i
\(791\) −5.63759 + 17.3507i −0.200450 + 0.616921i
\(792\) 0 0
\(793\) −7.13296 + 1.51616i −0.253299 + 0.0538403i
\(794\) 22.0807 + 4.69339i 0.783613 + 0.166562i
\(795\) 0 0
\(796\) −0.698154 + 0.775378i −0.0247454 + 0.0274826i
\(797\) 3.86920 36.8130i 0.137054 1.30398i −0.682459 0.730924i \(-0.739090\pi\)
0.819513 0.573060i \(-0.194244\pi\)
\(798\) 0 0
\(799\) −0.306580 2.91691i −0.0108460 0.103193i
\(800\) −2.24064 + 3.88090i −0.0792185 + 0.137210i
\(801\) 0 0
\(802\) 17.0686 12.4011i 0.602714 0.437897i
\(803\) −5.59979 6.21920i −0.197612 0.219471i
\(804\) 0 0
\(805\) 7.02406 0.247565
\(806\) −13.1315 8.22964i −0.462539 0.289877i
\(807\) 0 0
\(808\) −3.06598 9.43612i −0.107861 0.331962i
\(809\) 15.5080 + 17.2234i 0.545233 + 0.605543i 0.951287 0.308306i \(-0.0997621\pi\)
−0.406054 + 0.913849i \(0.633095\pi\)
\(810\) 0 0
\(811\) 12.6198 + 21.8581i 0.443140 + 0.767542i 0.997921 0.0644553i \(-0.0205310\pi\)
−0.554780 + 0.831997i \(0.687198\pi\)
\(812\) −0.202421 + 0.350603i −0.00710357 + 0.0123037i
\(813\) 0 0
\(814\) −3.15701 2.29370i −0.110653 0.0803941i
\(815\) −0.368088 + 3.50213i −0.0128936 + 0.122674i
\(816\) 0 0
\(817\) −5.98550 2.66492i −0.209406 0.0932336i
\(818\) −20.9629 4.45580i −0.732950 0.155793i
\(819\) 0 0
\(820\) −3.32639 + 1.48100i −0.116162 + 0.0517188i
\(821\) −3.92277 + 12.0730i −0.136906 + 0.421352i −0.995882 0.0906640i \(-0.971101\pi\)
0.858976 + 0.512016i \(0.171101\pi\)
\(822\) 0 0
\(823\) −11.2280 + 4.99901i −0.391382 + 0.174255i −0.592986 0.805213i \(-0.702051\pi\)
0.201604 + 0.979467i \(0.435385\pi\)
\(824\) −17.9110 + 3.80710i −0.623959 + 0.132626i
\(825\) 0 0
\(826\) 18.3337 + 8.16270i 0.637912 + 0.284017i
\(827\) 19.2979 21.4325i 0.671053 0.745280i −0.307438 0.951568i \(-0.599472\pi\)
0.978491 + 0.206288i \(0.0661384\pi\)
\(828\) 0 0
\(829\) 23.3372 + 16.9555i 0.810536 + 0.588889i 0.913986 0.405746i \(-0.132988\pi\)
−0.103450 + 0.994635i \(0.532988\pi\)
\(830\) 0.451210 + 4.29298i 0.0156617 + 0.149011i
\(831\) 0 0
\(832\) 1.39169 + 2.41048i 0.0482483 + 0.0835685i
\(833\) 1.45968 1.06052i 0.0505748 0.0367447i
\(834\) 0 0
\(835\) −2.78025 8.55672i −0.0962144 0.296118i
\(836\) −3.25021 −0.112411
\(837\) 0 0
\(838\) 12.3561 0.426836
\(839\) 5.96488 + 18.3580i 0.205931 + 0.633789i 0.999674 + 0.0255362i \(0.00812932\pi\)
−0.793743 + 0.608253i \(0.791871\pi\)
\(840\) 0 0
\(841\) 23.4135 17.0109i 0.807361 0.586582i
\(842\) 11.9711 + 20.7345i 0.412551 + 0.714559i
\(843\) 0 0
\(844\) 1.71448 + 16.3122i 0.0590148 + 0.561488i
\(845\) 3.06066 + 2.22370i 0.105290 + 0.0764976i
\(846\) 0 0
\(847\) 10.0237 11.1325i 0.344419 0.382516i
\(848\) 4.38190 + 1.95095i 0.150475 + 0.0669959i
\(849\) 0 0
\(850\) −1.86586 + 0.396601i −0.0639986 + 0.0136033i
\(851\) 14.8491 6.61124i 0.509020 0.226630i
\(852\) 0 0
\(853\) −1.60711 + 4.94618i −0.0550264 + 0.169354i −0.974793 0.223113i \(-0.928378\pi\)
0.919766 + 0.392467i \(0.128378\pi\)
\(854\) −3.97727 + 1.77079i −0.136099 + 0.0605953i
\(855\) 0 0
\(856\) 4.37421 + 0.929767i 0.149507 + 0.0317788i
\(857\) −6.13694 2.73234i −0.209634 0.0933350i 0.299234 0.954180i \(-0.403269\pi\)
−0.508867 + 0.860845i \(0.669936\pi\)
\(858\) 0 0
\(859\) −4.98966 + 47.4734i −0.170245 + 1.61977i 0.492076 + 0.870552i \(0.336238\pi\)
−0.662321 + 0.749220i \(0.730428\pi\)
\(860\) −1.65497 1.20241i −0.0564341 0.0410018i
\(861\) 0 0
\(862\) −6.30099 + 10.9136i −0.214613 + 0.371720i
\(863\) −17.0047 29.4530i −0.578846 1.00259i −0.995612 0.0935766i \(-0.970170\pi\)
0.416766 0.909014i \(-0.363163\pi\)
\(864\) 0 0
\(865\) 2.45160 + 2.72277i 0.0833568 + 0.0925771i
\(866\) 5.11984 + 15.7573i 0.173979 + 0.535453i
\(867\) 0 0
\(868\) −8.69001 3.17591i −0.294958 0.107798i
\(869\) −18.8716 −0.640177
\(870\) 0 0
\(871\) 9.77650 + 10.8579i 0.331264 + 0.367906i
\(872\) −7.96224 + 5.78491i −0.269636 + 0.195902i
\(873\) 0 0
\(874\) 6.76913 11.7245i 0.228969 0.396586i
\(875\) −1.18613 11.2853i −0.0400986 0.381513i
\(876\) 0 0
\(877\) 1.35364 12.8790i 0.0457090 0.434892i −0.947605 0.319445i \(-0.896503\pi\)
0.993314 0.115447i \(-0.0368300\pi\)
\(878\) 10.9295 12.1384i 0.368852 0.409652i
\(879\) 0 0
\(880\) −0.992608 0.210985i −0.0334608 0.00711232i
\(881\) 45.3854 9.64697i 1.52907 0.325015i 0.634850 0.772635i \(-0.281062\pi\)
0.894224 + 0.447621i \(0.147729\pi\)
\(882\) 0 0
\(883\) 5.68470 17.4957i 0.191306 0.588778i −0.808694 0.588229i \(-0.799825\pi\)
1.00000 0.000548755i \(-0.000174674\pi\)
\(884\) −0.366125 + 1.12682i −0.0123141 + 0.0378990i
\(885\) 0 0
\(886\) −13.1246 + 2.78971i −0.440929 + 0.0937223i
\(887\) −1.13016 0.240223i −0.0379470 0.00806589i 0.188899 0.981997i \(-0.439508\pi\)
−0.226846 + 0.973931i \(0.572841\pi\)
\(888\) 0 0
\(889\) −18.1613 + 20.1701i −0.609110 + 0.676485i
\(890\) −0.0448463 + 0.426684i −0.00150325 + 0.0143025i
\(891\) 0 0
\(892\) 2.28420 + 21.7328i 0.0764808 + 0.727666i
\(893\) 7.94716 13.7649i 0.265942 0.460624i
\(894\) 0 0
\(895\) 8.27296 6.01066i 0.276535 0.200914i
\(896\) 1.11192 + 1.23491i 0.0371466 + 0.0412555i
\(897\) 0 0
\(898\) 5.10431 0.170333
\(899\) −0.974500 0.943555i −0.0325014 0.0314693i
\(900\) 0 0
\(901\) 0.630941 + 1.94184i 0.0210197 + 0.0646920i
\(902\) 4.76637 + 5.29359i 0.158703 + 0.176257i
\(903\) 0 0
\(904\) 5.48932 + 9.50778i 0.182572 + 0.316224i
\(905\) −6.05794 + 10.4927i −0.201373 + 0.348788i
\(906\) 0 0
\(907\) −3.57748 2.59919i −0.118788 0.0863048i 0.526805 0.849986i \(-0.323390\pi\)
−0.645593 + 0.763681i \(0.723390\pi\)
\(908\) 1.20656 11.4796i 0.0400410 0.380965i
\(909\) 0 0
\(910\) −3.04324 1.35494i −0.100882 0.0449157i
\(911\) −11.1228 2.36422i −0.368514 0.0783301i 0.0199324 0.999801i \(-0.493655\pi\)
−0.388447 + 0.921471i \(0.626988\pi\)
\(912\) 0 0
\(913\) 7.71452 3.43472i 0.255313 0.113673i
\(914\) 11.7833 36.2652i 0.389756 1.19955i
\(915\) 0 0
\(916\) 19.0578 8.48507i 0.629687 0.280354i
\(917\) −11.5760 + 2.46056i −0.382275 + 0.0812550i
\(918\) 0 0
\(919\) 21.3808 + 9.51934i 0.705287 + 0.314014i 0.727855 0.685731i \(-0.240517\pi\)
−0.0225678 + 0.999745i \(0.507184\pi\)
\(920\) 2.82837 3.14122i 0.0932486 0.103563i
\(921\) 0 0
\(922\) 11.0437 + 8.02372i 0.363705 + 0.264247i
\(923\) −3.13460 29.8237i −0.103177 0.981659i
\(924\) 0 0
\(925\) −6.20562 10.7484i −0.204040 0.353407i
\(926\) 25.3631 18.4274i 0.833482 0.605560i
\(927\) 0 0
\(928\) 0.0752842 + 0.231701i 0.00247133 + 0.00760596i
\(929\) 33.5711 1.10143 0.550716 0.834692i \(-0.314355\pi\)
0.550716 + 0.834692i \(0.314355\pi\)
\(930\) 0 0
\(931\) 9.77759 0.320448
\(932\) 8.46951 + 26.0665i 0.277428 + 0.853836i
\(933\) 0 0
\(934\) 5.26787 3.82733i 0.172370 0.125234i
\(935\) −0.215982 0.374092i −0.00706336 0.0122341i
\(936\) 0 0
\(937\) −0.582320 5.54040i −0.0190236 0.180997i 0.980884 0.194593i \(-0.0623387\pi\)
−0.999908 + 0.0135962i \(0.995672\pi\)
\(938\) 7.05699 + 5.12720i 0.230419 + 0.167409i
\(939\) 0 0
\(940\) 3.32059 3.68789i 0.108306 0.120286i
\(941\) −40.6201 18.0852i −1.32418 0.589561i −0.381840 0.924229i \(-0.624709\pi\)
−0.942336 + 0.334667i \(0.891376\pi\)
\(942\) 0 0
\(943\) −29.0224 + 6.16890i −0.945098 + 0.200887i
\(944\) 11.0329 4.91214i 0.359089 0.159877i
\(945\) 0 0
\(946\) −1.23666 + 3.80604i −0.0402072 + 0.123745i
\(947\) 30.5374 13.5961i 0.992333 0.441815i 0.154648 0.987970i \(-0.450576\pi\)
0.837684 + 0.546154i \(0.183909\pi\)
\(948\) 0 0
\(949\) −16.1709 3.43724i −0.524931 0.111577i
\(950\) −9.44362 4.20457i −0.306391 0.136414i
\(951\) 0 0
\(952\) −0.0739386 + 0.703479i −0.00239636 + 0.0227999i
\(953\) −21.5000 15.6206i −0.696452 0.506002i 0.182323 0.983239i \(-0.441638\pi\)
−0.878775 + 0.477237i \(0.841638\pi\)
\(954\) 0 0
\(955\) −8.81850 + 15.2741i −0.285360 + 0.494258i
\(956\) 2.35177 + 4.07338i 0.0760616 + 0.131743i
\(957\) 0 0
\(958\) 8.48058 + 9.41864i 0.273995 + 0.304303i
\(959\) −7.44411 22.9106i −0.240383 0.739823i
\(960\) 0 0
\(961\) 17.4028 25.6543i 0.561382 0.827557i
\(962\) −7.70881 −0.248542
\(963\) 0 0
\(964\) 7.58629 + 8.42543i 0.244338 + 0.271365i
\(965\) −6.99204 + 5.08001i −0.225082 + 0.163531i
\(966\) 0 0
\(967\) −16.0045 + 27.7207i −0.514671 + 0.891437i 0.485184 + 0.874412i \(0.338753\pi\)
−0.999855 + 0.0170246i \(0.994581\pi\)
\(968\) −0.942301 8.96540i −0.0302867 0.288159i
\(969\) 0 0
\(970\) 0.394050 3.74913i 0.0126522 0.120377i
\(971\) −27.3662 + 30.3933i −0.878224 + 0.975366i −0.999852 0.0172096i \(-0.994522\pi\)
0.121628 + 0.992576i \(0.461188\pi\)
\(972\) 0 0
\(973\) 33.4099 + 7.10149i 1.07107 + 0.227663i
\(974\) 14.8682 3.16032i 0.476406 0.101263i
\(975\) 0 0
\(976\) −0.809607 + 2.49171i −0.0259149 + 0.0797579i
\(977\) 13.1578 40.4956i 0.420956 1.29557i −0.485858 0.874038i \(-0.661493\pi\)
0.906814 0.421531i \(-0.138507\pi\)
\(978\) 0 0
\(979\) 0.820977 0.174504i 0.0262385 0.00557717i
\(980\) 2.98606 + 0.634707i 0.0953863 + 0.0202750i
\(981\) 0 0
\(982\) −17.9327 + 19.9163i −0.572256 + 0.635555i
\(983\) −2.23926 + 21.3051i −0.0714212 + 0.679527i 0.898974 + 0.438003i \(0.144314\pi\)
−0.970395 + 0.241524i \(0.922353\pi\)
\(984\) 0 0
\(985\) 1.00899 + 9.59989i 0.0321491 + 0.305878i
\(986\) −0.0518520 + 0.0898103i −0.00165130 + 0.00286014i
\(987\) 0 0
\(988\) −5.19443 + 3.77398i −0.165257 + 0.120066i
\(989\) −11.1540 12.3878i −0.354676 0.393908i
\(990\) 0 0
\(991\) −6.00211 −0.190663 −0.0953317 0.995446i \(-0.530391\pi\)
−0.0953317 + 0.995446i \(0.530391\pi\)
\(992\) −4.91949 + 2.60741i −0.156194 + 0.0827853i
\(993\) 0 0
\(994\) −5.53247 17.0272i −0.175479 0.540069i
\(995\) −0.502829 0.558449i −0.0159408 0.0177040i
\(996\) 0 0
\(997\) −18.0916 31.3356i −0.572968 0.992409i −0.996259 0.0864157i \(-0.972459\pi\)
0.423291 0.905994i \(-0.360875\pi\)
\(998\) 16.0267 27.7591i 0.507318 0.878700i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 558.2.ba.e.361.1 8
3.2 odd 2 186.2.m.a.175.1 yes 8
31.14 even 15 inner 558.2.ba.e.541.1 8
93.14 odd 30 186.2.m.a.169.1 8
93.44 even 30 5766.2.a.bc.1.3 4
93.80 odd 30 5766.2.a.bg.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
186.2.m.a.169.1 8 93.14 odd 30
186.2.m.a.175.1 yes 8 3.2 odd 2
558.2.ba.e.361.1 8 1.1 even 1 trivial
558.2.ba.e.541.1 8 31.14 even 15 inner
5766.2.a.bc.1.3 4 93.44 even 30
5766.2.a.bg.1.3 4 93.80 odd 30